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Semiclassical Limits of the Spectrum of Harper’s Equation
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Harper’s equation, a model for magnetic field effects in lattices, can be analyzed using semicla
methods when the commensurability parameterb is small. We discuss an effective HamiltonianĤeff

describing a subset of the spectrum, for which the rational limitb °! pyq is also a semiclassica
limit; we give the first two terms of the expansion ofĤeff in powers of b 2 pyq. We derive a
Bohr-Sommerfeld quantization condition, involving a Berry phase correction, and an equation fo
bandwidth whenb ­ p1yq1 with q1 large. We also discuss the dynamics ofĤeff under infinitesimal
gauge transformations of the rational Bloch states.

PACS numbers: 71.10.Fd, 03.65.Sq
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Harper’s equation

cn11 1 cn21 1 2 coss2pbn 1 ddcn ­ Ecn (1)

is a discrete Schrödinger equation which is widely used
a model for electrons in two-dimensional lattice structur
penetrated by a magnetic field, or for electrons in inco
mensurate potentials. The parameterb is the ratio of the
area of a flux quantum to that of the unit cell, or the co
mensurability of the superposed potentials: Derivations
the Harper equation in the context of Bloch electrons
a magnetic field are given in [1,2]. The solution of (1
for the energy levelsE and eigenstateshcnj is a difficult
problem for which semiclassical methods have been v
useful [3,4]; the semiclassical limit isb °! 0, and we de-
fine a dimensionless effective Planck constanth̄ ­ 2pb.
For many purposes this limit is sufficient for physical a
plications; for example, in ordinary solids the number
flux quanta per unit cell is always small. Experiments
artificial lattices make values ofb of order unity achiev-
able, and distinctive features of the spectrum of Harpe
equation may soon be detectable in semiconductor su
lattices [5], and in superconducting grids [6]. In this Le
ter we discuss an effective Hamiltonian method for whi
the semiclassical limit isb °! pyq (p andq are coprime
integers): Because the rationals are a dense set, this
vides a far-reaching extension of the semiclassical
proach. The idea thatb °! pyq can be a semiclassica
limit was originally proposed by Sokoloff [7], and late
developed by others [8–10]; we will give simple deriv
tions of results which cannot be obtained using these ea
approaches.

When b ­ pyq, the eigenstates of (1) are Bloc
waves, and the spectrum consists ofq bands. We will
describe an effective Hamiltonian for a subset of t
spectrum which collapses onto a Bloch band asb °!

pyq; because the effective Hamiltonian is similar
form to the original one, this is a renormalization grou
(RG) transformation. The results are obtained from
algorithm for constructing an exact effective Hamiltonia
derived in [11], following an approach introduced in [12
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This Letter gives explicit expressions for the first tw
terms of a series expansion inDb ­ b 2 pyq. The
zeroth order term was deduced in the earlier papers,
this is not sufficient to determine the spectrum in th
limit b °! pyq, because the first order correction i
required for the Bohr-Sommerfeld quantization conditio
With the addition of the first order correction, the RG
method gives a satisfying understanding of the spectr
of Harper’s equation.

Our expression for the first order term is written i
terms of the rational Bloch eigenstates: It consists
two components, one of which is not invariant und
“gauge transformations” which alter the relative phases
the Bloch states at different points in the Brillouin zon
We write the Bohr-Sommerfeld quantization condition
gauge invariant form by incorporating the contributio
from the gauge dependent term as a Berry phase cor
tion; a related expression was obtained by Chang and
[13], but their calculation misses the gauge independ
first order contribution. We also apply the first order co
rection to a calculation of the total width of the spectrum
the band whenb ­ p1yq1, which is a high order ration-
al approximant of pyq. We will derive a formula
recently proposed by Tan [14] on the basis of nume
ical experiments; efforts to derive this result using th
methods of [8–10] were not successful. We anticipa
that our results will find other applications, for exampl
in problems involving the total energy of the Harpe
spectrum [15].

The Hamiltonian of Harper’s equation is a special ca
of

Ĥ ­
X
nm

HnmT̂ snh̄, mh̄d,

T̂ sX, Pd ­ expfisPx̂ 2 Xp̂dyh̄g ,
(2)

where H2n,2m ­ Hp
nm, and the operator̂T sX, Pd is a

phase-space translation operator. In Harper’s equation
only nonzero coefficients of (2) areH10 ­ H01 ­ 1 (and
their symmetry related images). Our results will apply
© 1996 The American Physical Society
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the more general Hamiltonian (2), unless otherwise sta
The translation operatorŝT sX, Pd have a noncommutative
algebra which is isomorphic to that of the “magnet
translation group” describing an electron moving in a pla
with a perpendicular magnetic field [16].

When b is rational, the solution of the Schrödinge
equation corresponding to (2) is a Bloch wave, which
will denote byjBnsk, ddl, and which we can write in the
form

kxjBnsk, ddl ­
X
n

expsikxyh̄d unsk, dd dsx 2 nh̄ 2 dd ,

(3)

where the vectorhunj is periodic:un ­ un1q. Theq dis-
tinct elements of the periodic vectorhunj can be obtained
as an eigenvector of aq 3 q matrixH̃sk, dd with elements

fH̃sk, ddgnm ­
X
M

Hn2m,M expf2iksn 2 mdg

3 exp
h
iM

≥
d 1

1
2 sn 1 mdh̄

¥i
(4)

and the eigenvaluesEnsk, dd, n ­ 1, . . . , q, are the disper-
sion relations of the Bloch bands. We will use the notati
junsk, ddd for the q-dimensional eigenvectors of this ma
trix, and we denote Dirac brackets in the Hilbert space
q-dimensional vectors bysajbd. The phases of the Bloch
states can be chosen so that

jBnsk, d 1 2ppyqdl ­ jBnsk, ddl,

jBnsk 1 2pyq, ddl ­ expfiqMndypg jBnsk, ddl ,

(5)
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whereMn is an integer called the Chern number; Thoule
et al. [16] showed thatMn is the quantized Hall conduc
tance integer of the band. A conjugate integerNn , given
by pNn 1 qMn ­ 1, will also play an important role in
the theory.

The effective HamiltonianĤ
snd
eff , describing the subse

of the spectrum which collapses onto thenth Bloch band
in the rational limit, is expanded as a power series
Dh̄ ­ 2psb 2 pyqd:

Ĥ
snd
eff ­ Ĥ

snd
0 1 Dh̄Ĥ

snd
1 1 OsDh̄2d . (6)

The contributionsĤ
snd
i are periodic functions of opera

tors x̂0 and p̂0 which have a renormalized commutato
fx̂0, p̂0g ­ ih̄0

n. In [11] and [12], it was shown that the
zeroth order term is obtained by quantizing the dispers
relationEnsk, dd: Ĥ

snd
0 ­ Ensx̂0yq, p̂0yqd, where periodic

functions are understood to be quantized by evaluat
their Fourier coefficients and associating them with an o
erator using an expansion of the form (2). The formu
for the renormalization of̄h depends on the Chern intege
Mn of the band:

h̄0
n ­ 2pb0

n, b0
n ­

qb 2 p
bNn 1 Mn

. (7)

We find thatĤ
snd
1 is obtained by quantizing a function

H
snd
1 sk, dd by the substitutionsk ! x̂0yq, d °! p̂0yq:

We writeH
snd
1 sk, dd ­ H

snd
1a sk, dd 1 H

snd
1b sk, dd, where
H
snd
1a sk, dd ­

i
2

"√
≠un

≠d

É
Ensk, dd 2 H̃sk, dd

É
≠un

≠k

!
2

√
≠un

≠k

É
Ensk, dd 2 H̃sk, dd

É
≠un

≠d

!#
,

H
snd
1b sk, dd ­ i

√
un

É
≠un

≠k

!
≠En

≠d
2 i

√
un

É
≠un

≠d

!
≠En

≠k
1

kqNn

2p

≠En

≠k
.

(8)
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The expressionH
snd
1a in (8) was previously discovered b

Rammal and Bellissard [9] as the first order correction
the effective Hamiltonian at the extremum of a band; th
approach only assigns a meaning toH

snd
1a at the extrema.

The term H
snd
1b vanishes at the stationary points of th

dispersion relation, and does not therefore invalidate
result of [9].

The vector junsk, ddd is assumed to be an analyt
function of k and d. It can be subjected to a gaug
transformation by multiplying by a factor expfiusk, ddg.
The expressionH

snd
1a is gauge invariant, whereasH

snd
1b is

not. The effect of an infinitesimal gauge transformati
with phaseusk, dddt, periodic on the Brillouin zone, is to
transform the Hamiltonian fromH to H 0:

H 0 ­ H 1 h̄0
nhH, ujdt 1 Osdt2d 1 OsDh̄2d , (9)
o
ir

e

n

where we usep0 ­ qk, x0 ­ qd, andhA, Bj is the Poisson
bracket≠x0A≠p0 B 2 ≠x0B≠p0A. This is the equation for
an infinitesimal canonical transformation generated by
Hamiltonianh̄0

nusk, dd 1 Osh̄0
nd acting for a timedt. To

leading order inh̄0, the Poisson bracket in (9) can b
replaced by a commutator; (9) therefore also correspo
to an infinitesimal unitary transformation, generated
a “gauge Hamiltonian”Ĝ ­ h̄0

nusx̂0yq, p̂0yqd, acting for
time dt. Because unitary evolution of an observab
leaves its eigenvalues unchanged, the gauge transform
does not alter the spectrum of the effective Hamiltonian

The form ofH
snd
1b given in (8) is not precisely symmet

ric betweenk andd; this is a consequence of constrain
on the gauge of the Bloch waves which are implied by (
Allowing for a more general gauge transformation of t
vectorsjunsk, ddd, we can write this term in a symmetri
1897
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H
snd
1b sk, dd ­ A ^ =Ensk, dd , (10)

whereA ­ isun j=und 1 A0, = represents a vector opera
tor s ≠

≠k , ≠

≠d d, andA0 is chosen such thatA is periodic, and
the integral of= ^ A over the Brillouin zone vanishes.

Before discussing the applications of these results,
give a brief sketch of the method by which they are o
tained; a detailed derivation will be published separat
[18]. We calculate the effective Hamiltonian and no
malization operators, which have the same matrix e
ments as (2) when expressed in a suitable basis [12].
Hamiltonian operator,̂H 0

n, is of the same form as (2) with
Fourier coefficientsH

snd
nm and commutatorfx̂0, p̂0g ­ ih̄0

n,
and the normalization operator is similar, with coefficien
N

snd
nm . In terms of these operators, the Schrödinger eq

tion takes the formsĤ 0
n 2 EN̂ 0

nd jcl ­ 0. It is possible
to transformĤ 0

n to an orthonormal basis by multiplyin
from the left by sN̂ 0

nd21, to produce an effective Hamil
tonian Ĥ

snd
eff ­ sN̂ 0

nd21Ĥ 0
n. The formula for the Fourier

coefficientsH
snd
nm of the effective Hamiltonian (6) was ob

tained in [11]; they are given by a linear transformation
the Fourier coefficients of the original Hamiltonian

Hsnd
nm ­

X
N

X
M

HNMtNM
nm (11)

and theN
snd
nm are obtained by replacingHnm by dn0dm0.

The coefficientstNM
nm are obtained from a set ofNn

generalized Wannier functions: AlthoughjBnsk, ddl
cannot be made periodic ink and d (except when
Mn ­ 0), a gauge can be chosen such that the ve
jCnsk, ddl ­ T̂s0, 2qMnkd jBnsk, ddl is periodic. The
generalized Wannier functionsjfsnd

m l, m ­ 1, . . . , Nn,
are then obtained by integrating over the Bloch wa
vectors as follows:
e

e
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jfsnd
m l ­

1
Nn

NnX
l­1

expf2pimlyNngT̂0s2plyNn, 0d

3
Z 2pyq

0
dk

Z 2ppyq

0
dd expfiqklg jCnsk, ddl

(12)

(the subscript 0 on thêT operator implies that it is
evaluated settingh̄ ­ h̄0 ; 2ppyq). The coefficients
tNM

nm are given in [11]:

tNM
nm ­ s21dsnN1mM2nmqdp

NnX
m­1

kfsnd
m jP̂t̂NM

nm P̂jfsnd
m l,

t̂NM
nm ­ t̂sM 2 nq, N 2 mqd

3 T̂ssss22pm 1 NkndyNn , s22pn 1 Mkndh̄yknddd .

(13)

In this expressionkn ­ 2pMn 1 Nn h̄, P̂ is a projection
operator for thenth band of the Hamiltonian, and the
operator̂tsl1, l2d is defined by the relation

t̂sl1, l2d jfsnd
m l ­ exp

h
2piMn

≥
m 2

1
2 l1

¥
l2yNn

i
3 jf

snd
m2l1

l . (14)

We wish to expand the Fourier coefficients (11) to fir
order in Dh̄ around the rational valuēh0 ­ 2ppyq.
Because the derivative with respect tōh of the
translation operatorT̂sX, Pd in (13) contains factors
proportional to x̂ and p̂, we require matrix elements
of the form kfsnd

m jp̂T̂ sX, Pdjfsnd
m0 l (and similarly for

x̂): They can be obtained from the matrix elemen
kBnsk0, d0djp̂jBnsk, ddl ­ psk, k0, d, d0d by integration
over k, d, k0, andd0 using (12). These matrix element
can be calculated in terms of the vectorsjunsk, ddd: We
find for the matrix elements of̂p
psk, k0, d, d0d ­ ih̄
≠

≠d
hdsd 2 d0ddsk 2 k0d expfiskd 2 k0d0dyh̄gj

1 dsd 2 d0ddsk 2 k0d
∑

k 2 ih̄

µ
unsk, dd

Ç
≠un

≠d
sk, dd

∂∏
. (15)
ase

e

The matrix elements of̂x are obtained by deleting th
term proportional tok, then replacingp $ x, k $ 2d.
After a lengthy calculation, we determine the first ord
correction in the form (8).

We will now describe two results which use (8)
a semiclassical context. First we consider the Bo
Sommerfeld quantization rule, which describes
spectrum in the semiclassical limitb ! pyq. The
Bohr-Sommerfeld condition is an implicit equation f
the energy levelEn within thenth band:

SsEnd ­
I

H
snd
eff ­En

p0 dx0 ­ 2p

≥
n 1

1
2

¥
h̄0

n 1 Osh̄0 2
n d .

(16)
r

r-
e

This equation can be written in gauge invariant form
by incorporating the gauge dependent term as a ph
correctiong:

Sinv sEnd ­
I

Hinv ­En

p0 dx0

­ 2p

µ
n 1

1
2 1 g

∂
h̄0

n 1 Osh̄0 2
n d , (17)

where Sinv and Hinv ­ H
snd
0 1 Dh̄H

snd
1a are the gauge

invariant parts of the action and Hamiltonian, and (in th
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case where the contour encloses a minimum ofH
snd
eff )

g ­ 2
1

2p

≠sS 2 S0d
≠h̄0

n

Ç
En

­
1
q2

I
H

snd
0 ­En

ds
H

snd
1b

j=0H
snd
0 j

.

(18)

Here ds is a Euclidean distance element of a conto
around the pathHinv sx0, p0d ­ En in phase space, an
=0 ­ s≠y≠x0, ≠y≠p0d. We obtain g in gauge invariant
form by converting it to an area integral using (10):

g ­
1
q2

I
H

snd
0 ­En

ds
A ^ ===H

snd
0

j=0H
snd
0 j

­
1
q

I
H

snd
0 ­En

dl ? A

­
Z

dk
Z

dd QsssEn 2 E nsk, ddddd
µ

Vn 2
qNn

2p

∂
,

(19)

where dl is a line element of the clockwise contou
H

snd
0 sx0, p0d ­ En, Qsxd is the unit increasing step func

tion, andVn is the Berry phase two-form,

Vnsk, dd ­ i

∑µ
≠un

≠k

Ç
≠un

≠d

∂
2

µ
≠un

≠d

Ç
≠un

≠k

∂∏
. (20)

In gauge invariant form, the phase correctiong is an
area integral, which measures the Berry phase accu
lated by the vectorjunsk, ddd as it is cycled around the
phase trajectory, minus a counter termNnSinv sEndy2pq ­
th
a
e
e
2

nd
r

u-

Nnsn 1
1
2 dh̄0

nyq. If the contour encloses a maximum of

H
snd
eff , the sign ofg is reversed. Our expressions for the

Bohr-Sommerfeld quantization are, surprisingly, close
related to results obtained in [10] using a different effec
tive Hamiltonian and a different expression forh̄0.

Finally, we describe another application of our result
If b is a rational numberp1yq1, thenb0

n ­ p0yq0 is also
a rational, and the spectrum of the effective Hamiltonia
consists ofq0 bands. Semiclassical arguments indicat
that, if the open contour of the effective Hamiltonian
forms a simple lattice, the total width of these bands whe
q0 is large depends upon the curvatureCn of the effective
Hamiltonian at its saddle points [4,19]. The total width
Wn of thenth band satisfies

lim
q0!`

q0Wn ­
32C

p
Cn , (21)

whereC is Catalan’s constant. The canonically invarian

expression for the curvature isCn ­
1
2

q
2 dets≠2

ijH
snd
eff d

where≠
2
ijH

snd
eff is the Hessian matrix of derivatives of the

effective Hamiltonian with respect tox0 andp0, evaluated
at its saddle point. We will discuss the evaluation of th
first two terms in an expansion of the curvature in powe
of Dh̄, for the special case of Harper’s equation. Becau
≠2E y≠k≠d vanishes at the saddle points, we find
Cn ­
1

2q2
j≠2

kkEn j 1 Dh̄
1

4q2
sgns≠2

kkEnd
h
≠2

kkH
snd
1 2 ≠2

ddH
snd
1

i
1 OsDh̄2d

­
1

2q2 j≠2
kkEn j 1 Dh̄

1
2q2

h
sgns≠2

kkEnd≠2
kkH

snd
1a 2 j≠2

kkEn j sVn 2 qNny2pd
i

1 OsDh̄2d , (22)
e

)

is)

g-

d

where≠x represents differentiation with respect tox, and
all derivatives are evaluated at the saddle point of
effective Hamiltonian. Equation (22) is equivalent to
formula proposed by Tan [14]. To obtain this result w
used the fact that, for the Harper model, mixed derivativ
of En and third derivatives vanish at the saddle point; (2
is not always applicable to the general model (2).
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