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Abstract. This paper considers the definition and properties of Wannier functions for Bloch
electrons in a magnetic field. When the quantized Hall conductance of a band is non-zero,
conventional Wannier functions with good localization properties cannot be constructed. The
difficulty can be overcome by slightly broadening the definition of the Wannier function: the
generalized Wannier functions are a good basis set, and well localized. They are generated by
applying magnetic translations to a set|8f fundamental Wannier states: if the number of flux
quanta per unit cell ig/p (a rational number), and the Hall conductance integed jshen N
satisfiesMq + Np = 1.

Unlike conventional Wannier functions, the definition of these Wannier states depends upon
the choice of the basis vectors for lattice translations. The paper gives the transformation
properties of the Wannier functions induced by reassignment of the primitive-lattice basis vectors.

1. Introduction

The use of localized basis states for representation of a wavefunction often has significant
analytical and conceptual advantages. A well known example is the Wannier function basis,
which is a set of localized states constructed from a Bloch band for an electron in a periodic
potential. A fundamental Wannier staf¢) is constructed by integrating the Bloch states
|B(k)) with respect to the wavevectdr, over the Brillouin zone BZ:

l¢) = | dk |B(k)). 1.1

BZ
If the Bloch states are an analytic function kf and periodic on the Brillouin zone, this
state is well localized. An orthonormal set of Wannier functions spanning the states which
comprise the Bloch band is generated by translating the fundamental Wannier state through
a set of lattice translationR:

6 (R) = T(R)|¢) (1.2)
where in the absence of a magnetic field the translation opera’ft(d?s = exp[-ip- R/h],
with p = —iAV. The Wannier function basis is particularly convenient when the

electrons in the band are also subject to localized interactions, either with impurities or
with other charged particles (such as electron—hole attraction leading to the formation of
Wannier excitons) [1]. Wannier function bases have also proved very useful for analysing
quasiperiodic potentials [2], and quantized charge transport [3, 4]. Their properties are
discussed clearly in [5].

When there is a magnetic field present in addition to the periodic potential, the use
of Wannier function bases becomes problematic. The difficulty arises because the Bloch
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functions are not, in general, a periodic and analytic function of the Bloch wavevector: the
phase of the wavefunction increases 2 (whereM takes integer values) upon traversing
the boundary of the Brillouin zone (the precise meaning of this statement is explained in
references [4] and [6]). The Bloch states can only be made periodic and analytic when
M = 0. It has been proved that is the quantized Hall conductance integer of the Bloch
band [6]. WhenM is non-zero, conventional Wannier functions are not well localized [7-9].

A simple modification of the definition of the Wannier functions can be proposed, in
which the Bloch states are multiplied by an analytic functipgk) with zeros with total
index —M. These states are unsatisfactory because they do not form a complete set, in
the sense that the Bloch states for whichs a zero of f (k) cannot be expanded in these
localized states [8, 9].

This paper will discuss the case where the electron is confined to a two-dimensional
plane, with cartesian coordinatés, y) perpendicular to the magnetic field: the results also
apply directly to the three-dimensional cases where the motion along the direction of the
magnetic field is separable from the other degrees of freedom. Bloch bands exist when the
magnetic flux passing through a unit cell and the flux quanijare rationally related,
with ratio p/q. When the magnetic field strength is not rational, the spectrum has a Cantor
set structure [10, 11]. The definition of satisfactory Wannier functions can be extended to
the case of non-rational fields [2], but this will not be considered in the present paper.

This paper describes the construction of sets of generalized Wannier functions which
overcome the difficulties discussed in [7-9]. The generalized Wannier functions are well
localized, and form a complete basis. A form of the generalized Wannier functions was
introduced in [2], for the phase-space lattice Hamiltonian, which is a realistic model for
Bloch electrons in a magnetic field. In this paper | will describe two different types of
generalized Wannier function, one of which (the type Il functions) correspond to those
introduced in [2]. The derivation will be much more direct, and also has the advantage
of using only a minimal set of algebraic properties of the Bloch states, rather than being
tied to a specific representation. Another advantage is that it is applicable for an arbitrary
lattice, whereas the calculation in [2] only considers the case of a square lattice, aligned
with the coordinate system, in a limiting case where the problem can be modelled by a
one-dimensional effective Hamiltonian.

Unlike conventional Wannier functions, the definition of these Wannier states depends
upon the choice of the basis vectors for lattice translations. The paper gives the
transformation properties of the Wannier functions induced by a reassignment of the
primitive-lattice basis vectors. Also, in common with conventional Wannier functions,
the functions are not invariant under transformations of the Bloch states of the form

|B(k)) — |B'(k)) = exp[io (k)] | B(k)) 1.3)

whered (k) is periodic on the Brillouin zone of a lattice: these will be referred tgasge
transformations The corresponding transformations of both types of Wannier function will

be discussed in a subsequent paper, together with operations representing the effect of
continuous translations on the Wannier functions.

2. Bloch states for rational magnetic fields

The basis vectors of the primitive lattice are denoteddgyand A,, and the reciprocal-lattice
vectors bya; anday; these satisfy

Ai ca; = 27'[5,‘.,‘. (21)
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The Hamiltoniand commutes with a set of translation operat(ﬁr(sali):
[A,T(A)] =0. 2.2)

These translations are termed magnetic translation operators: they were introduced by Brown
[12] and Zak [13] for the special case of the symmetric gauge. Appendix A gives a simple
discussion of the form of the magnetic translation operators for a general linear gauge, and
also considers why linear gauges are preferred.

When the translation operatdf(A;) acts on an eigenfunction, the result is an
eigenfunction with the same energy (either a phase factor times the same eigenfunction, or
a linear combination of degenerate eigenfunctions). For translations through lattice vectors,
the magnetic translation operators satisfy

T (AT (Ap) = expl2rig/p]T (AT (A1) (2.3)

wheregq/p is the number of flux quanta per unit cell; throughout this paper | will assume
that p and g are integers with no common divisop (will be taken to be positive). For
general translations, the magnetic translations satisfy:

A A 27ig (Ry x Ry) | & A
T(R)T(Ry) = exp[ﬂ M} T(Ry)T (Ry). (2.4)
p (A1 x Ap)
The magnetic translation operators form a ‘projective’ or ‘ray’ group [12, 13]: they satisfy
T(R1+ Ry) = exp[i6(Ry, Rp)T (R)T (Ry). (2.5)

The phase factor implies that the closure property of the group is lost, and many of the
results of group theory cease to be applicable. The translation operators still satisfy the
relations (2.3), (2.4) if they are multiplied by arbitrary phase factors; in the remainder of
this paper it will be assumed that these phases are chosen such that

A ig (R1x Ry~ N

T(Ri+ Ry) = exp[ﬁ(lx—ﬂ (R T (Ry). 2.6)

p (A1 x Ay)

Equation (2.3) implies that

[T(pA1), T(A2)] =0 2.7)

so Bloch's theorem [5] applies on a superlattice spanneg Ay and A,, where theA;
are any choice of lattice vectors. Eigenfunctions can therefore be found which satisfy

T(pAy)|B(k)) = explipk - A1]|B(k)) (2.8)
T(A2)|B(k)) = explik - A5]|B(k)). (2.9)

The Bloch eigenfunction$B(k)) have p-fold degeneracy (sincé“(Al)|B(k)> is also an
eigenfunction). Using (2.3),

T(A2)T(AD)|B(k)) = explitk — gaz/p) - A7|T (A1)|B(K)) (2.10)

implying that the eigenfunctiod (A1)|B(k)) satisfies (2.8) withk replaced byk — ga,/ p.
It also satisfies (2.8), implying that the Bloch states can be defined such that

T(A1)|B(k)) = explik - A1]|B(k — gaz/p)) (2.11)
which defines a gauge relation on Bloch states separatedpyp.
The following periodicity conditions can be imposed on the Bloch states:
|B(k + a2)) = |B(K)) (2.12)
|B(k + a1/p)) = expliMk - Az]| B(k)) (2.13)
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whereM is a topological index called the Chern integer, which corresponds to the quantized
Hall conductance integer of the Bloch band [6]. Throughout the remainder of this paper
it will be assumed that the Bloch states are gauged so that these conditions are satisfied.
Another integerN will play an important role; this index is related #d by a diophantine
equation

gM + pN = 1. (2.14)
Applying (2.12) M times, this leads to an alternative form which is sometimes useful;
|B(k — az/p)) = expl-iMk - A1]T (M A1)|B(K)). (2.15)

Equations (2.9), (2.11), (2.12) and (2.13) define the essential properties of the Bloch states:
they represent a constraint on the gauge of the Bloch states, and also a constraint on the way
that the wavevectok is used to label the-fold-degenerate states. Bloch states satisfying
these equations will be termeaxhnonicalwith respect to the set of basis vectods and

A,. The gauge of the Bloch states is not uniquely specified by these four equations: the
states remain canonically gauged after applying the transformation (1.3) if the @tigse
satisfies

0(k+ai1/p) =0(k) =0(k+ az/p). (2.16)

3. Wannier functions

Two types of Wannier function will be defined, termed types | and I

3.1. Type | Wannier functions

Consider the set of states
A M
|C(k)) = T(—l;—n(k . Al)A2)|B(k)>~ (3.1)

These are periodic on the Brillouin zone reciprocal to the superlattice

|C(k + a1/ p)) = |C(k)) (3.2)
IC(k + a2)) = [C(k)). (3.3)

Provided that the potential is smooth and the bands are non-degenerate, these states can be
gauged so that they are an analytic functionkofWell-localized states can be formed by
integrating overk; using the usual construction for Wannier functions gives the following

pair of reciprocal relations:

IC(k)) =) _expl-ik - R]|x(R))
Rp (3.4)

Ix(R) = m

/ dk exp[ik - R]|C(k))
BZ[a1/p,az]

where the Brillouin zone BZ is spanned by the vectergp, a,, and theR are points of
a superlatticeR = n1p A; + noA,. The statd x (R))is localized about the lattice poitR.
The Wannier statelgy (R)) form an orthonormal set{x (R)|x(R)) = ér.r -
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The statesy (R)) are not all images of each other under translations: consider the effect
of applying a general lattice translation tp(R)). For lattice vectorsi1 A; + noAs,,

T (n2A2) T (n1A1)|C (k)
= exp[i (PN(k - Apni+ (k- Ax)np — %)] |C(k — niqaz/p)).

(3.5)
It follows that, if R = pm1 A1 + my A,

“ n 2ri
724 T (1141 x (R)) = exp[%} X (R + pNn1A; + npAp)). (3.6)

Applying lattice translations does not therefore generate the full set of statd®)).
The full set of Wannier functions can be generated by applying lattice translatioRS,
R = pn1 A1 +nyAj, to a set of fundamental Wannier functions

Ixu) =[x (upAp)) nw=0,....IN| =1 (3.7)
In particular, the Wannier function associated with a general lattice site is
X (p(Nn1+ 1) Ay + naAg)) = T(n2A9) T (n1.A1)|X,0)- (3.8)

It is useful to be able to invert the relationship defining fhg), and express the Bloch
states in terms of the Wannier functions: from (3.1) and (3.2),

. L pM
Bl = Y ek RIF( e Apaa) xR, (3.9)
R=p(Nni+pu)Ai+ns A,

Using (3.8),|B(k)) can be written as a sum over a primitive lattice:

_ ) A . [ pM
BR) = > expl-ik- R]T(nzAz)T(mAl)T(l;—(k : A1)A2>
R=n1A1+n2A T

x Y expl-ipp(k - Aplix). (3.10)

"

3.2. Type Il Wannier functions

The expression (3.10) is satisfying in that the sum runs over sites of the primitive lattice,
but it is has the unsatisfactory feature that the final summationokpends upok. This
undesirable feature can be removed by considering a different set of fundamental Wannier
states|¢,,), defined in terms of they,) states by

IN]-1

$) = 5 D expl-2ripp/NIT (=1 Ax/N) ). (3.11)
=0
The inverse relationship is
IN|-1
xu) = D explripp /NIT (L A1/N)|$y). (3.12)
w=0

Using (3.10), and noting that the sum oyecan be absorbed into a sum owgr= Nni+pu,
the Bloch states can be expressed in terms of the funcligysas follows:
IN|—1

Bk = ) ) expl-ik-Rlexp[2riny/N]

R=n1A;/N+nyA; n=0

A A ~(pM
X T(ngAz)T(nlAl/N)T<l;—n(k . Al)A2> [P.)- (3.13)
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In this expression thé&-dependence of the Wannier functions has been removed, at the
expense of making the lattice sum run over a lattice whichMstimes denser than the
primitive lattice. This equation is analogous to equation (3.15) of reference [2]. The
derivation given here has several advantages: it is more direct, it uses (as far as appears
possible) only algebraic properties rather than a specific representation, and it is formulated
for a general lattice.

4. Transformations of Bloch states

4.1. Motivation

When the Chern integed is non-zero, the canonical Bloch states defined in section 2
depend upon the basis vectors of the primitive lattidg, and A,. The choice of basis
vectors for the lattice is arbitrary. It is therefore desirable to understand how the Bloch
states and Wannier states are transformed under a change of the basis vectors.

The possible changes of basis are of the form

Al _ (Nu No A1\ o (A1
(Ai>_<N21 N22)<Az>_N<A2> (4.1)

with detN) = 1, with all of the elementsv;; being integer valued. The objective is to
define, for every such matriX, the corresponding transformation of the Bloch and Wannier
states. This task is simplified by noting that every transformaNooan be written as a
product of elementary operations, parametrized by three integens, ns:

N (n1, na, n3) = S(n1)RS(n2) RS(n3) (4.2)

Son) = (é ’1) e (_01 é) 4.3)

The matrix R represents an exchange of identity of the basis vectors, combined with an
inversion of one of them; note that in a square lattifewould represent a /2 rotation,

and for this reason this operation will be referred to as the elementary rotation. The matrix
S(n) represents a shear transformation; the general shear transformation is itself composed
of a product ofS(1). The effect of a general transformation on the Bloch or Wannier
states is determined by taking a composition of the images of elementary transformations
acting on the Bloch or Wannier states. In this section, the transformations of canonical Bloch
states corresponding to elementary rotations and shears will be obtained. The corresponding
transformations for Wannier states are obtained in section 5.

where

4.2. General approach

It will be convenient to collect together the relations defining the canonical gauge of the
Bloch states:

T(A1)|B(k)) = explik - A1]|B(k — gaz/p)) (4.48)
T(A2)|B(k)) = explik - A]|B(k)) (4.90)
|B(k + a1/p)) = exp[iMk - Az]|B(k)) (4.4c)
|B(k + ay)) = |B(K)). (4.4d)

The requirement is to find a transformation of the Bloch states such that these four equations
are satisfied with the original vectod;, a; replaced by the transformed vectods and
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a;. The transformed Bloch states must be a linear combination of degenerate Bloch states:
using (2.11), this can be achieved by applying translations through multiplds,aff the
form

p—1

|B'(Rk)) =) a, (k)T (L A1)|B(K)). (4.5)
A=0

It may also be necessary to apply a gauge transformation to the translation operators, of the
form

T'(R) = explic - R]T(R) (4.6)

S0 in (4.4),T(A;) would be replaced b;f’(A;). The transformed translation operators
still satisfy all of the relations (2.3) to (2.7). The motivation for including this gauge
transformation is that, if it were not included, equation (2.8) might not be satisfied by the
transformed states.

The normalization of the Bloch states has not been discussed, and the transformation
will not necessarily preserve normalization.

4.3. Rotation of Bloch states
The elementary rotation has the following action on both the direct and the reciprocal lattice:

A/l = A AIZ =-A;

) (4.7
a, = a a, = —aj.

The objective is to find a set of Bloch states satisfying {}4.4/) with the rotated
vectorsA; anda; replacing the original ones. This may involve taking linear combinations
of degenerate Bloch states. Consider the properties of the state

p—1

IS(k)) = ) |B(k + qraz/p)). (4.8)

A=0

Systematic application of (4.4) shows that this satisfies the following conditions:

T(A)|S(k)) = explik - A1]|S(k)) (4.9)
T(A2)|S(k)) = explipNk - A2)|S(k + gay/p)) (4.%)
1S(k + az/p)) = |S(k)) (4.%)
S(k + a1)) = explipMk - A;]|S(K)). (4.%)

These are sulfficiently similar to the required relations that the transformed Bloch states can
be obtained by making a gauge transformation of|#)):

|B(k)) = exp[i6 (k)]|S(k)). (4.10)

Requiring that thg B/(k)) satisfy (4.4) with the rotated vectors, these relations imply the
following conditions on the gauge functigh(k):
0k +qgayi/p) =0(k) — Mgk - A, (4.118)
0k + az/p) =0(k) — Mk - Ay (4.11)
Ok —ai) =0(k)+ pMEk - A, (4.11d)



7414 M Wilkinson

(note that there is no condition @k) from (4.4), and that in this case = 0 in (4.6)).
Equations (4.11) are solved by writiflg= ak1k,, Wwherek; = k - A;: on substitution, it is
found thate = —Mp/27. The transformed Bloch state is therefore

p—1

.pM
|B'(k)) = exp[—ll;—n(k: Ay (k- Az)} Y 1B(k +2gaz/p))
2=0
. pM p=t } R
= exp[—lgklkz} > explinki] T(—1Ap)| B(k)). (4.12)
A=0

4.4. Shearing transformation of Bloch states

The action of the shearing transformation on the basis vectors of the primitive lattice and
their reciprocal lattice is
A=A +nA A, =A
1T AT 2= 5 (4.13)
a, =a a, = az —naj.
In this case, no mixing of Bloch states is required: a gauge transformation
|B'(k)) = expli6 (k)] B(k)) (4.14)

is sufficient, but the translation operators must be gauge transformed. The transformed
Bloch states (4.14) satisfy

T(pAY|B'(k)) = (=1)" explipk - A}]|B'(k))

. . ) (4.15)
T(A3)|B'(k)) = explik - A5]|B'(k)).

The factor(—1)79" is removed by setting = %qnal in (4.6), so

T'(A) = (D" expl-ingn/plIT (AT (nA2)  T'(Ap) =T (A2). (4.16)

It is found that (4.8) is satisfied immediately in the primed variables. The relations:}4.4
(4.4c) and (4.4]) lead to the following relations for the gauge functié(k):

Ok — qal,/p) = 0(k) + T[%(p —1+42gM) — qMn(k - Ap) + 27Ls (4.173)
Ok +ay/p)=0(k)+2rL; (4.17)
O(k +ay) =6(k) +npM(k - Ap) + 2n L3 (4.17)

where the terms72L;, with L; integers, are included because the phase differences are only
determined to within multiples ofs2 It is anticipated that a solution can be found of the
form

0k, ko) = ok + Bka (4.18)

with L, = 0. Upon substitution, it is found that= npM /4x, and that (4.14) and (4.17@)
lead to the following equations fgs:

Mng? 2n
il p”q . p" =T ()~ 1+ 2gM) + 27 L, (4.1%)
mpMn+ 2rnf = 21 Ls. (4.19)

Eliminating 8 from these equations leads to the following equation for the intebgend
L3

pLi+qLz=Nn N =1pg(N+M-1. (4.20)
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Comparison with (2.14) shows that the solutions are
Li=NNn L3 =NMn. (4.21)

It must be verified that these are integer values: this is established by showiny tisat
integer valued. To verify this, note that in the case where potimndg are odd,pN + gM
is even whenN and M have the same parity. This latter condition contradicts (2.14),
implying that for p, ¢ both odd,N + M — 1 is even.

The value of the coefficieng in (4.18) is now determined by (4.d9and (4.21). The
Bloch states are therefore transformed as follows:

M
|B'(k)) = exp[i <%(k c A+ nMWN — Ip)(k - A»ﬂ |B(k)) (4.22)

where is given by (4.20).

5. Transformations of Wannier functions

5.1. General considerations

In the preceding section, rules were given for transformation of a set of canonical Bloch
states when the basis vectors of the lattice are changed Agm, to A7, A. Now the
corresponding transformations of the Wannier functions will be calculated.

The fundamental Wannier functions for the transformed basis vectors are

1x,.) = Ix'(upAY)) nw=0,...,IN -1 (5.1)
where, using (3.1) and (3.4),

I _L i . ™ _& A / /
X (R) = 2 fB  dk explik R]T( ok Al)A2)|B<k>> (5.2)

and where BZis the Brillouin zone for the transformed superlattice, spanned by the vectors
a}/p anda,. Here|B’'(k)) is the transformed Bloch state, which is in general a linear
combination ofp degenerate Bloch states; using (2.15) this may be written in the form
(4.5). Using (3.7) to (3.9), the transformed Wannier functions are then of the form

/ P . ’ / N7 pM ! Al = -
= dk e ky — w'k))T' | ——=——k} A kT(OLA
|XM> 472 /BZ’ Xplip(u 1M 1] ( o 1 2) ;O‘A( )T (L A1)
. [ pM IN|-1
x T(EklAz) Z i > exg-i(k-R)]
w=0 R=pNn1Aj+npA;
x T(n2A)T (11 A1) x,0) (5.3)
wherek; = k- A; andk; = k - A.. This expression may be written in the form
IN|—1 . ) IN-1
6= 3 [ dk QueB = 3 M) (5.4)
w=0 BZ w'=0
where
. p p—1 p-1
th’ (k) = m );)\ZZZOGXF{IP(MICS_ — M/kl)] exp[—l)nzkg]a,\(k)

~( pM ~ ~( pM N
x T (Zk/lA/2>T()LlAl)T<§k1A2>T(A2A2) (5.5)
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and

Bky= > > expg—ip(NniAs +nyAy) - k]T (pnaAn)T (n1Ay)

n1=—00 Np=—00

_ Y explik- R]f"(%Az)f((R.al)Al). (5.6)

R=p(niNAi1+nyA3) 27TpN

The operatoré(k) is periodic on a subset of the Brillouin zones BZ and:BZ
B(k+ay/p) = B(k + az/p) = B(k). (5.7)
The produciQ ., (k) B(k) must be periodic on the Brillouin zone BZThe operatoD . (k)
satisfies
Ouw (k+ K) = 0y (k) X; (k)

, / (5.8)
Kl = Cl,l/p K2 = Qa,

where the operators; (k) satisfy X;(k)B(k) = B(k). This equation is satisfied by
combining translation operators and complex exponentials, and the opePatp(&) satisfy

. , . (R R,
Oy (ke + Ki) = exp—i(k - R,-)]Q,m/(k)T<(2—a2)A2> ((2—‘;]1)141) (5.9)

where the vector®; are vectors drawn from the lattice sum in the second equation of (5.6),
of the of the formR; = p(J;i1N A1 + Ji2Ap), with J;; integers.

Provided thatR; and R, are not linearly dependent, the sum over superlattice vectors
R in (5.3) may be written in the form

Z >y (5.10)

miRi+maRy 1

where in the first summatiain,; andms run from—oo to oo, and the second summation runs
over a finite set of lattice vectors; the number of vectolis |R; x Ry|/(|A1 x As|pN).

Using (5.9) and (5.10), and noting that the lattice translatiba®) in the second form
of (5.6) commute, equation (5.4) can be simplified as follows:

|N| 1

IX,) = dk Quuvk) > exp[—ik-R]f<(R2'ﬂa2)A2> <(R al)Al)

R=miR1+myR, 2 N

% Zexp[—lk r]T( aZ)Az)f<(;pa]\l,)Al)|xﬂ/)
IN|—1

Z Z , dk th’ (k + K)

w'=0 K=mya}/p+mza} BZ

< Yel-ik- 17 (7 242Gt s )

|N| 1 .
/ Ok 0,009 Y expl-it- r]T( “Z)AZ)T((;p“I;)Al)|m.

(5.11)

In the final expression the integral is over the full rangepfvhich is more convenient to
evaluate, and the infinite sum appearing in (5.3) has been replaced by a finite one.
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The operatorsQAW (k) are linear combinations of translation operators, with arguments
which are linear ink, combined together with weights which are phase factors which are
guadratic functions of the components fof The transformation of the Wannier functions
is therefore constructed from operators of the following form:

(@) = / da exp|:2|—ﬁ(a:T6m:)]f(m) (5.12)
wherea is a symmetric 2 2 matrix, andx is a constant defined by the relation

T(x)T(x) = eXp[ZLﬂ(w X a:/)]f"(:n + ). (5.13)

Comparison with (2.6) shows thatis shorthand foKp/2mq)| Ay x A,|: the symbol was
used because (5.13) is the algebra of the Weyl-Heisenberg operators in quantum mechanics.
The transformation from the old Wannier statgs,) to the new statesy,) is a linear

combination of operators of the forf(&) and translation operators; it is therefore important
to interpret the action of th&(a). The operator (5.12) is characterized in appendix B, where
it is shown that it effects a transformation of the argument of a translation operator

T(R) = exp[zLE(RTI?R)}.§‘1(&)f(R)3’(6z) (5.14)

where K is a 2x 2 matrix discussed in appendix B, arf@ is obtained by a linear
transformation ofR’:
R =M@R det M) = 1. (5.15)

The operator (5.12) can therefore be interpreted as effecting a linear, area-preserving trans-
formation. The transformation matrid is

M=@i—D'ea+h  J= ((1) _01> . (5.16)

It is difficult to carry the calculation any further for a general transformafianinstead,

the transformation of Wannier functions for the cases of the generalized rofaon the
shear transformatiofi(n) will be considered separately. The general transformation can be
found by using (4.2) to compose the results of these elementary transformations.

5.2. Rotation of type | Wannier functions

In this case (4.12) shows that the coefficients in (4.5) are
M
a (k) = exp[—il;—klkz} exp[—iikq]. (5.17)
JT

and the operator@w (k) are therefore

p—1 p-1
p . / . .pM
Oy (k) = 7 explip(ukz — k)] ééexp[—mm + Aok2)] exp[—lgklkz}

x f((%b +,\1)Al>f<<%kl +A2)A2> (5.18)

where B(k) is defined by (5.6); this satisfies the relations (5.8), (5.10) in the form
Oy (ke kz + 21/ p) = expl=i pMNki] Q0 (k1. ko) T (M Ay)

- _ ) ) (5.19)
Qﬂur (ky — 2, ko) = exp[lpMkz] Q#M’ (k1, kz)T(—pMAz)
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implying that the vectorsR; are
Rl = pNMAl R2 = —pMAz. (520)

The form of (5.11) in this case is then

INI-1|M|-1|M]-1

Ix,) = 4n2 X_% ZZ Z / dk expl—ip(Nkils + kal2)] O, (R)T (pla Ao T (11 A1) xy0)

IN|-1|M|-1|M|— 1p lp 1

- ﬁ 2222 / dkl/ dkz explip (ks — 11'k1)]

/J.’=O 11=O Iz 0 )\.1 O)\Q

. . .pM
X exp[—i(Azkz + Atk1)] exp[—ip(Niiky + l2k2)] exp —|§klk2

~ M A M “ “
x T((’;—kz + xl)Al)T((%kl + AZ)AZ)T(plez>T<zlA1>|xw>

IN|-1|M|-1|M|— 1[) lp 1

. Z Z 3D / ks / dk, expl—2riglirz/p]

11=0 [5=0 1;=021,=0

L, . ipM
x expl=i(pu’ + A1+ lDki] exp[—i(—pu + A2 + pla)kz] €xp _?klkZ

A M A M
X T((I;—T[kz + A1+ 11)A1>T((%k1 + A+ plz)Az) [X)- (5.22)

After making a change of variables, equation (5.21) can be rearranged to write the operator
M, in the form

1 MI=LIMI=1p-1 p-1
M= i 2 2 % exp[ (—prtis + 20
I1= =0 X1=0 A=
+ (lh+ 21+ pu)(pla 4 A2) — qul)LZ)] O (5.22)

where

A 0 *® 2ri 2ri . .
Oppw = /;OO dxy /700 dx, eXp[V(Mxl - lfxz)j| eXp[_p_Mx1X2j|T(xlAl)T(X2A2)~
(5.23)

The summations in (5.22) can all be performed, giving the simple result

N 27i

My = eXp[%MM ]0 (5.24)
This expression can be interpreted by express’}gg/ in terms of the operator introduced

in equation (5.12). Using the substitutiohs= p(A; x Ay)/2rq, the operatoréw/ can
be related to the operatof§, b) which are discussed in appendix B:

1
~ Ry - EqM— 1/0 1 _ P o
Ouw = S(@, b) a = e (1 0) b= M(M, w). (5.25)
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This can be related to the operatdfo) using (B.13). The matrice§, K’ appearing in
(B.13), and the symplectic transformatiafi characterizing the action df(@) are

s_aM (0 1 ., (3qM —DHgM <0 1> ~

po (0 1) po v (o)
pAE NI;Nl O0 " - 620

(P

M_< v pN).

which gives
QrR i1+ pN AR - ’
S(a, b) = eXp|:—m(N—Mp),u;L i|S(a)T(—,u Ai1/N + puAy). (5.27)

Substituting these results into (5.24), and using (2.6) to partition the translation operator
gives
0o 2rigup’ o - A s
= €Xp —— S(Ot)T([LpAz)T(—/L Al/N). (5.28)
A more symmetric form is obtained by using (B.4) to commute one of the translation
operators througl§(@). The matrixK which defines the phase through (B.10) evaluates

to
- (3qM —1gM (0 1 0 —pN
K:ZP—N<1 o>+((pN)1 g > (5.29)
Because this matrix has no diagonal components, the phase(B.4) evaluates to zero,
and so

2igup

v }MAZ/N)ﬁ(d)f(—wAl/N). (5.30)

Mmt’ = eXp|:_

5.3. Shearing transformation of type | Wannier functions

The case of the shearing transformation, specified by (4.13), must be treated differently; this
is because the vecto8; and R, introduced in (5.9) are not linearly independent, implying
that (5.10) cannot be used. This case is therefore treated from first principles.
The transformation of the Bloch states is a simple gauge transforma#gk)) =
exp[id (k2)]|B(k)), with the phasé(k,) given by (4.22). Using equation (5.3), the trans-
formed Wannier states are therefore
IN|-1

p 2 /p 2
) =53 2. fo dk’lfo dk; explip(uky — 1/ (kg — nky))]

2
4 20

A, pM , B ~ PM / /
x T <_§klA2> explio (kZ)]T(E(kl - ”kz)A2>

> ) expl-i(pNny(ky — nky) + naki)T (n2A2) T (n1.AD)| xy0).

N1=—00 np=—00
(5.31)
The integration ovek] can be carried out immediately, giving
1 [~ = . M
0 = 5 [ ok explomaklexplio] Y- exbimtl? (<5 m) s i

0 2

> | dkexpl-imk] 0, (0T (m A xu) = Myulx,) (5.32)

m=—00
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where the last two equalities define the operai@fgk) and M, ; note that only the term
u' = u contributes. The operatcéﬂ(k) satisfies

0, (k + 2m) = explipMnk] 0, (k)T (—pMn Ay). (5.33)

The operatorV,,, which effects the transformation of the Wannier functions, can therefore
be written as
R [pMn|-1 oo 27 N . o
M, = Z Z f dk exp[—irk] exp[—ipMnmk]Q, (k)T (pMnm AT (L A2)
3=0 m=-00v0
|12Mn\ 1

_ f dk expl-iik] 0, ()T (. A2)

|pMn\ -1

/ dk exp[ k2:| expli(pnp — 1 + Mn(N — p))k]

x f((-”z—nk + ,\) A2> (5.34)

where the final equality used (4.22). Making the successive changes of variables,
A— pnp — Mn(N — 3p) andx = —pMnk/2x + )/, this can be written in the form

" |PM”‘ 1 . R pMn
M, = / dk exp[ ] exp[—M’k]T((—?k + )J)A2>
x T(pnuA)T(Mn(N — 3p)Az)
1 [pMn|—1 T N 2
= o Mn ; eXp|:pM ()\ pnu — Mn(, )) ]
X §(0{)7A"(pnuA2)7A"(Mn(./\/'— %p)Ag) (5.35)

wheres(«) is an operator defined in appendix B, equation (B.15), witk 1/gMn. It is
convenient to define the sum

1 W=t |:—ni(k —n+ %N)2:|

SN, m) =+ ; exp v (5.36)
It is easily seen that this is independentmpfso the argument can be dropped, and the

sum can also be evaluated explicitly:
S(N,n) = S(N,n+1) = S(N) = exp[—irw/4]/vN. (5.37)

Because the sum is independent of it is just a numerical factor determining the
normalization of the transformed states; since the normalization has not been specified,
this factor can be dropped, and the operator transforming the Wannier states will be written
as

=5 T (pnpuA)T (MnN — p)Az). (5.38)

In appendix B, it is shown that the operafdw) has the effect of a shearing transformation:
forh = p/2rq anda = 1/qgMn,

ST (R) = T(R)$ () (5.39)
where the relationship betwed® and R is

.- - (1 0
R = MR M_<an 1). (5.40)
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5.4. Transformation for type Il Wannier functions

Equations (5.30) and (5.38) give the transformations for the type | Wannier functions
under elementary rotations and shear transformations respectively. The corresponding trans-
formations for the type Il Wannier functions are obtained using (3.11) and (3.12).
The transformed type Il Wannier function is given by (3.11), with the translation operator
replaced by a translation through the transformed lattice vetor
IN|—1 i /
g = exp[— ok

w=0

]f%—M’Aa/Nnxm. (5.41)

The prime on the translation operator indicates that it may have to include the gauge factor
(4.6).

In the case of the elementary rotation, the transformation for the type Il Wannier
functions is easily determined from (5.30): using the facts that in this ekise= A»

and7'(R) = T(R),
, 1 A r2ni P
) =57 ; ; exp[Ww - u)x}smm A1/N)|x)

IN|-1|N|-1|N|-1

Z Z > exp[ (gr —)\M+A’M’)}§(&)|¢W>. (5.42)

=0 w=0

The sum ovei’ vanishes unlesgi + 1’ = 0 mod N; this condition can also be written as
A= —Myu'. The required transformation of type Il Wannier functions corresponding to an
elementary rotation of the lattice basis vectors is therefore

IN|-1 7.
=% Z [ —}S(&)lgbw). (5.43)

Next consider the case of the elementary shear transformation, wjere A; +n Ay,
and7'(R) = exp[3igna:- R]T (R). Using (5.38), the transformation of the type Il Wannier
functions is therefore

1IERE T 27 ;
9),) = v > exp[W(// o %qn)k)}T(—A(Al +nAj3)/N)

'=0 x=0

%
x ST (pnrA)T (Mn(N — 3p) A2)T (LAY N)Iby)
1 IN|—=1|N|-1 27 .

== expl —(u' —p — 2 N — pNM + gNM))x — Sqna
Nuo; p[N(M u—3qn(pN — pNM + qNM)) qni|

x T(~A(A1+nA2)/N)§@)T (LA1/N + pnrAy)
x T (Mn(V = 1p) A2)I¢) (5.44)
where (2.14) and (4.20) have been used to simplify the exponents. Using (5.39), the trans-

lation operators which depend uparare eliminated. After further use of equations (2.14)
and (4.20),

N]-1

=Y K(u—p)S@T (Mn(N = 3p)A2)|¢y) (5.45)
nw'=0
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where the coefficient& (u — u) are obtained from

1 ¢ i 4, L
K@) = 5 ; exp[—W(iqnx + VA — iqux)]. (5.46)

The coefficients satisfy the relations

K(w+N)=K(®) K(—v) = K*(v) K(@©) =0.

6. Summary

The purpose of this section is to highlight the most significant results, and to discuss the
definitions upon which they are based.

When conventional Wannier functions are defined, it is assumed that the Bloch states
are periodic functions of the Bloch wavevectler as well as being eigenfunctions of the
lattice translation operatorf(Ai), with eigenvalues exphi - A;]. In the case where a
rational magnetic field (withy/p flux quanta per unit cell) is applied, in general both of
these conditions need to be modified. The Bloch statespdi@d degenerate, and their
phase increases byra/ on traversing the boundary of the unit cell. Throughout this paper
it has been assumed that the Bloch states are chosen to satisfy the following eigenvalue and
periodicity conditions discussed in section 2:

T(A1)|B(k)) = explik - A1]|B(k — gaz/p)) (6.1a)
T(A2)|B(k)) = explik - A2]|B(k)) (6.1b)
|B(k + a1/p)) = exp[iMk - A;]|B(k)) (6.1c)
|B(k + a2)) = |B(k)). (6.1d)

Except whenp = 1 andM = 0, these conditions depend upon the choice of lattice basis
vectorsA,;.

The method for constructing the Wannier functions was discussed in section 3. If the
Bloch states satisfy (6.1), the stafi€(k)) = T(—pMk - Ay/2m)|B(k)) is periodic on
the Brillouin zone of the superlattice spanned py;, A,, and the Wannier functions
|x (R)) are obtained by integrating the stat&(k)) with weight exp[k - R]. In the case of
standard Wannier functions, all of the Wannier states are obtained be applying translation
operators to a single fundamental Wannier state. In the magnetic case, the full set of Wannier
states is obtained by applying lattice translation$N¢ fundamental type | Wannier states,
Ix) = Ix(wAD), n=0,...,|N|— 1, whereN satisfiespN + ¢M = 1. The Bloch states
are obtained from the type | fundamental Wannier functions using (3.10):

_ . . ~(pM
BR) = > expl-ik- R]T(nzAz)TmlAl)T(l;—(k : Al)A2>
R=n1A1+n2A> T
x> expl-ipu(k - A]ix)- (6.2)
1

A somewhat more natural representation of the Bloch states uses an alternative set of
fundamental Wannier states: the type Il Wannier states are defined by

IN|-1
) =~ Z:O expl-2ripu /N1T (— ' A1/ N)|xy0).- (6.3)
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One advantage of using the type Il Wannier states is that the summatiom acw@tonger
depends upoi; the Bloch states are given in terms of the type Il states by the relation

IN]-1

Bk))= > ) expl-ik- R]exp[2riniu/N]

R=n1A1/N+n2Az pn=0
N A N M
X T(nzAz)T(nlAl/N)T(l;—n(k . Al)A2> ). (6.4)

The other advantage of the type Il Wannier states is that their transformations under a
change of lattice basis vectors are simpler.

Sections 4 and 5 discussed the effects of making a transformation of the set of basis
vectors for the lattice. The transformation of the basis vectors is characterized by an integer-
valued unimodular matrixv, which can be constructed from a combination of rotatiéns
and shears(n):

N = S(n1)RS(n2) RS (n3) Stn) = (1 ”> S R:(_Ol é) (6.5)

The action of the rotation and shear transforms on the Wannier functions is characterized by
operators§(d) ands(«), discussed in appendix B, which are characterized by a symplectic
transformationM in the space of magnetic translations. The transformation of type |
Wannier functions corresponding to an elementary rotation of the lattice basis, and the
associated symplectic transformation are

IN-1

= = Z [ ﬂ}T(MAZ/N)S(&)T(—M/Al/N)lxu')
- _ (pN) to

M= < 0 pN> '

The transformation for the shearing transformation, and associated symplectic transformation
are

(6.6)

1%} = 8@)T (pnuA)T (Mn(N = 3p)Az)Ix,) M = <q1&1n 2) (6.7)
(The constant\/ is defined by equation (4.20).)

The corresponding transformations for the type Il Wannier functions have the satisfying
feature that the translation operators dependent upon the indigesare eliminated. The
transformation of type Il Wannier functions corresponding to elementary rotation of the
lattice basis is

IN|-1

16),) = 7 ,;) expl—2riMuu' /N1S(@)|e,) (6.8)

and that corresponding to a shen) is
IN|-1 .
)= K(u— )3T (Mn(N — 3pA))Idy)
w'=0

N1 (6.9)

27i

A=0
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It is a surprising feature that the symplectic transformatiénassociated with the trans-
formation of the Wannier states is different from the symplectic transforma¥iomhich
describes the change of lattice basis vectors.

If the Hamiltonian has rotational symmetry, there exist operators acting on the Wannier
functions which represent this symmetry; Wannier functions may be chosen which are
invariant under the action of these operators. The definition of these symmetry operations
involves a reassignment of the lattice basis vectors, and they are therefore related to the
results in section 5 of this paper. These symmetry operators have been constructed for
fourfold and sixfold rotations of the phase-space lattice Hamiltonian model in references
[2] and [14] respectively. These papers contain results related to a special case of equations
(6.8) and (6.9) respectively.
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Appendix A
The system under consideration is a single particle of chargenoving in a periodic

potential V (r) with a uniform magnetic fieldB applied along the-axis. Spin, relativistic
and many-body effects are not considered. The @tihger equation for this system is

N 1
Hly) = [ﬁ(ﬁ— eA(r))2+ V(r)]llﬁ) = E|y)

V x A= B = Bejy (A-1)
Vir+ R)=V(r) R=n1A1+nA>
where the basis vectors of the periodic potential 4re¢ i = 1,2. The vector potential

A(r) = (A1(r), Ax(r)) will always be chosen to be linear in specified by a matrix3
with elements;;:

Ai(r) =" Bijrj A(r) = Br. (A2)

j=12

One reason for this restriction being useful is that whegr) is linear, the Hamiltonian
can be subjected to linear canonical transformations without any ambiguity arising in its
guantization. The two most common choicesibéare given by

Landau gaugeA = (0, Bx, 0) (A3)
symmetric gaugeA = (—3By, 3Bx, 0). '

The Schédinger equation (A.1) is much harder to solve than the corresponding problem
with no magnetic field applied, since the Hamiltonian is no longer trivially invariant under

a translation through a lattice vect®. In order to see how the symmetry of the lattice is
contained in (A.1), it is necessary to understand the effects of translation in the presence
of a magnetic field. Consider a change of variable> " = » — R in the Hamiltonian:
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because/ (r) = V (1), this is equivalent to making a change in the vector potential to
A(r) =A@ +R) = A(r)+ BR= A(r) + V. ®

- (A.4)
®(r)=(BR) 7.

The corresponding gauge transformation of a wavefuncfign) which solves the time-
independent Scbdinger equation at energy is

Y (r') — ¥'(r') = explie® (r') /Rl (r'). (A.5)

Expressing this in termg, and ignoring an irrelevant multiplicative factor, a translated
solution of the Sclirdinger equation is

' (r) = explie(B'r) - R/AlY/ (r — R) (A.6)

which is also a solution with energy.

Now a set of operatorsf(R), will be introduced, which generate translations of the
form (A.6); these operators are called the magnetic translation operators. A convenient
choice of these operators is given by

T(R) = exp[—}l_l(ﬁ —eBTr) - R:|. (A7)

The effect of this operator ot () is to transform it into the staté’(r) given by (A.6),
multiplied by an unimportant overall phase. This operator is analogous to the ordinary
translation operator, with the generateV replaced by—V + (ie/h)Br. Note that it
is only for linear gauges that a generator for infinitesimal translations can be explicitly
identified.

Sincer andp do not commute, pairs of magnetic translation operators do not in general
commute; using the Baker—Cambell-Hausdorff formula, their composition law is found to
be

T(RT(R) = exp|:2|—eEB (R x R/)}f(R + R). (A.8)

Note that the phase changen translating the solution in a clockwise sense about a circuit
of areaA is

g — 2mreAB
h

which is 27 times the number of flux quanta within the circuit.

Although the magnetic translation operators do not commute with each other, it is clear
from their construction that they commute with the Hamiltonian for vecBrshat are
lattice translations, and therefore provide a mathematical description of the symmetry of the
system.

(A.9)

Appendix B

In this appendix the composition relation for the operat¢®) will be written as

f(R)T(R,) = eXp[ZLE(RlRé — RzRi):|f(R + R/)

= exp[zLE(R x R’)] T(R+R) = exp[ZLE(R/ TfR):| T(R+ R) (B.1)
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where the second equality defines the cross product, and where

~ 0 -1

J = ( 1 0 ) (B.2)
It will be shown that the operator
S@) = / dz exp[z'—ﬁ(mT&m)]f(w)

00 00 i R
= / dxy dx, exp[—(alle + a22x§ + 20{12X1X2)1|T(X1, Xx2) (B.3)

oo —00

satisfies

T(R') = exp[i® (@, RS @) 7T (R)S@) (B.4)
where R’ is related toR by a symplectic transformation:

R =M@R detM) =1 (B.5)
and ® (&, R) is a phase which will be specified later. The symplectic matrix is given by

M=Qa+J)2a—1J)

1 (06110l22 — (12— 3)? 022 ) B.6
=1 12)- (B
011022 — A, + 7 —a11 o102 — (012 + 3)
To demonstrate this result, consider the following operator:
S =TRS@T(—R) (B.7)

where no relation betweeR and R’ is assumed at this stage. Inserting the definition (B.3),
and using (B.1) to write the result as an integral over a single translation operator, then
changing variables, gives
S = exp[ZLE((R/ —R"&(R —R) — RTfR/)} / dx exp|:2|—ﬁ(wTdm)}
i N
X exp[Z—E(Z(R’ ~R)ax+(R+R) x :L')1|T(as). (B.8)

The operators’ is proportional toS(&) if the phases which are linear in vanish; in this
case, equation (B.8) can be rearranged to give (B.4). This leads to the following relation:
26(R —R) =J(R+R) (B.9)
which can be solved to givd?’ = (Rj, R}) in terms of R; this gives (B.5), (B.6). The
phase appearing in (B.4) is given by
R'KR
2h

It is convenient to give a formula for the case where the phase factor in (B.2) contains

terms which are linear iex; define

®@, R) = K=-M-D"aM -1+ JM. (B.10)

S(@, b) = /da: exp[zLﬁacT&w] exp[}l_lb . x:|f"(m). (B.11)
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Making a change of variable’ = = — a, then applying (B.1) gives, for an arbitrary choice
of a,

S@, b) = eXp[ZLE(aT&a + 2a - b):|
/ L ' T (o5 7 L T N A
X /dsr: EXp[Z}Tm (2aa+2b+ Ja)]exp[zﬁ(sc aw)]T(ac)T(a).
(B.12)

If a is chosen such that the term for which the component of the phase lingaranishes,
equation (B.12) gives

S(@, b) = exp[i© (@, b)]S(@) 7T (Bb) p=—-@+3in"t (B.13)
and the phase factor is
b'K'b

2h
Another operator closely related &&) will be required; this is defined by

O, b) = K' =g"ag + 28. (B.14)

9] H 2
§(a) =f dx exp[g—%}f(xAg). (B.15)

Following the same approach as was used for the opesagor it is easily shown that(«)
satisfies

T(R) = 3§ Yao)T(R)$ () (B.16)
where R is an arbitrary vector, and®’ is given by
R=M@R M@ = (_i_l 8) . (8.17)
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