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Abstract. We present a semiclassical analysis for the electric dipole absorption of electro-
magnetic radiation by small metallic particles, in the case where the electron motion is diffusive.
We find that there are two contributions to the one-body effective potential: the ‘static’ potential
makes a dominant contribution to the absorption coefficient below the frequencyωc = D/a2, and
the ‘dynamic’ potential is dominant for frequenciesω � ωc (hereD is the diffusion constant,
and a the size of the particle). Remarkably, these two contributions sum to give exactly the
classical absorption coefficient for all frequencies.

1. Introduction

The absorption of electromagnetic radiation by a dilute dispersion of small metallic particles
can be analysed using classical electrodynamics by using an effective-medium theory to
evaluate the imaginary part of the dielectric constant [1–3]. The corresponding quantum
theory, reviewed in [4–6], has attracted considerable interest, largely stimulated by a
suggestion by Gorkov and Eliashberg [7] that the absorption coefficient would be reduced
when the photon energy ¯hω is made smaller than the mean spacing1 of single-particle
levels; measurement of the absorption coefficient in this frequency range would give an
experimental verification that the statistics of the energy levels is in agreement with random-
matrix theory [8]. However, for frequencies such thatω � ω0 ≡ 1/h̄, the absorption
coefficient predicted by Gorkov and Eliashberg is much larger than that predicted by classical
electrodynamics, because they neglected the screening of the externally applied electric field
by the polarization charge induced on the surface of the particle [9]. The same error occurs
in many other published calculations of the quantum theory of absorption by small particles.
Calculations taking account of screening have been discussed by several authors using a
variety of approaches [10–16]; we will review these contributions later. In this paper we give
a transparent analytical treatment of this problem, for the case where the electron motion
is diffusive, and verify its correctness by showing its correspondence with the predictions
of classical electrodynamics. The corresponding analysis for the case of ballistic electron
dynamics is given in [17, 18].

Our analysis is confined to frequencies far below the plasma frequencyωp, and we
assume that the size (for circular particles, radius)a of the particle is small compared to the
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wavelength of the radiation, so that the spatial dependence of the externally applied fields
can be neglected. The motion of electrons within the particle is assumed to be diffusive, so
that it can be characterized by a diffusion constantD which is proportional to the DC bulk
conductivityσ0 of the metal. The semiclassical approximations are justified if the size of
the particle is large compared with the Fermi wavelength, and if the photon energy is large
compared to the level spacing. We also assume that the size of the particles is very small
compared to the electromagnetic skin depthδ.

The response of a finite-sized quantum system to an external perturbationÛ is
characterized by the matrix elements of the perturbation, in the basis formed by the
eigenfunctions|ψn〉 of the unperturbed Hamiltonian̂H0, with energiesEn. These matrix
elementsUnm = 〈ψn|Û |ψm〉 usually become very small when|En − Em| becomes large
compared to an energyEc which is related to the time-scaleτc for decay of the correlation
function of U by Ecτc = h̄. Thouless [19] discussed the significance of this correlation
energy scale for the conductance of finite-sized systems in which the electron motion is
diffusive; the relevant energy scale isEc = h̄ωc, whereωc = D/a2. In this contextEc is
usually termed the Thouless energy. It might be anticipated that the absorption coefficient
would behave differently for photon energies above and below the Thouless energy, and
if screening were neglected, this would certainly be the case. A surprising feature of our
calculation is that the absorption coefficient takes exactly the same form on either side of
the Thouless energy.

Our calculation assumes that the electrons move independently in an effective one-
body potential, in which the effects of the electron–electron interactions are included
self-consistently; we will use a Thomas–Fermi approximation, but it can easily be
extended. The externally applied electric fieldE = Re[E0 exp(iωt)] produces a perturbation
Re[Ueff(r, ω)exp(iωt)] of the effective one-body potential; we will write

Ueff = Ustat+ Udyn (1.1)

where the two contributions to the perturbation of the effective potential take the form

Re[Ustat(r) exp(iωt)] = vstat(r)E Re[Udyn(r, ω)exp(iωt)] = vdyn(r)
dE
dt

(1.2)

where the functionsvstat(r) and vdyn(r) are independent of time, and will be determined
later. The ‘static’ potentialUstat is that produced by a static externally applied field. It will be
determined by the requirement that it produces a screening charge distribution which exactly
cancels the externally applied field within the interior of the particle. The second term in
(1.1) (the ‘dynamical’ potential) will be determined by the requirement that it should cause
the electron density to rearrange sufficiently rapidly that the screening charge is maintained
as the external potential is varied. We find that for frequencies large compared toωc, the
contribution to the absorption coefficient from the dynamical potentialUdyn is dominant,
and that this exactly reproduces the classical absorption coefficient. This result would be
expected on physical grounds. On the other hand, at frequencies small compared toωc, the
contribution from the static potentialUstat is dominant. We find that this also reproduces
the classical result exactly, and that the sum of the two contributions is exactly equal to the
classical expression for all frequencies satisfyingω0� ω � ωp.

Before describing our calculation in detail we will briefly discuss some of the papers
which have considered the effects of screening in quantum mechanical calculations of the
absorption coefficient. Strässler, Rice and Wyder [9] pointed out that screening is important,
and a later paper by Riceet al [10] discussed the calculation of the static polarizability using
a Thomas–Fermi approximation. The Thomas–Fermi approach was applied to the absorption
of radiation in particles with ballistic electron motion by Austin and Wilkinson [17, 18], and
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in the case of diffusive motion by Efetov [11]. The paper by Efetov does not incorporate the
additional dynamical potential which is necessary to reproduce the classical behaviour of the
system in the high-frequency limit (in the case of ballistic electron motion, the dynamical
potential is not required). Moreover, it does not indicate how analytical expressions for
the screening potential can be obtained. Sivan and Imry [12] have discussed the effective
conductivity of finite-sized samples, and have used effective-medium theory to discuss
absorption by small conducting spheres. They reported that the absorption coefficient is
the same above and below the Thouless frequencyωc, but their published calculation does
not explain why the dimensionless prefactor should be the same in both regimes. Their
approach is also subject to the criticism that the effective-medium approach assumes that
the spheres are described by a dielectric constant defined for a bulk medium, and the
justification for using a size-dependent effective conductivity or dielectric constant is not
discussed. Sivan and Imry have pointed out another significant shortcoming of Gorkov
and Eliashberg’s theory; they showed that the frequency dependence of the absorption
coefficient, predicted by a correct application of linear response theory in the limit of zero
temperature, isα(ω) ∼ ωβ+1 for h̄ω � 1, rather than theωβ+2-behaviour predicted in
[7]. Devaty and Sievers [13] have discussed the quantum theory for absorption within the
framework of effective-medium theory [2, 3], and have pointed out some other errors in
[7]. Several authors [14–16] have reported calculations of the absorption coefficient based
upon elaborate numerical techniques for determining a self-consistent effective potential.
These calculations are all confined to exactly spherical geometries with no disorder, and
are therefore relevant to the case of ballistic electron motion rather than the diffusive case
considered here.

We will derive a new relation for the classical absorption coefficient in section 2,
before discussing the quantum mechanical calculation and the semiclassical approximation
in section 3. Section 4 discusses some specific geometries for which we can calculate the
absorption coefficient explicitly. Section 5 considers the effects of roughness on the surface
of the particles, and section 6 discusses some directions for further research into this topic.

2. Classical calculation of the absorption coefficient

The absorption of radiation is usually described by an extinction coefficientγ (ω), which is
defined as the fractional loss of intensity per unit length of sample, divided by the volume
fraction F occupied by the particles. We will express our results in terms of the rate of
absorption of energy〈dE/dt〉 within a single particle. If the amplitude of the electric field is
E0, the intensity of the radiation isI = 1

2ε0E2
0 , and the relationship betweenγ and〈dE/dt〉

is therefore

γ = 2

V ε0cE2
0

〈
dE

dt

〉
(2.1)

whereV is the volume of a single particle. In this paper we will define the absorption
coefficientα(ω) as the rate of absorption of energy for a single particle, divided by the
electric field intensity:

α(ω) = 1

E2
0

〈
dE

dt

〉
. (2.2)
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Classically, the rate of absorption of energy is determined by the rate of Ohmic heating
within the particle, due to a current density Re[j(r, ω)exp(iωt)]:

α(ω) = 1

2σ0E2
0

∫
dr |j|2 (2.3)

whereσ0 is the DC conductivity of the metal, and in this and subsequent expressions the
integral is over the volume of the particle.

At frequencies very small compared to the plasma frequency, the current densityj can
be determined as follows. In a static electric field, a polarization charge is developed which
creates a supplementary electric field which exactly cancels the externally applied field
within the metal. The polarization charge has densityρ(r); in three-dimensional metallic
samples this charge is concentrated on the surface of the metal, where it has density per
unit areaq(r). The calculation of the polarization charge distribution is a difficult problem
in electrostatics; exact solutions are known for some simple geometries [20].

The current densityj is determined by the requirement that it generates the correct
screening charge densityρ:

∂ρ

∂t
+∇ · j = 0. (2.4)

It is driven by a potential energyUdyn:

j = σ0

e
∇Udyn. (2.5)

Equations (2.4) and (2.5) imply that

∇2Udyn = − ieω

σ0
ρ. (2.6)

In order to determineUdyn in terms of the screening charge densityρ, we write

Udyn(r, ω) = ieω

σ0

∫
dr′ G(r, r′)ρ(r′) (2.7)

whereG(r, r′) is a Green’s function satisfying∇2G = −δ(r − r′), with the boundary
conditionn · ∇G = 0, wheren is a vector normal to the boundary, representing the fact
that there is no current across the boundary of the particle. This Green’s function is

G(r, r′) =
∑
n

χ∗n (r)χn(r
′)

k2
n

(2.8)

where theχn(r) andk2
n are orthonormal eigenfunctions and eigenvalues of the Laplacian

(∇2+ k2
n)χn(r) = 0 (2.9)

with the boundary conditionn · ∇χn = 0. Returning to the evaluation of (2.3), and using
the fact thatj · n = 0 on the boundary, we find

α(ω) = σ0

2e2E2
0

∫
dr |∇Udyn|2

= − σ0

2e2E2
0

∫
dr U ∗dyn∇2Udyn = iω

2eE2
0

∫
dr U ∗dyn(r, ω)ρ(r). (2.10)

Substituting the results of (2.7) and (2.8), the absorption coefficient is therefore

α(ω) = ω2

2σ0E2
0

∑
n

1

k2
n

∣∣∣ ∫ dr χn(r)ρ(r)
∣∣∣2. (2.11)

Equation (2.11) gives the classical absorption coefficient for frequencies small compared to
the plasma frequency in terms of the static screening charge densityρ(r).
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3. Semiclassical calculation of absorption coefficient

In the present section it will be shown how the absorption coefficientα(ω) may be calculated
starting from a microscopic quantum mechanical point of view and subsequent semiclassical
approximation. When the particle is subjected to a time-dependent external electric field
Re[E0eiωt ], the charges will rearrange in order to screen out the external electric field. We
will assume that the screening is governed by an effective one-body potentialUeff(r, ω).
In general this effective potential is to be determined self-consistently from the many-body
Schr̈odinger equation. It will be a function of the frequencyω of the externally applied
electric field. We will write it in the form (1.1), whereUstat(r) denotes a static screening
potential which binds the screening chargeρ(r). If the frequency is small compared to the
plasma frequency, it can be determined in the Thomas–Fermi approximation:

Ustat(r) = 1

e

(
∂N

∂µ

)−1

ρ(r) (3.1)

where N is the integrated density of states per unit volume for the bulk metal,ρ(r)
is the screening charge density andµ is the chemical potential (the application of the
Thomas–Fermi approximation in solid-state physics is discussed clearly in [21]). This is an
excellent approximation when this potential varies sufficiently slowly on the scale of the
Fermi wavelengthλF ,

The dynamical contributionUdyn(r, ω), on the other hand, is chosen such that it
determines the current flow in the interior of the particle building up the screening charge. In
section 2 we described howUdyn(r, ω) can be obtained as a solution of Poisson’s equation.
We will see in the following that for large frequenciesω > ωc, the dynamical part of
the effective potential determines the absorption; on the time-scale given by the external
frequency, the electrons do not reach the surface and dissipation occurs in the inside of
the particle, caused by the current flow which builds up the screening charge. For small
frequenciesω < ωc, on the other hand, the electrons are scattered by the boundary. Since the
dynamical potential vanishes linearly withω, only the Thomas–Fermi contribution remains
and determines the absorption. As opposed to the previous case, the absorption takes place
near the surface, where the screening potential is largest.

The absorption coefficientα(ω) may be expressed in terms of the Kubo formula for
non-interacting electrons:

α(ω) = π

2

ω

E2
0

∑
mn

[
f (En)− f (Em)

]∣∣∣〈ψm|Ûeff(r, ω)|ψn〉
∣∣∣2δ(h̄ω − Em + En) (3.2)

wheref (E) is the Fermi function(1+exp[β(E−µ)])−1, with β = 1/kBT . We will evaluate
the Kubo formula using a semiclassical approximation, discussed in [22], which relates the
sum over matrix elements to a classical autocorrelation function〈U ∗eff(rt , ω)Ueff(r, ω)〉E ;
herert is the position reached by a particle initially atr after timet , and the angle brackets
denote a microcanonical average over electron trajectories at energyE:

α(ω) = ω

E2
0

π

2

∫ ∞
0

dE
[
f (E)− f (E + h̄ω)]g(E)

πh̄
Re
∫ ∞

0
dt eiωt

〈
U ∗eff(rt , ω)Ueff(r, ω)

〉
E

(3.3)

whereg(E) is the density of states. Provided that bothkBT andh̄ω are small compared to
energy scales over whichg(E) and the correlation function differ significantly from their
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values at the Fermi energy, equation (3.3) can be approximated by

α(ω) = ω2

2E2
0

g(EF )Re
∫ ∞

0
dt eiωt

〈
U ∗eff(rt , ω)Ueff(r, ω)

〉
EF
. (3.4)

In a diffusive system, the autocorrelation function can be expressed in terms of the diffusion
propagatorP(r, r′; t). The diffusion propagator satisfies [D∇2− ∂t ]P(r, r′; t) = 0, where
D is the diffusion constant, with initial conditionP(r, r′; 0) = δ(r − r′) and vanishing
normal derivative at the boundary:n · ∇P(r, r′; t) = 0. The latter condition ensures that
there is no flux of electrons across the surface of the particle. In terms of the diffusion
propagator we obtain for the autocorrelation function〈
U ∗eff(rt , ω)Ueff(r, ω)

〉 = 1

V

∫
dr
∫

dr′ U ∗eff(r, ω)Ueff(r
′, ω)P (r, r′; t). (3.5)

We can expressP(r, r′; t) in terms of eigenvaluesk2
n and eigenfunctionsχn(r) of the

Laplacian, satisfying (2.10) with vanishing normal derivative at the surface,n·∇χn(r) = 0:

P(r, r′; t) =
∑
n

χn(r)χn(r
′) exp(−Dk2

n|t |). (3.6)

Substitution into equation (3.2) yields

α(ω) = ω2

2E2
0

g(EF )
1

V

∑
n

∣∣∣∣ ∫ dr χn(r)Ueff(r, ω)

∣∣∣∣2 Dk2
n

ω2+ (Dk2
n)

2
. (3.7)

Using the definitions

αn = 1

E0

∫
dr χn(r)Ustat(r)

iβn = 1

E0

∫
dr χn(r)Udyn(r, ω)

(3.8)

we can write the absorptionα(ω) as a sum of two terms:

α(ω) = αstat(ω)+ αdyn(ω) (3.9)

where

αstat(ω) = ω2

2
g(EF )

1

V

∑
n

∣∣αn∣∣2 Dk2
n

ω2+ (Dk2
n)

2

αdyn(ω) = ω2

2
g(EF )

1

V

∑
n

∣∣βn∣∣2 Dk2
n

ω2+ (Dk2
n)

2
.

(3.10)

Using equation (2.7) and the Drude relation between the diffusion constantD and the
conductivityσ0,

σ0 = e2

(
∂N

∂µ

)
D (3.11)

we find the following relationship between the coefficientsαn andβn:

αn = Dk2
n

ω
βn. (3.12)

For small frequencies the term in equation (3.10) proportional to|αn|2 will be dominant,
and absorption is a surface effect. For largeω, on the other hand, the term proportional to
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|βn|2 dominates and dissipation occurs in the bulk. Combining the static and the dynamic
contribution and making use of the relation

g(EF ) = V
(
∂N

∂µ

)
(3.13)

we find the simple result

α(ω) = ω2

2
D−1

(
∂N

∂µ

)∑
n

|αn|2
k2
n

. (3.14)

Using the Drude relation (3.11), this is exactly in agreement with the classical
expression (2.11). In particular, the absorption coefficient exhibits no structure at the
Thouless frequency. We note that our result, equation (3.14), holds irrespective of shape
and dimension of the particles.

In conclusion, in the present section we have calculated the absorption coefficient starting
from a microscopic quantum mechanical point of view. We have demonstrated that in order
to obtain results consistent with classical macroscopic electrodynamics, it is essential to
include a dynamical potentialUdyn in addition to the Thomas–Fermi effective potential.

4. Results for specific geometries

In the present section we evaluate the absorption coefficient for three cases in which the
screening charge density can be obtained from classical electrostatics, namely for a sheet
perpendicular to the electric field, for a spherical particle, and for a disc with the electric
field in the plane of the disc. In all cases, the Thomas–Fermi potentialUstat(r) can be
obtained directly from the charge density, and we can use equation (2.10) to evaluate the
classical macroscopic absorption coefficientα(ω).

We have different motivations for considering these three geometries. We discuss the
sheet geometry because it is the simplest case, and it will be used for considering the
effects of surface roughness in section 5. We discuss the spherical particle in order to
show that our approach reproduces the long-established classical expression. And finally
we discuss the disc geometry because well controlled experiments are most easily performed
for electrons in two-dimensional microstructures. Our result for the absorption coefficient
of this geometry appears to be new.

The results of the previous section show that from a microscopical point of view, there
are two contributions to the absorption coefficient,αstat(ω) and αdyn(ω), which become
important at small and large frequencies, respectively. For each geometry we will calculate
the coefficientsαn (the βn are then obtained immediately from (3.12)). Inserting these
coefficients into (3.10), in figure 1 we plot the two contributions toα(ω) separately for each
of the three geometries.

4.1. The conducting sheet

The simplest case is that of a particle in the shape of a sheet of thicknessa in a plane lying
perpendicular to the electric field; for definiteness we consider the case of a square sheet
with sides of lengthL � a. In this case classical electrostatics tells us that the surface
charge isq = ±ε0E on the two surfaces. We first consider how the absorption coefficient
can be calculated by elementary arguments, and then see how the result is confirmed using
the general formula (3.14). The current flowing through the sheet isI = L2qω, and the
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Figure 1. Components of the absorption coefficient for a small metallic particle due to the
static potential (stat) and the dynamic potential (dyn), as a function of frequency; the classical
absorption according to equation (2.11) is denoted by (cl). We show three cases: (a) the
conducting sheet; (b) the spherical particle; and (c) the disc.

resistance of the sheet isR = a/σ0L
2. The absorption coefficient is then

α(ω) = 1

2

I 2R

E2
0

= ε2
0aL

2ω2

2σ0
. (4.1)

We will now show how this result is recovered from equation (3.14). If the sheet is
perpendicular to thez-axis, with the surfaces atz = 0 andz = a, the eigenfunctions of the
Laplacian are

χn,p(r) =
√

2− δn0

L2a
cos(πnz/a) exp[ip · r⊥] (4.2)
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wherer⊥ = (x, y), and the eigenvalues are

k2
n,p =

(
nπ

a

)2

+ p2. (4.3)

Since the surface charge densityq(r) is constant on each face, the amplitudesαn,p andβn,p
defined in equation (3.8) vanish unlessp = 0. Also, since contributions from opposite faces
cancel,αn ≡ αn,0 = 0 andβn ≡ βn,0 = 0 unlessn is odd. We obtain

αn = ε0L

e

(
∂N

∂µ

)−1
√

2

a
[1− (−1)n] (4.4)

and, using (3.14),

α(ω) = ε2
0ω

2L2a

2σ0

4

π2

∞∑
n=1

1

n2
[1− (−1)n]. (4.5)

The final summation is equal toπ2/4, and hence this result agrees with (4.1). The static
and dynamical contributionsαstat andαdyn calculated according to equations (3.10), (3.12)
and (4.4) are shown in figure 1(a). The static contributionαstat is shown as a chain line,
while the dynamical contributionαdyn is shown as a dashed line. The two contributions add
up to the classical result, equation (4.1), shown as a solid line.

4.2. The spherical particle

The surface charge density of a sphere subjected to an external electric field is, from classical
electrostatics,q = 3ε0E0 cosθ [20], whereθ is the polar angle measured from the direction
of the field. If the radiusa of the particle is large compared to the Thomas–Fermi screening
lengthk−1

s , we can approximate the charge density by

ρ(r) = 3ε0E0 cosθ ks exp [ks(r − a)] (4.6)

wherek2
s = (e2/ε0)(∂N/∂µ) [21]. The static part of the effective potential can then be

approximated by

Ustat(r) ' 1

e

(
∂N

∂µ

)−1

3ε0E0 cosθ δ(r − a). (4.7)

The corresponding current densityj(r) which accumulates the charge densityρ(r) is easily
seen to be uniform, and the dynamical potential is therefore

Udyn(r) = e

σ0
r · j = iω

3eε0

σ0
E0r cosθ. (4.8)

Using (2.10), we find

α(ω) = 6πε2
0a

3ω2

σ0
. (4.9)

This result gives the standard expression [2] for the extinction coefficientγ for a spherical
particle as derived from classical electrodynamics.

We will now show how this result is recovered from equation (3.14). Since the angular
dependence of the potentials is∼cosθ , only eigenfunctions of the formχn(r) = Rn(r) cosθ
contribute to the sums in equation (3.10). Up to a normalization constant, the radial
eigenfunctionsRn(r) are given byj1(knr), the first-order spherical Bessel function. The
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appropriate boundary conditions are enforced by requiring that∂j1(knr)/∂r = 0 for r = a.
Using the definitions and results in [23, 24], we obtain the integral∫ a

0
dr r2j2

1 (knr) =
a

2

(k2
na

2− 2)

k2
n

j2
1 (kna) (4.10)

which can be used to normalize the eigenfunctions; we then find

αn = 1

e

(
∂N

∂µ

)−1

3ε0

√
8π

3

kna
3/2√

(kna)2− 2
. (4.11)

Figure 1(b) shows the two contributionsαstat and αdyn towards the absorption coefficient
(3.10), where the coefficientsβn were obtained using (3.12). In the appendix we derive
a sum rule for the zeroskn of ∂j1(knr)/∂r, which can be used to verify that the two
contributions add up to the classical result, equation (4.9).

4.3. The conducting disc

Finally, we discuss the case of a two-dimensional disc. Here, the screening charge density
is distributed across the surface of the disc, with density [20]

ρ(r) = 4ε0E0

π

r cosφ√
a2− r2

(4.12)

wherea is the radius of the disc. The charge density is therefore slowly varying on the scale
of the Fermi wavelength, except for the singularity at the edge of the disc; this suggests
that the results of applying the Thomas–Fermi approximation are likely to be very accurate
in this case. For two-dimensional discs subjected to an external electric field, the static
potential is therefore given by

Ustat(r) = 1

e

(
∂N

∂µ

)−1 4ε0E0

π

r cosφ√
a2− r2

. (4.13)

The dynamical potentialUdyn satisfies Poisson’s equation in the form (2.6). If the charge
densityρ were a radially symmetric functiong(r), the corresponding radially symmetric
solution f (r) of Poisson’s equation could be found immediately by integrating twice.
In equation (4.13) the charge density may be viewed as a dipolar distribution resulting
from the infinitesimal displacement of two radially symmetric distributionsg(r). The
corresponding solution of Poisson’s equation is then a dipolar distribution formed from the
radially symmetric functionsf (r). Following this approach, and applying the appropriate
boundary conditions, we find the solution

Udyn(r, ω) = − ieω

σ0

4ε0E0

π

1

3

[
(a2− r2)3/2

r
− a
r

(
a2+ r2

)]
cosφ. (4.14)

Using equation (2.10), we find

α(ω) = 34

9π

ε0a
4ω2

σ0
. (4.15)

We conclude by determining the coefficientsαn for the disc geometry. The eigenfunctions
of the Laplacian areχn(r) = Rn(r) cosφ, where the radial functionsRn(r) are proportional
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to the first-order Bessel functionJ1(knr). The boundary conditions are∂J1(knr)/∂r = 0
for r = a. Using results in [23, 24] we obtain the integral identities∫ a

0
dr

r2

√
a2− r2

J1(knr) = a2

√
π

2kna
J3/2(kna) = a2j1(kna)∫ a

0
dr rJ 2

1 (knr) =
1

2

(k2
na

2− 1)

k2
n

J 2
1 (kna)

(4.16)

which are used to calculate the integrals in equation (2.11) and to normalize the eigen-
functions; we find

αn = 4ε0

e

(∂N
∂µ

)−1
√

2

π

kna
2√

(kna)2− 1

j1(kna)

J1(kna)
. (4.17)

The resulting contributions to the absorption coefficient are shown in figure 1(c). Again,
we show the Thomas–Fermi and the dynamical contributions separately (chain and dashed
lines, respectively). The contributions add up toα(ω) as given in equation (4.15), shown
as a solid line.

Comparing the two-dimensional case, equation (4.15), with the three-dimensional
cases, equations (4.1) and (4.9), we observe the following. In three dimensions,α(ω)

is proportional to the volumeV of the particle. In two dimensions, on the other hand, one
hasα(ω) ∼ V 2.

5. The effects of surface roughness

In this section we discuss the effects of roughness of the particle surface on the absorption
coefficient. Surface roughness alters the distribution of surface charge densityq(r): the
magnitude of the charge density is decreased within pits in the surface, and increased on
prominences. We will calculate the effect of a randomly fluctuating contribution to the
surface charge density; we assume that the particle surface is a small deformation of a
smooth surface for which the surface charge density isq0, and write the total surface charge
density as

q(r) = q0(r)+ δq(r) (5.1)

where δq(r) is a small random fluctuation. For simplicity we will consider the slab
geometry, discussed in section 4.1, and assume that the perturbationδq is non-zero on
only one face of the slab, atz = a/2, so thatδq is a function of the coordinate vector
r⊥ = (x, y). We write (3.14) as

α(ω) = ω2

2σ0

∞∑
n=0

∑
p

|an,p|2
k2
n,p

≡ ω2

2σ0
S (5.2)

with an,p = e(∂N/∂µ)αn,p, and the sum overp is over a lattice of points with density
1/(2πL)2. The sumS now includes contributions from eigenfunctions withp 6= 0. The
additional contribution to the coefficientan,p is

δan,p = 1

E0

√
2

aL2

∫
dr⊥ δq(r⊥) exp(ip · r⊥) (5.3)
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so the mean value of|δan,p|2 is given by a Fourier transform of the correlation function of
δq:

〈|δan,p|2〉 = 2

E2
0a

∫
dr⊥ Cδq(r⊥) exp(ip · r⊥) ≡ 2

E2
0a
C̃δq(p)

Cδq(r⊥) = 1

L2

∫
dr′⊥ δq(r⊥ + r′⊥) δq(r′⊥).

(5.4)

The contribution to the sumS in (5.2) which is linear inδq has mean value zero, so the
additional contribution to the mean value of the sum from the surface roughness is

δS = 2

E2
0a

∞∑
n=0

∑
p

C̃δq(p)

p2+ n2π2/a2
∼ 2〈δq2〉 δR2

E2
0a

∞∑
n=0

∑
|p|<δR−1

1

p2+ (nπ/a)2 (5.5)

where in the second line we have approximatedC̃δq(p) by a function which takes the value
〈δq2〉 for |p| < δR−1 and zero elsewhere. Noting thatS ∼ aL2(q0/E0)

2, we find

δS

S
∼ 〈δq

2〉
q2

0

δR2

a2L2

∞∑
n=0

∑
|p|<δR−1

1

p2+ (nπ/a)2

∼ 〈δq
2〉

q2
0

δR2

a2

∞∑
n=0

∫ δR−1

L−1
dp

p

p2+ n2π2/a2
C̃δq(p)

∼ 〈δq
2〉

q2
0

δR2

a2
[log(L)− log(δR)] (5.6)

where in the second equality we have assumed that the statistics of the charge fluctuations
is isotropic. We consider the limiting case where the charge fluctuations induced by the
surface roughness are small compared toq0, and the correlation lengthδR is small compared
to a. Equation (5.6) then shows that the effect of surface roughness will be small, except
in the limit L → ∞, where the logarithm diverges. If we consider this calculation for a
slab geometry as a simplified model for a particle of compact shape, then it is appropriate
to regard the ratioL/a as fixed, and the relative effect of surface roughness decreases as
δR/a → 0. A more refined model, taking account of how electrostatics influences the
correlation function of the surface charge distribution, would be required to give a finite
result for the limitL→∞ with other quantities fixed; we will not pursue this further.

6. Concluding remarks

In this paper we have shown how the absorption coefficient of a small metal particle is
determined by the distribution of static polarization charge density. We find that classical
and quantum mechanical approaches give the same expressions, and that the quantum
mechanical expression is valid both above and below the Thouless frequencyωc. The
quantum mechanical expression can be interpreted as consisting of two parts, arising from
the static and dynamic parts of the effective one-body potential which is produced in response
to the externally applied electric field. The static contribution is dominant belowωc, and
the dynamic contribution dominates aboveωc, but remarkably the two contributions sum to
the classical expression for all frequencies.

We can give explicit formulae for the absorption coefficient in cases where the
polarization charge density has been determined by classical electrostatics; we considered
spherical particles and discs, and showed that in the former case the result reduces to a known
result. We introduced a model for surface roughness, which gives a small contribution
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for particles with a compact shape. The model for surface roughness gives a divergent
correction for a slab geometry with aspect ratioL/a → ∞; a realistic theory for the
relationship between surface topography and induced charge density would be required to
eliminate this divergence.

The results discussed in this paper contrast in several ways with those for ballistic
electron motion, discussed in [17, 18]. In the latter case there is no requirement for a
dynamic potential, because there is no resistance to the movement of the screening charges.
Unlike in the diffusive case discussed here, there are important effects at the frequency
ωc = vF /a, and the frequency dependence of the absorption coefficient depends upon the
dimensionality of the sample. In the ballistic case it was also found that the absorption
coefficient can be greatly enhanced by surface roughness in the three-dimensional case.
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Appendix

In this appendix the sum

∞∑
n=1

1

k2
na

2− 2
(A.1)

will be evaluated using contour integration. We define a meromorphic functionf (z) with
poles atkna and residues [k2

na
2− 2]−1. Using ∂j1(knr)/∂r = 0 at r = a, we have

f (z) = cos(z)

(z2− 2) sin(z)+ 2z cos(z)

z2

z2− 2
. (A.2)

This function exhibits poles atz = ±kna with the desired residues. In addition to these
poles,f (z) has poles atz = ±√2 with residues 1/4 and atz = 0 with residue−3/2.
Integratingf (z) along the contour enclosing these poles, we obtain∫

C

dz

2π i
f (z) = 2

∞∑
n=1

1

k2
na

2− 2
+ 1

2
− 3

2
. (A.3)

The contour integral vanishes and therefore

∞∑
n=1

1

k2
na

2− 2
= 1

2
. (A.4)

Substituting this result into (3.14) and using (4.11), one recovers (4.9).
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