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Abstract. This paper considers the definition and properties of Wannier functions for Bloch
electrons in a magnetic field. When the quantized Hall conductance of a band is non-zero,
conventional Wannier functions with good localization properties cannot be constructed. The
difficulty can be overcome by slightly broadening the definition of the Wannier function: the
generalized Wannier functions are a good basis set, and well localized. They are generated by
applying magnetic translations to a set of|N | fundamental Wannier states: if the number of flux
quanta per unit cell isq/p (a rational number), and the Hall conductance integer isM, thenN
satisfiesMq +Np = 1.

Unlike conventional Wannier functions, the definition of these Wannier states depends upon
the choice of the basis vectors for lattice translations. The paper gives the transformation
properties of the Wannier functions induced by reassignment of the primitive-lattice basis vectors.

1. Introduction

The use of localized basis states for representation of a wavefunction often has significant
analytical and conceptual advantages. A well known example is the Wannier function basis,
which is a set of localized states constructed from a Bloch band for an electron in a periodic
potential. A fundamental Wannier state|φ〉 is constructed by integrating the Bloch states
|B(k)〉 with respect to the wavevectork, over the Brillouin zone BZ:

|φ〉 =
∫

BZ
dk |B(k)〉. (1.1)

If the Bloch states are an analytic function ofk, and periodic on the Brillouin zone, this
state is well localized. An orthonormal set of Wannier functions spanning the states which
comprise the Bloch band is generated by translating the fundamental Wannier state through
a set of lattice translationsR:

|φ(R)〉 = T̂ (R)|φ〉 (1.2)

where in the absence of a magnetic field the translation operator isT̂ (R) = exp[−ip̂ ·R/h̄],
with p̂ = −i h̄∇. The Wannier function basis is particularly convenient when the
electrons in the band are also subject to localized interactions, either with impurities or
with other charged particles (such as electron–hole attraction leading to the formation of
Wannier excitons) [1]. Wannier function bases have also proved very useful for analysing
quasiperiodic potentials [2], and quantized charge transport [3, 4]. Their properties are
discussed clearly in [5].

When there is a magnetic field present in addition to the periodic potential, the use
of Wannier function bases becomes problematic. The difficulty arises because the Bloch
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functions are not, in general, a periodic and analytic function of the Bloch wavevector: the
phase of the wavefunction increases by 2πM (whereM takes integer values) upon traversing
the boundary of the Brillouin zone (the precise meaning of this statement is explained in
references [4] and [6]). The Bloch states can only be made periodic and analytic when
M = 0. It has been proved thatM is the quantized Hall conductance integer of the Bloch
band [6]. WhenM is non-zero, conventional Wannier functions are not well localized [7–9].

A simple modification of the definition of the Wannier functions can be proposed, in
which the Bloch states are multiplied by an analytic functionf (k) with zeros with total
index −M. These states are unsatisfactory because they do not form a complete set, in
the sense that the Bloch states for whichk is a zero off (k) cannot be expanded in these
localized states [8, 9].

This paper will discuss the case where the electron is confined to a two-dimensional
plane, with cartesian coordinates(x, y) perpendicular to the magnetic field: the results also
apply directly to the three-dimensional cases where the motion along the direction of the
magnetic field is separable from the other degrees of freedom. Bloch bands exist when the
magnetic flux passing through a unit cell and the flux quantumh/e are rationally related,
with ratio p/q. When the magnetic field strength is not rational, the spectrum has a Cantor
set structure [10, 11]. The definition of satisfactory Wannier functions can be extended to
the case of non-rational fields [2], but this will not be considered in the present paper.

This paper describes the construction of sets of generalized Wannier functions which
overcome the difficulties discussed in [7–9]. The generalized Wannier functions are well
localized, and form a complete basis. A form of the generalized Wannier functions was
introduced in [2], for the phase-space lattice Hamiltonian, which is a realistic model for
Bloch electrons in a magnetic field. In this paper I will describe two different types of
generalized Wannier function, one of which (the type II functions) correspond to those
introduced in [2]. The derivation will be much more direct, and also has the advantage
of using only a minimal set of algebraic properties of the Bloch states, rather than being
tied to a specific representation. Another advantage is that it is applicable for an arbitrary
lattice, whereas the calculation in [2] only considers the case of a square lattice, aligned
with the coordinate system, in a limiting case where the problem can be modelled by a
one-dimensional effective Hamiltonian.

Unlike conventional Wannier functions, the definition of these Wannier states depends
upon the choice of the basis vectors for lattice translations. The paper gives the
transformation properties of the Wannier functions induced by a reassignment of the
primitive-lattice basis vectors. Also, in common with conventional Wannier functions,
the functions are not invariant under transformations of the Bloch states of the form

|B(k)〉 → |B ′(k)〉 = exp[iθ(k)]|B(k)〉 (1.3)

whereθ(k) is periodic on the Brillouin zone of a lattice: these will be referred to asgauge
transformations. The corresponding transformations of both types of Wannier function will
be discussed in a subsequent paper, together with operations representing the effect of
continuous translations on the Wannier functions.

2. Bloch states for rational magnetic fields

The basis vectors of the primitive lattice are denoted byA1 andA2, and the reciprocal-lattice
vectors bya1 anda2; these satisfy

Ai · aj = 2πδij . (2.1)
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The HamiltonianĤ commutes with a set of translation operatorsT̂ (Ai ):

[Ĥ , T̂ (Ai )] = 0. (2.2)

These translations are termed magnetic translation operators: they were introduced by Brown
[12] and Zak [13] for the special case of the symmetric gauge. Appendix A gives a simple
discussion of the form of the magnetic translation operators for a general linear gauge, and
also considers why linear gauges are preferred.

When the translation operator̂T (Ai ) acts on an eigenfunction, the result is an
eigenfunction with the same energy (either a phase factor times the same eigenfunction, or
a linear combination of degenerate eigenfunctions). For translations through lattice vectors,
the magnetic translation operators satisfy

T̂ (A1)T̂ (A2) = exp[2π iq/p]T̂ (A2)T̂ (A1) (2.3)

whereq/p is the number of flux quanta per unit cell; throughout this paper I will assume
that p and q are integers with no common divisor (p will be taken to be positive). For
general translations, the magnetic translations satisfy:

T̂ (R1)T̂ (R2) = exp

[
2π iq

p

(R1×R2)

(A1×A2)

]
T̂ (R2)T̂ (R1). (2.4)

The magnetic translation operators form a ‘projective’ or ‘ray’ group [12, 13]: they satisfy

T̂ (R1+R2) = exp[iθ(R1,R2)]T̂ (R1)T̂ (R2). (2.5)

The phase factor implies that the closure property of the group is lost, and many of the
results of group theory cease to be applicable. The translation operators still satisfy the
relations (2.3), (2.4) if they are multiplied by arbitrary phase factors; in the remainder of
this paper it will be assumed that these phases are chosen such that

T̂ (R1+R2) = exp

[
π iq

p

(R1×R2)

(A1×A2)

]
T̂ (R2)T̂ (R1). (2.6)

Equation (2.3) implies that

[T̂ (pA1), T̂ (A2)] = 0 (2.7)

so Bloch’s theorem [5] applies on a superlattice spanned bypA1 andA2, where theAi

are any choice of lattice vectors. Eigenfunctions can therefore be found which satisfy

T̂ (pA1)|B(k)〉 = exp[ipk ·A1]|B(k)〉 (2.8)

T̂ (A2)|B(k)〉 = exp[ik ·A2]|B(k)〉. (2.9)

The Bloch eigenfunctions|B(k)〉 havep-fold degeneracy (sincêT (A1)|B(k)〉 is also an
eigenfunction). Using (2.3),

T̂ (A2)T̂ (A1)|B(k)〉 = exp[i(k − qa2/p) ·A2]T̂ (A1)|B(k)〉 (2.10)

implying that the eigenfunction̂T (A1)|B(k)〉 satisfies (2.8) withk replaced byk− qa2/p.
It also satisfies (2.8), implying that the Bloch states can be defined such that

T̂ (A1)|B(k)〉 = exp[ik ·A1]|B(k − qa2/p)〉 (2.11)

which defines a gauge relation on Bloch states separated byqa2/p.
The following periodicity conditions can be imposed on the Bloch states:

|B(k + a2)〉 = |B(k)〉 (2.12)

|B(k + a1/p)〉 = exp[iMk ·A2]|B(k)〉 (2.13)
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whereM is a topological index called the Chern integer, which corresponds to the quantized
Hall conductance integer of the Bloch band [6]. Throughout the remainder of this paper
it will be assumed that the Bloch states are gauged so that these conditions are satisfied.
Another integerN will play an important role; this index is related toM by a diophantine
equation

qM + pN = 1. (2.14)

Applying (2.12)M times, this leads to an alternative form which is sometimes useful:

|B(k − a2/p)〉 = exp[−iMk ·A1]T̂ (MA1)|B(k)〉. (2.15)

Equations (2.9), (2.11), (2.12) and (2.13) define the essential properties of the Bloch states:
they represent a constraint on the gauge of the Bloch states, and also a constraint on the way
that the wavevectork is used to label thep-fold-degenerate states. Bloch states satisfying
these equations will be termedcanonicalwith respect to the set of basis vectorsA1 and
A2. The gauge of the Bloch states is not uniquely specified by these four equations: the
states remain canonically gauged after applying the transformation (1.3) if the phaseθ(k)
satisfies

θ(k + a1/p) = θ(k) = θ(k + a2/p). (2.16)

3. Wannier functions

Two types of Wannier function will be defined, termed types I and II.

3.1. Type I Wannier functions

Consider the set of states

|C(k)〉 = T̂
(
−pM

2π
(k ·A1)A2

)
|B(k)〉. (3.1)

These are periodic on the Brillouin zone reciprocal to the superlattice

|C(k + a1/p)〉 = |C(k)〉 (3.2)

|C(k + a2)〉 = |C(k)〉. (3.3)

Provided that the potential is smooth and the bands are non-degenerate, these states can be
gauged so that they are an analytic function ofk. Well-localized states can be formed by
integrating overk; using the usual construction for Wannier functions gives the following
pair of reciprocal relations:

|C(k)〉 =
∑
R

exp[−ik ·R]|χ(R)〉

|χ(R)〉 = p

4π2

∫
BZ[a1/p,a2]

dk exp[ik ·R]|C(k)〉
(3.4)

where the Brillouin zone BZ is spanned by the vectorsa1/p, a2, and theR are points of
a superlatticeR = n1pA1+ n2A2. The state|χ(R)〉is localized about the lattice pointR.
The Wannier states|χ(R)〉 form an orthonormal set:〈χ(R)|χ(R′)〉 = δR,R′ .
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The states|χ(R)〉 are not all images of each other under translations: consider the effect
of applying a general lattice translation to|χ(R)〉. For lattice vectorsn1A1+ n2A2,

T̂ (n2A2)T̂ (n1A1)|C(k)〉
= exp

[
i

(
pN(k ·A1)n1+ (k ·A2)n2− 2π iqn1n2

p

)]
|C(k − n1qa2/p)〉.

(3.5)

It follows that, ifR = pm1A1+m2A2,

T̂ (n2A2)T̂ (n1A1)|χ(R)〉 = exp

[
2π iqm2n1

p

]
|χ(R+ pNn1A1+ n2A2)〉. (3.6)

Applying lattice translations does not therefore generate the full set of states|χ(R)〉.
The full set of Wannier functions can be generated by applying lattice translationsT̂ (R),
R = pn1A1+ n2A2, to a set of fundamental Wannier functions

|χµ〉 = |χ(µpA1)〉 µ = 0, . . . , |N | − 1. (3.7)

In particular, the Wannier function associated with a general lattice site is

|χ(p(Nn1+ µ)A1+ n2A2
)〉 = T̂ (n2A2)T̂ (n1A1)|χµ〉. (3.8)

It is useful to be able to invert the relationship defining the|χµ〉, and express the Bloch
states in terms of the Wannier functions: from (3.1) and (3.2),

|B(k)〉 =
∑

R=p(Nn1+µ)A1+n2A2

exp[−ik ·R]T̂

(
pM

2π
(k ·A1)A2

)
|χ(R)〉. (3.9)

Using (3.8),|B(k)〉 can be written as a sum over a primitive lattice:

|B(k)〉 =
∑

R=n1A1+n2A2

exp[−ik ·R]T̂ (n2A2)T̂ (n1A1)T̂

(
pM

2π
(k ·A1)A2

)
×
∑
µ

exp[−ipµ(k ·A1)]|χµ〉. (3.10)

3.2. Type II Wannier functions

The expression (3.10) is satisfying in that the sum runs over sites of the primitive lattice,
but it is has the unsatisfactory feature that the final summation overµ depends uponk. This
undesirable feature can be removed by considering a different set of fundamental Wannier
states|φµ〉, defined in terms of the|χµ〉 states by

|φµ〉 = 1

N

|N |−1∑
µ′=0

exp[−2π iµµ′/N ]T̂ (−µ′A1/N)|χµ′ 〉. (3.11)

The inverse relationship is

|χµ〉 =
|N |−1∑
µ′=0

exp[2π iµµ′/N ]T̂ (µA1/N)|φµ′ 〉. (3.12)

Using (3.10), and noting that the sum overµ can be absorbed into a sum overn′1 = Nn1+µ,
the Bloch states can be expressed in terms of the functions|φµ〉 as follows:

|B(k)〉 =
∑

R=n1A1/N+n2A2

|N |−1∑
µ=0

exp[−ik ·R] exp[2π in1µ/N ]

× T̂ (n2A2)T̂ (n1A1/N)T̂

(
pM

2π
(k ·A1)A2

)
|φµ〉. (3.13)
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In this expression thek-dependence of the Wannier functions has been removed, at the
expense of making the lattice sum run over a lattice which is|N | times denser than the
primitive lattice. This equation is analogous to equation (3.15) of reference [2]. The
derivation given here has several advantages: it is more direct, it uses (as far as appears
possible) only algebraic properties rather than a specific representation, and it is formulated
for a general lattice.

4. Transformations of Bloch states

4.1. Motivation

When the Chern integerM is non-zero, the canonical Bloch states defined in section 2
depend upon the basis vectors of the primitive lattice,A1 andA2. The choice of basis
vectors for the lattice is arbitrary. It is therefore desirable to understand how the Bloch
states and Wannier states are transformed under a change of the basis vectors.

The possible changes of basis are of the form(
A′1
A′2

)
=
(
N11 N12

N21 N22

)(
A1

A2

)
= Ñ

(
A1

A2

)
(4.1)

with det(Ñ) = 1, with all of the elementsNij being integer valued. The objective is to
define, for every such matrix̃N , the corresponding transformation of the Bloch and Wannier
states. This task is simplified by noting that every transformationÑ can be written as a
product of elementary operations, parametrized by three integersn1, n2, n3:

Ñ(n1, n2, n3) = S̃(n1)R̃S̃(n2)R̃S̃(n3) (4.2)

where

S̃(n) =
(

1 n

0 1

)
= [S̃(1)]n R̃ =

(
0 1
−1 0

)
. (4.3)

The matrix R̃ represents an exchange of identity of the basis vectors, combined with an
inversion of one of them; note that in a square lattice,R̃ would represent aπ/2 rotation,
and for this reason this operation will be referred to as the elementary rotation. The matrix
S̃(n) represents a shear transformation; the general shear transformation is itself composed
of a product ofS̃(1). The effect of a general transformation on the Bloch or Wannier
states is determined by taking a composition of the images of elementary transformations
acting on the Bloch or Wannier states. In this section, the transformations of canonical Bloch
states corresponding to elementary rotations and shears will be obtained. The corresponding
transformations for Wannier states are obtained in section 5.

4.2. General approach

It will be convenient to collect together the relations defining the canonical gauge of the
Bloch states:

T̂ (A1)|B(k)〉 = exp[ik ·A1]|B(k − qa2/p)〉 (4.4a)

T̂ (A2)|B(k)〉 = exp[ik ·A2]|B(k)〉 (4.4b)

|B(k + a1/p)〉 = exp[iMk ·A2]|B(k)〉 (4.4c)

|B(k + a2)〉 = |B(k)〉. (4.4d)

The requirement is to find a transformation of the Bloch states such that these four equations
are satisfied with the original vectorsAi , ai replaced by the transformed vectorsA′i and
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a′i . The transformed Bloch states must be a linear combination of degenerate Bloch states:
using (2.11), this can be achieved by applying translations through multiples ofA1, of the
form

|B ′(k)〉 =
p−1∑
λ=0

αλ(k)T̂ (λA1)|B(k)〉. (4.5)

It may also be necessary to apply a gauge transformation to the translation operators, of the
form

T̂ ′(R) = exp[ic ·R]T̂ (R) (4.6)

so in (4.4), T̂ (Ai ) would be replaced bŷT ′(A′i ). The transformed translation operators
still satisfy all of the relations (2.3) to (2.7). The motivation for including this gauge
transformation is that, if it were not included, equation (2.8) might not be satisfied by the
transformed states.

The normalization of the Bloch states has not been discussed, and the transformation
will not necessarily preserve normalization.

4.3. Rotation of Bloch states

The elementary rotation has the following action on both the direct and the reciprocal lattice:

A′1 = A2 A′2 = −A1

a′1 = a2 a′2 = −a1.
(4.7)

The objective is to find a set of Bloch states satisfying (4.4a)–(4.4d) with the rotated
vectorsA′i anda′i replacing the original ones. This may involve taking linear combinations
of degenerate Bloch states. Consider the properties of the state

|S(k)〉 =
p−1∑
λ=0

|B(k + qλa2/p)〉. (4.8)

Systematic application of (4.4) shows that this satisfies the following conditions:

T̂ (A1)|S(k)〉 = exp[ik ·A1]|S(k)〉 (4.9a)

T̂ (A2)|S(k)〉 = exp[ipNk ·A2]|S(k + qa1/p)〉 (4.9b)

|S(k + a2/p)〉 = |S(k)〉 (4.9c)

|S(k + a1)〉 = exp[ipMk ·A2]|S(k)〉. (4.9d)

These are sufficiently similar to the required relations that the transformed Bloch states can
be obtained by making a gauge transformation of the|S(k)〉:

|B ′(k)〉 = exp[iθ(k)]|S(k)〉. (4.10)

Requiring that the|B ′(k)〉 satisfy (4.4) with the rotated vectors, these relations imply the
following conditions on the gauge functionθ(k):

θ(k + qa1/p) = θ(k)−Mqk ·A2 (4.11a)

θ(k + a2/p) = θ(k)−Mk ·A1 (4.11c)

θ(k − a1) = θ(k)+ pMk ·A2 (4.11d)
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(note that there is no condition onθ(k) from (4.4b), and that in this casec = 0 in (4.6)).
Equations (4.11) are solved by writingθ = αk1k2, whereki = k ·Ai : on substitution, it is
found thatα = −Mp/2π . The transformed Bloch state is therefore

|B ′(k)〉 = exp

[
−i
pM

2π
(k ·A1)(k ·A2)

] p−1∑
λ=0

|B(k + λqa2/p)〉

= exp

[
−i
pM

2π
k1k2

] p−1∑
λ=0

exp[iλk1]T̂ (−λA1)|B(k)〉. (4.12)

4.4. Shearing transformation of Bloch states

The action of the shearing transformation on the basis vectors of the primitive lattice and
their reciprocal lattice is

A′1 = A1+ nA2 A′2 = A2

a′1 = a1 a′2 = a2− na1.
(4.13)

In this case, no mixing of Bloch states is required: a gauge transformation

|B ′(k)〉 = exp[iθ(k)]|B(k)〉 (4.14)

is sufficient, but the translation operators must be gauge transformed. The transformed
Bloch states (4.14) satisfy

T̂ (pA′1)|B ′(k)〉 = (−1)pqn exp[ipk ·A′1]|B ′(k)〉
T̂ (A′2)|B ′(k)〉 = exp[ik ·A′2]|B ′(k)〉.

(4.15)

The factor(−1)pqn is removed by settingc = 1
2qna1 in (4.6), so

T̂ ′(A′1) = (−1)qn exp[−iπqn/p]T̂ (A1)T̂ (nA2) T̂ ′(A′2) = T̂ (A2). (4.16)

It is found that (4.4b) is satisfied immediately in the primed variables. The relations (4.4a),
(4.4c) and (4.4d) lead to the following relations for the gauge functionθ(k):

θ(k − qa′2/p) = θ(k)+
πqn

p

(
p − 1+ 2qM

)− qMn(k ·A2)+ 2πL1 (4.17a)

θ(k + a1/p) = θ(k)+ 2πL2 (4.17c)

θ(k + a′2) = θ(k)+ npM(k ·A2)+ 2πL3 (4.17d)

where the terms 2πLi , with Li integers, are included because the phase differences are only
determined to within multiples of 2π . It is anticipated that a solution can be found of the
form

θ(k1, k2) = αk2
2 + βk2 (4.18)

with L2 = 0. Upon substitution, it is found thatα = npM/4π , and that (4.17a) and (4.17d)
lead to the following equations forβ:

πMnq2

p
− 2πq

p
β = πqn

p

(
p − 1+ 2qM

)+ 2πL1 (4.19a)

πpMn+ 2πβ = 2πL3. (4.19d)

Eliminatingβ from these equations leads to the following equation for the integersL1 and
L3:

pL1+ qL3 = Nn N = 1
2pq(N +M − 1). (4.20)
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Comparison with (2.14) shows that the solutions are

L1 = NNn L3 = NMn. (4.21)

It must be verified that these are integer values: this is established by showing thatN is
integer valued. To verify this, note that in the case where bothp andq are odd,pN + qM
is even whenN andM have the same parity. This latter condition contradicts (2.14),
implying that forp, q both odd,N +M − 1 is even.

The value of the coefficientβ in (4.18) is now determined by (4.19d) and (4.21). The
Bloch states are therefore transformed as follows:

|B ′(k)〉 = exp

[
i

(
npM

4π
(k ·A2)

2+ nM(N − 1
2p)(k ·A2)

)]
|B(k)〉 (4.22)

whereN is given by (4.20).

5. Transformations of Wannier functions

5.1. General considerations

In the preceding section, rules were given for transformation of a set of canonical Bloch
states when the basis vectors of the lattice are changed fromA1,A2 to A′1,A

′
2. Now the

corresponding transformations of the Wannier functions will be calculated.
The fundamental Wannier functions for the transformed basis vectors are

|χ ′µ〉 = |χ ′(µpA′1)〉 µ = 0, . . . , |N | − 1 (5.1)

where, using (3.1) and (3.4),

|χ ′(R)〉 = p

4π2

∫
BZ′

dk exp[ik ·R]T̂ ′
(
−pM

2π
(k ·A′1)A′2

)
|B ′(k)〉 (5.2)

and where BZ′ is the Brillouin zone for the transformed superlattice, spanned by the vectors
a′1/p and a′2. Here |B ′(k)〉 is the transformed Bloch state, which is in general a linear
combination ofp degenerate Bloch states; using (2.15) this may be written in the form
(4.5). Using (3.7) to (3.9), the transformed Wannier functions are then of the form

|χ ′µ〉 =
p

4π2

∫
BZ′

dk exp[ip(µk′1− µ′k1)]T̂
′
(
−pM

2π
k′1A

′
2

) p−1∑
λ=0

αλ(k)T̂ (λA1)

× T̂
(
pM

2π
k1A2

) |N |−1∑
µ′=0

∑
R=pNn1A1+n2A2

exp
[−i

(
k ·R

)]
× T̂ (n2A2)T̂ (n1A1)|χµ′ 〉 (5.3)

whereki = k ·Ai andk′i = k ·A′i . This expression may be written in the form

|χ ′µ〉 =
|N |−1∑
µ′=0

∫
BZ′

dk Q̂µµ′(k)B̂(k)|χµ′ 〉 =
|N |−1∑
µ′=0

M̂µµ′ |χµ′ 〉 (5.4)

where

Q̂µµ′(k) = p

4π2

p−1∑
λ1=0

p−1∑
λ2=0

exp
[
ip
(
µk′1− µ′k1

)]
exp

[−iλ2k2
]
αλ(k)

× T̂ ′
(
pM

2π
k′1A

′
2

)
T̂ (λ1A1)T̂

(
pM

2π
k1A2

)
T̂ (λ2A2) (5.5)
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and

B̂(k) =
∞∑

n1=−∞

∞∑
n2=−∞

exp
[−ip

(
Nn1A1+ n2A2

)
· k
]
T̂ (pn2A2)T̂ (n1A1)

=
∑

R=p(n1NA1+n2A2)

exp[−ik ·R]T̂

(
(R · a2)

2π
A2

)
T̂

(
(R · a1)

2πpN
A1

)
. (5.6)

The operatorB̂(k) is periodic on a subset of the Brillouin zones BZ and BZ′:

B̂(k + a1/p) = B̂(k + a2/p) = B̂(k). (5.7)

The productQ̂µµ′(k)B̂(k)must be periodic on the Brillouin zone BZ′. The operatorQ̂µµ′(k)
satisfies

Q̂µµ′(k +Ki ) = Q̂µµ′(k)X̂i(k)

K1 = a′1/p K2 = a′2
(5.8)

where the operatorŝXi(k) satisfy X̂i(k)B̂(k) = B̂(k). This equation is satisfied by
combining translation operators and complex exponentials, and the operatorsQ̂µµ′(k) satisfy

Q̂µµ′(k +Ki ) = exp
[−i

(
k ·Ri

)]
Q̂µµ′(k)T̂

(
(Ri · a2)

2π
A2

)
T̂

(
(Ri · a1)

2πpN
A1

)
(5.9)

where the vectorsRi are vectors drawn from the lattice sum in the second equation of (5.6),
of the of the formRi = p(Ji1NA1+ Ji2A2), with Jij integers.

Provided thatR1 andR2 are not linearly dependent, the sum over superlattice vectors
R in (5.3) may be written in the form∑

R

=
∑

m1R1+m2R2

∑
r

(5.10)

where in the first summationm1 andm2 run from−∞ to∞, and the second summation runs
over a finite set of lattice vectors; the number of vectorsr is |R1×R2|/(|A1×A2|pN).

Using (5.9) and (5.10), and noting that the lattice translationsT̂ (R) in the second form
of (5.6) commute, equation (5.4) can be simplified as follows:

|χ ′µ〉 =
|N |−1∑
µ′=0

∫
BZ′

dk Q̂µµ′(k)
∑

R=m1R1+m2R2

exp[−ik ·R]T̂

(
(R · a2)

2π
A2

)
T̂

(
(R · a1)

2πpN
A1

)
×
∑
r

exp[−ik · r]T̂

(
(r · a2)

2π
A2

)
T̂

(
(r · a1)

2πpN
A1

)
|χµ′ 〉

=
|N |−1∑
µ′=0

∑
K=m1a

′
1/p+m2a

′
2

∫
BZ′

dk Q̂µµ′(k +K)

×
∑
r

exp[−ik · r]T̂

(
(r · a2)

2π
A2

)
T̂

(
(r · a1)

2πpN
A1

)
|χµ′ 〉

=
|N |−1∑
µ′=0

∫
dk Q̂µµ′(k)

∑
r

exp[−ik · r]T̂

(
(r · a2)

2π
A2

)
T̂

(
(r · a1)

2πpN
A1

)
|χµ′ 〉.

(5.11)

In the final expression the integral is over the full range ofk, which is more convenient to
evaluate, and the infinite sum appearing in (5.3) has been replaced by a finite one.
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The operatorsQ̂µµ′(k) are linear combinations of translation operators, with arguments
which are linear ink, combined together with weights which are phase factors which are
quadratic functions of the components ofk. The transformation of the Wannier functions
is therefore constructed from operators of the following form:

Ŝ(α̃) =
∫

dx exp

[
i

2h̄

(
xTα̃x

)]
T̂ (x) (5.12)

whereα̃ is a symmetric 2× 2 matrix, andh̄ is a constant defined by the relation

T̂ (x)T̂ (x′) = exp

[
i

2h̄

(
x× x′)]T̂ (x+ x′). (5.13)

Comparison with (2.6) shows that ¯h is shorthand for(p/2πq)|A1×A2|: the symbolh̄ was
used because (5.13) is the algebra of the Weyl–Heisenberg operators in quantum mechanics.
The transformation from the old Wannier states|χµ〉 to the new states|χ ′µ〉 is a linear

combination of operators of the form̂S(α̃) and translation operators; it is therefore important
to interpret the action of thêS(α̃). The operator (5.12) is characterized in appendix B, where
it is shown that it effects a transformation of the argument of a translation operator

T̂ (R′) = exp

[
i

2h̄

(
RTK̃R

)]
Ŝ−1(α̃)T̂ (R)Ŝ(α̃) (5.14)

where K̃ is a 2× 2 matrix discussed in appendix B, andR is obtained by a linear
transformation ofR′:

R′ = M̃(α̃)R det(M̃) = 1. (5.15)

The operator (5.12) can therefore be interpreted as effecting a linear, area-preserving trans-
formation. The transformation matrix̃M is

M̃ = (2α̃ − J̃ )−1(2α̃ + J̃ ) J̃ =
(

0 −1
1 0

)
. (5.16)

It is difficult to carry the calculation any further for a general transformationÑ . Instead,
the transformation of Wannier functions for the cases of the generalized rotationR̃ and the
shear transformatioñS(n) will be considered separately. The general transformation can be
found by using (4.2) to compose the results of these elementary transformations.

5.2. Rotation of type I Wannier functions

In this case (4.12) shows that the coefficients in (4.5) are

αλ(k) = exp

[
−i
pM

2π
k1k2

]
exp[−iλk1]. (5.17)

and the operatorŝQµµ′(k) are therefore

Qµµ′(k) = p

4π2
exp[ip(µk2− µ′k1)]

p−1∑
λ1=0

p−1∑
λ2=0

exp[−i(λ1k1+ λ2k2)] exp

[
−i
pM

2π
k1k2

]
× T̂

((
pM

2π
k2+ λ1

)
A1

)
T̂

((
pM

2π
k1+ λ2

)
A2

)
(5.18)

whereB̂(k) is defined by (5.6); this satisfies the relations (5.8), (5.10) in the form

Q̂µµ′(k1, k2+ 2π/p) = exp[−ipMNk1]Q̂µµ′(k1, k2)T̂ (MA1)

Q̂µµ′(k1− 2π, k2) = exp[ipMk2]Q̂µµ′(k1, k2)T̂ (−pMA2)
(5.19)
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implying that the vectorsRi are

R1 = pNMA1 R2 = −pMA2. (5.20)

The form of (5.11) in this case is then

|χ ′µ〉 =
p

4π2

|N |−1∑
µ′=0

|M|−1∑
l1=0

|M|−1∑
l2=0

∫
dk exp[−ip(Nk1l1+ k2l2)]Q̂µµ′(k)T̂ (pl2A2)T̂ (l1A1)|χµ′ 〉

= p

4π2

|N |−1∑
µ′=0

|M|−1∑
l1=0

|M|−1∑
l2=0

p−1∑
λ1=0

p−1∑
λ2=0

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2 exp[ip(µk2− µ′k1)]

× exp[−i(λ2k2+ λ1k1)] exp[−ip(Nl1k1+ l2k2)] exp

[
−i
pM

2π
k1k2

]
× T̂

((pM
2π

k2+ λ1
)
A1

)
T̂

((pM
2π

k1+ λ2
)
A2

)
T̂ (pl2A2)T̂ (l1A1)|χµ′ 〉

= p

4π2

|N |−1∑
µ′=0

|M|−1∑
l1=0

|M|−1∑
l2=0

p−1∑
λ1=0

p−1∑
λ2=0

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2 exp[−2π iql1λ2/p]

× exp[−i(pµ′ + λ1+ l1)k1] exp[−i(−pµ+ λ2+ pl2)k2] exp

[
− ipM

2π
k1k2

]
× T̂

((pM
2π

k2+ λ1+ l1
)
A1

)
T̂

((pM
2π

k1+ λ2+ pl2
)
A2

)
|χµ′ 〉. (5.21)

After making a change of variables, equation (5.21) can be rearranged to write the operator
M̂µµ′ in the form

M̂µµ′ = 1

pM2

|M|−1∑
l1=0

|M|−1∑
l2=0

p−1∑
λ1=0

p−1∑
λ2=0

exp

[
2π i

pM

(−pµ(l1+ λ1)

+ (l1+ λ1+ pµ′)(pl2+ λ2)− qMl1λ2
)]
Ôµµ′ (5.22)

where

Ôµµ′ =
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 exp

[
2π i

M
(µx1− µ′x2)

]
exp

[
− 2π i

pM
x1x2

]
T̂ (x1A1)T̂ (x2A2).

(5.23)

The summations in (5.22) can all be performed, giving the simple result

M̂µµ′ = exp

[
2π ip

M
µµ′

]
Ôµµ′ . (5.24)

This expression can be interpreted by expressingÔµµ′ in terms of the operator introduced
in equation (5.12). Using the substitutions ¯h = p(A1 ×A2)/2πq, the operatorÔµµ′ can
be related to the operatorŝS(α̃, b) which are discussed in appendix B:

Ôµµ′ = Ŝ(α̃, b) α̃ =
1
2qM − 1

qM

(
0 1
1 0

)
b = p

qM
(µ,−µ′). (5.25)



Wannier functions for lattices in a magnetic field 7419

This can be related to the operatorŜ(α) using (B.13). The matrices̃β, K̃ ′ appearing in
(B.13), and the symplectic transformatioñM characterizing the action of̂S(α̃) are

β̃ = qM

pN

(
0 1
pN 0

)
K̃ ′ = ( 1

2qM − 1)qM

pN

(
0 1
1 0

)
+ 2β̃

M̃ =
(
(pN)−1 0

0 pN

)
.

(5.26)

which gives

Ŝ(α̃, b) = exp

[
−π i(1+ pN)

NM
µµ′

]
Ŝ(α)T̂ (−µ′A1/N + pµA2). (5.27)

Substituting these results into (5.24), and using (2.6) to partition the translation operator
gives

M̂µµ′ = exp

[
−2π iqµµ′

N

]
Ŝ(α̃)T̂

(
µpA2)T̂ (−µ′A1/N

)
. (5.28)

A more symmetric form is obtained by using (B.4) to commute one of the translation
operators througĥS(α̃). The matrixK̃ which defines the phase8 through (B.10) evaluates
to

K̃ = ( 1
2qM − 1)qM

pN

(
0 1
1 0

)
+
(

0 −pN
(pN)−1 0

)
. (5.29)

Because this matrix has no diagonal components, the phase8 in (B.4) evaluates to zero,
and so

M̂µµ′ = exp

[
−2π iqµµ′

N

]
T̂ (µA2/N)Ŝ(α̃)T̂ (−µ′A1/N). (5.30)

5.3. Shearing transformation of type I Wannier functions

The case of the shearing transformation, specified by (4.13), must be treated differently; this
is because the vectorsR1 andR2 introduced in (5.9) are not linearly independent, implying
that (5.10) cannot be used. This case is therefore treated from first principles.

The transformation of the Bloch states is a simple gauge transformation,|B(k)〉 =
exp[iθ(k2)]|B(k)〉, with the phaseθ(k2) given by (4.22). Using equation (5.3), the trans-
formed Wannier states are therefore

|χ ′µ〉 =
p

4π2

|N |−1∑
µ′=0

∫ 2π/p

0
dk′1

∫ 2π

0
dk′2 exp

[
ip
(
µk′1− µ′(k′1− nk′2)

)]
× T̂ ′

(
−pM

2π
k′1A2

)
exp[iθ(k2)]T̂

(
pM

2π
(k′1− nk′2)A2

)
×

∞∑
n1=−∞

∞∑
n2=−∞

exp[−i(pNn1(k
′
1− nk′2)+ n2k

′
2)]T̂ (n2A2)T̂ (n1A1)|χµ′ 〉.

(5.31)

The integration overk′1 can be carried out immediately, giving

|χ ′µ〉 =
1

2π

∫ 2π

0
dk exp[ipnµk] exp[iθ(k)]

∞∑
m=−∞

exp[−imk]T̂

((
−pMn

2π
k +m

)
A2

)
|χµ〉

≡
∞∑

m=−∞

∫ 2π

0
dk exp[−imk]Q̂µ(k)T̂ (mA2)|χµ〉 ≡ M̂µ|χµ〉 (5.32)
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where the last two equalities define the operatorsQ̂µ(k) and M̂µ; note that only the term
µ′ = µ contributes. The operator̂Qµ(k) satisfies

Q̂µ(k + 2π) = exp[ipMnk]Q̂µ(k)T̂ (−pMnA2). (5.33)

The operatorM̂µ, which effects the transformation of the Wannier functions, can therefore
be written as

M̂µ =
|pMn|−1∑
λ=0

∞∑
m=−∞

∫ 2π

0
dk exp[−iλk] exp[−ipMnmk]Q̂µ(k)T̂ (pMnmA2)T̂ (λA2)

=
|pMn|−1∑
λ=0

∫ ∞
−∞

dk exp[−iλk]Q̂µ(k)T̂ (λA2)

= 1

2π

|pMn|−1∑
λ=0

∫ ∞
−∞

dk exp

[
i
pMn

4π
k2

]
exp

[
i
(
pnµ− λ+Mn(N − 1

2p)
)
k
]

× T̂
((
−pMn

2π
k + λ

)
A2

)
(5.34)

where the final equality used (4.22). Making the successive changes of variables,λ′ =
λ− pnµ−Mn(N − 1

2p) andx = −pMnk/2π + λ′, this can be written in the form

M̂µ = 1

2π

|pMn|−1∑
λ=0

∫ ∞
−∞

dk exp

[
ipMnk2

4π

]
exp[−iλ′k]T̂

((−pMn
2π

k + λ′)A2

)
× T̂ (pnµA2)T̂ (Mn(N − 1

2p)A2)

= 1

pMn

|pMn|−1∑
λ=0

exp

[ −π i

pMn

(
λ− pnµ−Mn(N − 1

2)
)2
]

× ŝ(α)T̂ (pnµA2)T̂
(
Mn(N − 1

2p)A2
)

(5.35)

where ŝ(α) is an operator defined in appendix B, equation (B.15), withα = 1/qMn. It is
convenient to define the sum

S(N, n) = 1

N

|N |−1∑
λ=0

exp

[−π i(λ− n+ 1
2N)

2

N

]
. (5.36)

It is easily seen that this is independent ofn, so the argumentn can be dropped, and the
sum can also be evaluated explicitly:

S(N, n) = S(N, n+ 1) ≡ S(N) = exp[−iπ/4]/
√
N. (5.37)

Because the sum is independent ofµ, it is just a numerical factor determining the
normalization of the transformed states; since the normalization has not been specified,
this factor can be dropped, and the operator transforming the Wannier states will be written
as

M̂µ = ŝ(α)T̂ (pnµA2)T̂
(
Mn(N − 1

2p)A2
)
. (5.38)

In appendix B, it is shown that the operatorŝ(α) has the effect of a shearing transformation:
for h̄ = p/2πq andα = 1/qMn,

ŝ(α)T̂ (R) = T̂ (R′)ŝ(α) (5.39)

where the relationship betweenR′ andR is

R′ = M̃R M̃ =
(

1 0
qMn 1

)
. (5.40)
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5.4. Transformation for type II Wannier functions

Equations (5.30) and (5.38) give the transformations for the type I Wannier functions
under elementary rotations and shear transformations respectively. The corresponding trans-
formations for the type II Wannier functions are obtained using (3.11) and (3.12).

The transformed type II Wannier function is given by (3.11), with the translation operator
replaced by a translation through the transformed lattice vectorA′1:

|φ′µ〉 =
|N |−1∑
µ′=0

exp

[
−2π iµµ′

N

]
T̂ ′(−µ′A′1/N)|χ ′µ′ 〉. (5.41)

The prime on the translation operator indicates that it may have to include the gauge factor
(4.6).

In the case of the elementary rotation, the transformation for the type II Wannier
functions is easily determined from (5.30): using the facts that in this caseA′1 = A2

and T̂ ′(R) = T̂ (R),

|φ′µ〉 =
1

N
√
p

|N |−1∑
λ=0

|N |−1∑
λ′=0

exp

[
2π i

N
(λq − µ)λ

]
Ŝ(α̃)T̂ (λ′A1/N)|χλ′ 〉

= 1

N
√
p

|N |−1∑
λ=0

|N |−1∑
λ′=0

|N |−1∑
µ′=0

exp

[
2π i

N

(
qλλ′ − λµ+ λ′µ′)]Ŝ(α̃)|φµ′ 〉. (5.42)

The sum overλ′ vanishes unlessqλ+µ′ = 0 modN ; this condition can also be written as
λ = −Mµ′. The required transformation of type II Wannier functions corresponding to an
elementary rotation of the lattice basis vectors is therefore

|φ′µ〉 =
1√
p

|N |−1∑
µ′=0

exp

[
−2π iMµµ′

N

]
Ŝ(α̃)|φµ′ 〉. (5.43)

Next consider the case of the elementary shear transformation, whereA′1 = A1+ nA2,
andT̂ ′(R) = exp[1

2iqna1·R]T̂ (R). Using (5.38), the transformation of the type II Wannier
functions is therefore

|φ′µ〉 =
1

N

|N |−1∑
µ′=0

|N |−1∑
λ=0

exp

[
2π i

N

(
µ′ − µ− 1

2qn)λ
)]
T̂
(−λ(A1+ nA2)/N

)
× ŝ(α)T̂ (pnλA2)T̂

(
Mn(N − 1

2p)A2
)
T̂ (λA1/N)|φµ′ 〉

= 1

N

|N |−1∑
µ′=0

|N |−1∑
λ=0

exp

[
2π i

N

(
µ′ − µ− 1

2qn(pN − pNM + qNM)
)
λ− 1

2qnλ
2

]
× T̂ (−λ(A1+ nA2)/N

)
ŝ(α)T̂ (λA1/N + pnλA2)

× T̂ (Mn(N − 1
2p)A2

)|φµ′ 〉 (5.44)

where (2.14) and (4.20) have been used to simplify the exponents. Using (5.39), the trans-
lation operators which depend uponλ are eliminated. After further use of equations (2.14)
and (4.20),

|φ′µ〉 =
|N |−1∑
µ′=0

K(µ− µ′)ŝ(α)T̂ (Mn(N − 1
2p)A2

)|φµ′ 〉 (5.45)
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where the coefficientsK(µ− µ′) are obtained from

K(ν) = 1

N

|N |−1∑
λ=0

exp

[
−2π i

N

(
1
2qnλ

2+ νλ− 1
2qnNλ

)]
. (5.46)

The coefficients satisfy the relations

K(ν +N) = K(ν) K(−ν) = K∗(ν) K(0) = 0.

6. Summary

The purpose of this section is to highlight the most significant results, and to discuss the
definitions upon which they are based.

When conventional Wannier functions are defined, it is assumed that the Bloch states
are periodic functions of the Bloch wavevectork, as well as being eigenfunctions of the
lattice translation operatorŝT (Ai ), with eigenvalues exp[ik · Ai ]. In the case where a
rational magnetic field (withq/p flux quanta per unit cell) is applied, in general both of
these conditions need to be modified. The Bloch states arep-fold degenerate, and their
phase increases by 2πM on traversing the boundary of the unit cell. Throughout this paper
it has been assumed that the Bloch states are chosen to satisfy the following eigenvalue and
periodicity conditions discussed in section 2:

T̂ (A1)|B(k)〉 = exp[ik ·A1]|B(k − qa2/p)〉 (6.1a)

T̂ (A2)|B(k)〉 = exp[ik ·A2]|B(k)〉 (6.1b)

|B(k + a1/p)〉 = exp[iMk ·A2]|B(k)〉 (6.1c)

|B(k + a2)〉 = |B(k)〉. (6.1d)

Except whenp = 1 andM = 0, these conditions depend upon the choice of lattice basis
vectorsAi .

The method for constructing the Wannier functions was discussed in section 3. If the
Bloch states satisfy (6.1), the state|C(k)〉 = T̂ (−pMk · A2/2π)|B(k)〉 is periodic on
the Brillouin zone of the superlattice spanned bypA1, A2, and the Wannier functions
|χ(R)〉 are obtained by integrating the state|C(k)〉 with weight exp[ik ·R]. In the case of
standard Wannier functions, all of the Wannier states are obtained be applying translation
operators to a single fundamental Wannier state. In the magnetic case, the full set of Wannier
states is obtained by applying lattice translations to|N | fundamental type I Wannier states,
|χµ〉 = |χ(µA1)〉, µ = 0, . . . , |N | − 1, whereN satisfiespN + qM = 1. The Bloch states
are obtained from the type I fundamental Wannier functions using (3.10):

|B(k)〉 =
∑

R=n1A1+n2A2

exp[−ik ·R]T̂ (n2A2)T̂ (n1A1)T̂

(
pM

2π
(k ·A1)A2

)
×
∑
µ

exp[−ipµ(k ·A1)]|χµ〉. (6.2)

A somewhat more natural representation of the Bloch states uses an alternative set of
fundamental Wannier states: the type II Wannier states are defined by

|φµ〉 = 1

N

|N |−1∑
µ′=0

exp[−2π iµµ′/N ]T̂ (−µ′A1/N)|χµ′ 〉. (6.3)
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One advantage of using the type II Wannier states is that the summation overµ no longer
depends uponk; the Bloch states are given in terms of the type II states by the relation

|B(k)〉 =
∑

R=n1A1/N+n2A2

|N |−1∑
µ=0

exp[−ik ·R] exp[2π in1µ/N ]

× T̂ (n2A2)T̂ (n1A1/N)T̂

(
pM

2π
(k ·A1)A2

)
|φµ〉. (6.4)

The other advantage of the type II Wannier states is that their transformations under a
change of lattice basis vectors are simpler.

Sections 4 and 5 discussed the effects of making a transformation of the set of basis
vectors for the lattice. The transformation of the basis vectors is characterized by an integer-
valued unimodular matrixÑ , which can be constructed from a combination of rotationsR̃

and shears̃S(n):

Ñ = S̃(n1)R̃S̃(n2)R̃S̃(n3) S̃(n) =
(

1 n

0 1

)
= [S̃(1)]n R̃ =

(
0 1
−1 0

)
. (6.5)

The action of the rotation and shear transforms on the Wannier functions is characterized by
operatorsŜ(α̃) and ŝ(α), discussed in appendix B, which are characterized by a symplectic
transformationM̃ in the space of magnetic translations. The transformation of type I
Wannier functions corresponding to an elementary rotation of the lattice basis, and the
associated symplectic transformation are

|χ ′µ〉 =
1√
p

|N |−1∑
µ′=0

exp

[
−2π iqµµ′

N

]
T̂ (µA2/N)Ŝ(α̃)T̂ (−µ′A1/N)|χµ′ 〉

M̃ =
(
(pN)−1 0

0 pN

)
.

(6.6)

The transformation for the shearing transformation, and associated symplectic transformation
are

|χ ′µ〉 = ŝ(α)T̂ (pnµA2)T̂
(
Mn(N − 1

2p)A2
)|χµ〉 M̃ =

(
1 0

qMn 1

)
. (6.7)

(The constantN is defined by equation (4.20).)
The corresponding transformations for the type II Wannier functions have the satisfying

feature that the translation operators dependent upon the indicesµ,µ′ are eliminated. The
transformation of type II Wannier functions corresponding to elementary rotation of the
lattice basis is

|φ′µ〉 =
1√
p

|N |−1∑
µ′=0

exp[−2π iMµµ′/N ]Ŝ(α̃)|φµ′ 〉 (6.8)

and that corresponding to a shearS̃(n) is

|φ′µ〉 =
|N |−1∑
µ′=0

K(µ− µ′)ŝ(α)T̂ (Mn(N − 1
2pA2)

)|φµ′ 〉
K(ν) = 1

N

|N |−1∑
λ=0

exp

[
−2π i

N

(
1
2qnλ

2+ νλ− 1
2qnNλ

)]
.

(6.9)
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It is a surprising feature that the symplectic transformationM̃ associated with the trans-
formation of the Wannier states is different from the symplectic transformationÑ which
describes the change of lattice basis vectors.

If the Hamiltonian has rotational symmetry, there exist operators acting on the Wannier
functions which represent this symmetry; Wannier functions may be chosen which are
invariant under the action of these operators. The definition of these symmetry operations
involves a reassignment of the lattice basis vectors, and they are therefore related to the
results in section 5 of this paper. These symmetry operators have been constructed for
fourfold and sixfold rotations of the phase-space lattice Hamiltonian model in references
[2] and [14] respectively. These papers contain results related to a special case of equations
(6.8) and (6.9) respectively.
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Appendix A

The system under consideration is a single particle of charge−e moving in a periodic
potentialV (r) with a uniform magnetic fieldB applied along thez-axis. Spin, relativistic
and many-body effects are not considered. The Schrödinger equation for this system is

Ĥ |ψ〉 =
[

1

2m

(
p̂− eA(r))2+ V (r)

]
|ψ〉 = E|ψ〉

∇×A = B = Be3

V (r +R) = V (r) R = n1A1+ n2A2

(A.1)

where the basis vectors of the periodic potential areAi , i = 1, 2. The vector potential
A(r) = (A1(r), A2(r)) will always be chosen to be linear inr, specified by a matrixB̃
with elementsBij :

Ai(r) =
∑
j=1,2

Bij rj A(r) = B̃r. (A.2)

One reason for this restriction being useful is that whenA(r) is linear, the Hamiltonian
can be subjected to linear canonical transformations without any ambiguity arising in its
quantization. The two most common choices ofB̃ are given by

Landau gauge:A = (0, Bx,0)

symmetric gauge:A = (− 1
2By,

1
2Bx, 0).

(A.3)

The Schr̈odinger equation (A.1) is much harder to solve than the corresponding problem
with no magnetic field applied, since the Hamiltonian is no longer trivially invariant under
a translation through a lattice vectorR. In order to see how the symmetry of the lattice is
contained in (A.1), it is necessary to understand the effects of translation in the presence
of a magnetic field. Consider a change of variabler → r′ = r −R in the Hamiltonian:
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becauseV (r) = V (r′), this is equivalent to making a change in the vector potential to

A(r) = A(r′ +R) = A(r′)+ B̃R = A(r′)+∇r′8

8(r′) = (B̃R) · r′.
(A.4)

The corresponding gauge transformation of a wavefunctionψ(r) which solves the time-
independent Schrödinger equation at energyE is

ψ(r′)→ ψ ′(r′) = exp[ie8(r′)/h̄]ψ(r′). (A.5)

Expressing this in termsr, and ignoring an irrelevant multiplicative factor, a translated
solution of the Schr̈odinger equation is

ψ ′(r) = exp[ie(B̃Tr) ·R/h̄]ψ(r −R) (A.6)

which is also a solution with energyE.
Now a set of operators,̂T (R), will be introduced, which generate translations of the

form (A.6); these operators are called the magnetic translation operators. A convenient
choice of these operators is given by

T̂ (R) = exp

[
− i

h̄

(
p̂− eB̃Tr

)
·R

]
. (A.7)

The effect of this operator onψ(r) is to transform it into the stateψ ′(r) given by (A.6),
multiplied by an unimportant overall phase. This operator is analogous to the ordinary
translation operator, with the generator−∇ replaced by−∇ + (ie/h̄)B̃Tr. Note that it
is only for linear gauges that a generator for infinitesimal translations can be explicitly
identified.

Sincer̂ andp̂ do not commute, pairs of magnetic translation operators do not in general
commute; using the Baker–Cambell–Hausdorff formula, their composition law is found to
be

T̂ (R)T̂ (R′) = exp

[
ie

2h̄
B · (R×R′)

]
T̂ (R+R′). (A.8)

Note that the phase changeθ on translating the solution in a clockwise sense about a circuit
of areaA is

θ = 2πeAB
h

(A.9)

which is 2π times the number of flux quanta within the circuit.
Although the magnetic translation operators do not commute with each other, it is clear

from their construction that they commute with the Hamiltonian for vectorsR that are
lattice translations, and therefore provide a mathematical description of the symmetry of the
system.

Appendix B

In this appendix the composition relation for the operatorsT̂ (R) will be written as

T̂ (R)T (R′) = exp

[
i

2h̄
(R1R

′
2− R2R

′
1)

]
T̂ (R+R′)

= exp

[
i

2h̄
(R×R′)

]
T̂ (R+R′) = exp

[
i

2h̄
(R′ TJ̃R)

]
T̂ (R+R′) (B.1)
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where the second equality defines the cross product, and where

J̃ =
(

0 −1
1 0

)
. (B.2)

It will be shown that the operator

Ŝ(α̃) =
∫

dx exp

[
i

2h̄

(
xTα̃x

)]
T̂ (x)

=
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 exp

[
i

2h̄

(
α11x

2
1 + α22x

2
2 + 2α12x1x2

)]
T̂ (x1, x2) (B.3)

satisfies

T̂ (R′) = exp[i8(α̃,R)]Ŝ−1(α̃)T̂ (R)Ŝ(α̃) (B.4)

whereR′ is related toR by a symplectic transformation:

R′ = M̃(α̃)R det(M̃) = 1 (B.5)

and8(α̃,R) is a phase which will be specified later. The symplectic matrix is given by

M̃ = (2α̃ + J̃ )−1(2α̃ − J̃ )
= 1

α11α22− α2
12+ 1

4

(
α11α22− (α12− 1

2)
2 α22

−α11 α11α22− (α12+ 1
2)

2

)
. (B.6)

To demonstrate this result, consider the following operator:

Ŝ ′ = T̂ (R)Ŝ(α̃)T̂ (−R′) (B.7)

where no relation betweenR andR′ is assumed at this stage. Inserting the definition (B.3),
and using (B.1) to write the result as an integral over a single translation operator, then
changing variables, gives

Ŝ ′ = exp

[
i

2h̄

(
(R′ −R)Tα̃(R′ −R)−RTJ̃R′

)] ∫
dx exp

[
i

2h̄
(xTα̃x)

]
× exp

[
i

2h̄

(
2(R′ −R)Tα̃x+ (R+R′)× x)]T̂ (x). (B.8)

The operatorŜ ′ is proportional toŜ(α̃) if the phases which are linear inx vanish; in this
case, equation (B.8) can be rearranged to give (B.4). This leads to the following relation:

2α̃(R′ −R) = J̃ (R′ +R) (B.9)

which can be solved to giveR′ = (R′1, R
′
2) in terms ofR; this gives (B.5), (B.6). The

phase appearing in (B.4) is given by

8(α̃,R) = R
TK̃R

2h̄
K̃ = −(M̃ − Ĩ )Tα̃(M̃ − Ĩ )+ J̃ M̃. (B.10)

It is convenient to give a formula for the case where the phase factor in (B.2) contains
terms which are linear inx; define

Ŝ(α̃, b) =
∫

dx exp

[
i

2h̄
xTα̃x

]
exp

[
i

h̄
b · x

]
T̂ (x). (B.11)
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Making a change of variablex′ = x−a, then applying (B.1) gives, for an arbitrary choice
of a,

Ŝ(α̃, b) = exp

[
i

2h̄

(
aTα̃a+ 2a · b

)]
×
∫

dx′ exp

[
i

2h̄
x′ T

(
2α̃a+ 2b+ J̃a)] exp

[
i

2h̄
(x′ Tα̃x′)

]
T̂ (x′)T̂ (a).

(B.12)

If a is chosen such that the term for which the component of the phase linear inx vanishes,
equation (B.12) gives

Ŝ(α̃, b) = exp[i2(α̃, b)]Ŝ(α̃)T̂ (β̃b) β̃ = −(α̃ + 1
2 J̃ )
−1 (B.13)

and the phase factor is

2(α̃, b) = b
TK̃ ′b
2h̄

K̃ ′ = β̃Tα̃β̃ + 2β̃. (B.14)

Another operator closely related tôS(α̃) will be required; this is defined by

ŝ(α) =
∫ ∞
−∞

dx exp

[
iαx2

2h̄

]
T̂ (xA2). (B.15)

Following the same approach as was used for the operatorŜ(α̃), it is easily shown that̂s(α)
satisfies

T̂ (R′) = ŝ−1(α)T̂ (R)ŝ(α) (B.16)

whereR is an arbitrary vector, andR′ is given by

R′ = M̃(α)R M̃(α) =
(

1 0
−α−1 0

)
. (B.17)
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