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Semiclassical Limits of the Spectrum of Harper’s Equation
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Harper's equation, a model for magnetic field effects in lattices, can be analyzed using semiclassical
methods when the commensurability paramedeis small. We discuss an effective Hamiltonihy;
describing a subset of the spectrum, for which the rational lighit— p/q is also a semiclassical
limit; we give the first two terms of the expansion @& in powers of 8 — p/q. We derive a
Bohr-Sommerfeld quantization condition, involving a Berry phase correction, and an equation for the
bandwidth when8 = p1/q; with ¢, large. We also discuss the dynamicsi; under infinitesimal
gauge transformations of the rational Bloch states.

PACS numbers: 71.10.Fd, 03.65.Sq

Harper’s equation This Letter gives explicit expressions for the first two
terms of a series expansion BB = B8 — p/q. The
Yni1 + u-1 + 2c0027Bn + Sy = E, (1) zeroth order term was deduced in the earlier papers, but
is a discrete Schrédinger equation which is widely used a IS Is not sufficient to determme the spectrum n the
Imit 8 — p/q, because the first order correction is

a model for electrons in two-dimensional lattice structure ired for the Bohr-S feld tizati diti
penetrated by a magnetic field, or for electrons in incom+ quired for the bohr-sommerteld guantization conaition.

mensurate potentials. The paramefieis the ratio of the With the addition of the first order correction, the RG
area of a flux quantum to that of the unit cell, or the com—method gives a ;atlsfylng understanding of the spectrum
mensurability of the superposed potentials: Derivations on Harper's equation.

the Harper equation in the context of Bloch electrons int Our efxrt)r:essmzn folr ér;e :]'rSt. ordetr tterm Ilts erttgrtl in f
a magnetic field are given in [1,2]. The solution of (1) erms of the rational bloch €igenstates. consists o

: ; - two components, one of which is not invariant under
for the energy leveld and eigenstateyy, } is a difficult auge transformations” which alter the relative phases of

roblem for which semiclassical methods have been ver , : . M
P he Bloch states at different points in the Brillouin zone.

#ﬁgfgl (g?rfg,nggrizgcé?fseﬂgsélllg;:atnl?:k—cc;r?s’tgrr;: v2v7eTge We Writ_e thg Bohr-SommgrfeId quar_1tization cond?tior! in
For many purposes this limit is sufficient for physical ap_?augehlnvarlant dform gy incorporating the c?]ntrlbutlon
plications; for example, in ordinary solids the number of ron? t elgauge ependent term as a Berry E ase correc-
flux quanta per unit cell is always small. Experiments ontlon; are ateq expression was obtained by C ang and Niu
artificial lattices make values g8 of order unity achiev- [.13]’ but their galcglatlon misses the gauge independent
,glrst order contribution. We also apply the first order cor-

able, and distinctive features of the spectrum of Harper rrection to a calculation of the total width of the spectrum of
equation may soon be detectable in semiconductor super- oo : .
a y b the band wher8 = p;/q1, which is a high order ration-

lattices [5], and in superconducting grids [6]. In this Let- I . t ofp/ W il deri ; I
ter we discuss an effective Hamiltonian method for which® 2PProximant otp/q. € will derive a formuia
recently proposed by Tan [14] on the basis of numer-

the semiclassical limit i — andq are coprime . . . . :
B p/a(p d P I185:1I experiments; efforts to derive this result using the

integers): Because the rationals are a dense set, this p e
vides a far-reaching extension of the semiclassical apr_nethods of [8_1(.)] were not succ_essful. We anticipate
that our results will find other applications, for example,

proach. The idea thg® — p/q can be a semiclassical . . .
limit was originally proposed by Sokoloff [7], and later n prtoblemlss involving the total energy of the Harper
developed by others [8—10]; we will give simple deriva- spectrum [15].

tions of results which cannot be obtained using these earlier, The Hamiltonian of Harper's equation is a special case

approaches. of
When 8 = p/q, the eigenstates of (1) are Bloch R R
waves, and the spectrum consistsgobands. We will H =2 HpT(nh mh),
describe an effective Hamiltonian for a subset of the ) " (2)
spectrum which collapses onto a Bloch band fas— T(X,P) = exdi(Pt — Xp)/h],

p/q; because the effective Hamiltonian is similar in

form to the original one, this is a renormalization groupwhere H_, _,, = H?,, and the operatoff'(X,P) is a
(RG) transformation. The results are obtained from arphase-space translation operator. In Harper's equation the
algorithm for constructing an exact effective Hamiltonianonly nonzero coefficients of (2) aé,, = Hy; = 1 (and

derived in [11], following an approach introduced in [12]. their symmetry related images). Our results will apply to
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the more general Hamiltonian (2), unless otherwise stateadvhereM,, is an integer called the Chern number; Thouless
The translation operatof&(X, P) have a noncommutative et al. [16] showed thatV,, is the quantized Hall conduc-
algebra which is isomorphic to that of the “magnetictance integer of the band. A conjugate intefygr, given
translation group” describing an electron moving in a planédy pN, + gM, = 1, will also play an important role in
with a perpendicular magnetic field [16]. the theory.

When g is rational, the solution of the Schrodinger The effective Hamiltoniarfl}¢, describing the subset
equation corresponding to (2) is a Bloch wave, which wepf the spectrum which collapses onto thth Bloch band
will denote by|B, (k, §)), and which we can write in the iy the rational limit, is expanded as a power series in
form AR =2m(B — p/q):

(x|B,(k, 8)) = D explikx/h) u,(k,8) 8(x — nk — 8),
" @) A% = a" + are"™ + o(aR?). (6)

where the vectofu,} is periodic:u, = u,+,. Thegq dis-
tinct elements of the periodic vectéu,} can be obtained
as an eigenvector of@ X g matrix H(k, §) with elements

The contributionsﬁl,-(v) are periodic functions of opera-
tors ' and p’ which have a renormalized commutator:
[%/,p'] = ik!,. In [11] and [12], it was shown that the
[H(k, 8)]pm = ZHn—m,M exd—ik(n — m)] zeroth order term is obtained by quantizing the dispersion
M relationE, (k, 5): fi(()y) = E,(&'/q,p'/q), where periodic
X ex;{iM((S + %(n + m)ﬁ)] (4) functions are understood to be quantized by evaluating
their Fourier coefficients and associating them with an op-
and the eigenvalueB, (k, 6),v = 1,...,q, are the disper- erator using an expansion of the form (2). The formula
sion relations of the Bloch bands. We will use the notationfor the renormalization ofi depends on the Chern integer
lu, (k, 5)) for the g-dimensional eigenvectors of this ma- M, of the band:
trix, and we denote Dirac brackets in the Hilbert space of
g-dimensional vectors bgu|b). The phases of the Bloch
states can be chosen so that

|B,(k, 6 + 2mp/q)) = |B,(k, 5)),

I / I gB — p
R e ¢/

We find thatﬁlf") is obtained by quantizing a function

|B,(k + 2m/q, 8)) = exdigM,/p]|B,(k, 5)), H;V)(k’(‘;) by the substitutionsk — %'/q, § — p'/q:
) We write " (k,8) = H\"(k, 8) + H\(k, 5), where

|
du, \ [ du, duy
ok ok 00 ’

auy)afy_%quVafV

E,(k,8) — H(k, )

E,(k,8) — H(k, )

v i au,,
HY (k. 8) = 5 [(

(8)

96
ou, \oE, .
_— — i\ u, .
ok ) 96 a6 | dk 27 ok
|
The expressiorHiZ) in (8) was previously discovered by where we use’ = gk, x' = ¢8,and{A, B} is the Poisson
Rammal and Bellissard [9] as the first order correction tdoracketo, Ad, B — d.Bd,yA. This is the equation for

the effective Hamiltonian at the extremum of a band; theiran infinitesimal canonical transformation generated by the
approach only assigns a meaningH$, at the extrema. Hamiltonian/i,6(k, 8) + O(l),) acting for a timedr. To

The term H{, vanishes at the stationary points of the!€ading order in’, the Poisson bracket in (9) can be
dispersion relation, and does not therefore invalidate th&ePlaced by a commutator; (9) therefore also corresponds
result of [9]. to an infinitesimal unitary transformation, generated by
The vector |u, (k, 8)) is assumed to be an analytic @ “9auge Hamiltonian'G = h,0'/q, p'/q), acting for
function of k and §. It can be subjected to a gauge time dr. Because unitary evolution of an observable

transformation by multiplying by a factor eig(k, 5)]. leaves its eigenvalues unchanged, the ga}ugetransformation
L) . . . v) does not alter the spectrum of the effective Hamiltonian.
The expressiorH;, is gauge invariant, whereds;, is

o ) .
not. The effect of an infinitesimal gauge transformation The form of Hy,’ given in (8) is not precisely symmet-

with phased (k, 8)dr, periodic on the Brillouin zone, is to fiC betweenk and ; this is a consequence of constraints
transform the Hamiltonian frorhl to &' on the gauge of the Bloch waves which are implied by (5).

Allowing for a more general gauge transformation of the
H' =H + i {H,0}dr + 0(d7*) + O(AK?), (9) vectors|u,(k, 8)), we can write this term in a symmetric

HY (k. 8) = i(u,,
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form 1wy = L NZ d2mi wA/N, 127 A/N,, 0)
v V)= — ex J v Vs
HY(k,6) = A A VE, (k. 8), (10) Pw) T, & exAmin o
whereA = i(u,|Vu,)+ A’, V represents a vector opera- 2m/q 2mp/q .
tor (. =5), and A’ is chosen such that is periodic, and x fo dk fo dd exligkA]|Cy (k. 8))
the integral ofV A A over the Brillouin zone vanishes. (12)

Before discussing the applications of these results, we , N o o
give a brief sketch of the method by which they are ob{th€ subscript 0 on the" operator implies that it is
tained; a detailed derivation will be published separatelf\l(,zluated_ settingi = fip = 2mp/q). The coefficients
[18]. We calculate the effective Hamiltonian and nor- 7an @T€ given in [11]:
malization operators, which have the same matrix ele- N, R .
ments as (2) when expressed in a suitable basis [12]. THan = (=1 = PRI IZAS LN
Hamiltonian operatord’,, is of the same form as (2) with A n=l
Fourier coefficientsym and commutatoft’, p'] = ik, Fam = 1(M —ng,N — mq)
and the normalization operator is similar, with coefficients A
Nl In terms of these operators, the Schrédinger equa- X T((=2am + Nw,)/Ny, (=27n + Mx,)h/x,) .
tion takes the form(A4}, — EN})|y) = 0. Itis possible (13)
to transformH’, to an orthonormal basis by multiplying

from the left by(¥’)~!, to produce an effective Hamil- In this expression, = 27 M, + N, A, p_ is a projection
tonian If\{éfuf) — (W)"'1.. The formula for the Fourier operator for thervth band of the Hamiltonian, and the

v . N operatori(A;, A») is defined by the relation
coefficientsHy of the effective Hamiltonian (6) was ob- P (A1, 42) y

tained in [11]; they are given by a linear transformation of  7(a, A,) |¢L”)> = ex;{zmMVOL — %M)/\z/NV}
the Fourier coefficients of the original Hamiltonian )
X b= (14)

H,(j;,f = ZZHNMTQ% (11) We wish to expand the Fourier coefficients (11) to first
N order in A/ around the rational valudiy = 27 p/q.

and theN\ are obtained by replacingl, by 8,08,,0. Because the derivative with respect tb of the
The coefficientsr¥™ are obtained from a set ok, translation operator7(X,P) in (13) contains factors
generalized Wannier functions: AlthoughB, (k, 5))  Proportional tot and p, we require matrix elements
cannot be made periodic ik and & (except when of the form <¢}LV)I;3T(X,P)|¢,(L”,)> (and similarly for
M, = 0), a gauge can be chosen such that the vectat): They can be obtained from the matrix elements
|C,(k,8)) = T(0,—gM,k)|B,(k,8)) is periodic. The (B,(k’,8")|p|B,(k,8)) = p(k,k',5,8') by integration
generalized Wannier function$¢l(f>>, w=1,...,N, overk, 8, k', andd’ using (12). These matrix elements
are then obtained by integrating over the Bloch wavecan be calculated in terms of the vectdus(k, §)): We
vectors as follows: find for the matrix elements gf

plk, k', 8,8") = ih%{b‘(é — 88k — kK)exdi(ké — k'8")/R]}

+ 686 — 88k — k’)[k - ih(u,,(k, 5) ’ %(k, 5))] (15)

The matrix elements ok are obtained by deleting tht|9 This equation can be written in gauge invariant form
term proportional tak, then replacingp — x, k < —§. by incorporating the gauge dependent term as a phase
After a lengthy calculation, we determine the first ordercorrectiony:

correction in the form (8).

We will now describe two results which use (8) in
a semiclassical context. First we consider the Bohr-
Sommerfeld quantization rule, which describes the
spectrum in the semiclassical limi8 — p/q. The
Bohr-Sommerfeld condition is an implicit equation for
the energy leveE, within the »th band:

Sinv(En) = f p/dxl
Hiww=E,

= 27T<n + 5+ y>ﬁ; + O, (17)

_ gl 1\ pr 2 N Y
S(En) fHQ?QE,, pdx 277(” * 2>ﬁ” T O, where S;,, and Hy,, = H(()) + AﬁHfa) are the gauge
(16) invariant parts of the action and Hamiltonian, and (in the
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case where the contour encloses a minimurigf) N,(n + 3)I,/q. If the contour encloses a maximum of
1 a(s — s | g Hest, the sign ofy is revgrsgd. Our expre_s_sions for the
=22 "7 = _jé ds—1 Bohr-Sommerfeld quantization are, surprisingly, closely

27 ok, e, ¢ Juy=e T \vEY) related to results obtained in [10] using a different effec-

(18)  tive Hamiltonian and a different expression fot
Finally, we describe another application of our results.
Here ds is a Euclidean distance element of a contounf g is a rational numbep;/q;, thenB’, = p'/q' is also
around the pathfi,,(x', p’) = E, in phase space, and j rational, and the spectrum of the effective Hamiltonian
V' = (9/9x',0/ap"). We obtainy in gauge invariant consists ofg’ bands. Semiclassical arguments indicate

form by converting it to an area integral using (10): that, if the open contour of the effective Hamiltonian
| A AVEY | forms a simple lattice, the total width of these bands when
y == dsi(v)o = — f dl - A ¢’ is large depends upon the curvatdrg of the effective
q° Ju'=£,  |V'Hy"| q JH,"=E, Hamiltonian at its saddle points [4,19]. The total width
N, W, of the vth band satisfies
=] dk] ds O(E, — fE,,(k,tS))(VV - "2—> g
v
19 . 32C
(19) lim ¢'W, = —¢C,, (21)
q'—® T

wr(u;re dl is a line element of the clockwise contour
Hy'(x', p') = E,, ©(x) is the unit increasing step func-

tion, andV, is the Berry phase two-form,

aﬂ — % duy (20) 2 . (v) . . . . .

95 as | 9k /) 1° where d;; Herr is the Hessian matrix of derivatives of the

effective Hamiltonian with respect t6 and p’, evaluated

In gauge invariant form, the phase correctignis an  at its saddle point. We will discuss the evaluation of the
area integral, which measures the Berry phase accumfirst two terms in an expansion of the curvature in powers
lated by the vectotu,(k, §)) as it is cycled around the of A#, for the special case of Harper's equation. Because
phase trajectory, minus a counter teMyS;,, (E,,)/27q = 0% /0kad vanishes at the saddle points, we find

where( is Catalan’s constant. The canonically invariant

expression for the curvature i, = 1+/— de(a?H{))

du,
ok

e~

! 1 () )
C, = 2—6]2|6%ka| + Aﬁ@sgn(aikﬂ,) [aikHl — 3(236[-]1 ] + O(Aﬁz)

1 1 v
= 57 T + A5 [sen(0} EoRHLL — 108 El (Ve — gN,/2m) | + O(AR?), (22)

|
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