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Abstract. We develop a renormalization group analysis for a Hamiltonian which is a periodic
function of ¥ and p; this is a model for Bloch electrons in a magnetic field, and includes
Harper's model as a special case. The eigenfunctions are Bloch wavespyltee ratio of

h/2m to the area of the unit cell, is a rational numhetg. The renormalization procedure
produces an effective Hamiltoniatest for a subset of the spectrum, which can be expanded in
AB = B — p/q. The zeroth-order term has been obtained in earlier papers; here we obtain the
first-order term of this expansion in terms of thedimensional vectorsu(k, §)) which define

the rational Bloch statesk (@ndé$ are Bloch wavevectors).

The effective Hamiltonian is not invariant under gauge transformations 6gxpfi)dz]
multiplying the vector|u(k,§)). We show that the infinitesimal gauge transformation is
equivalent to evoIvingﬁeﬁ under a gauge Hamiltonian obtained (to lowest ordeAj) by
quantizingd (k, §).

1. Introduction

In this paper we develop a renormalization groap)(analysis introduced in a sequence of
earlier papers [1-3], which provides a powerful method for investigating the properties of
Harper's model [4] for Bloch electrons in a magnetic field. The renormalized Hamiltonian
can be expressed as a power series expansion about any rational pyaluef the
commensurability parametegs. The earlier papers only give explicit formulae for the
zeroth-order term; this is not sufficient to determine the spectrum in the fimit p/q,
because the first-order correction modifies the Bohr—Sommerfeld quantization condition. In
this paper we give an explicit formula for the first-order contribution: meeprocedure
then provides a very complete description of the spectrum.

Our results are applicable to the Hamiltonian

I:I = Z Z Hnm f(}’lﬁ, mﬁ) = Z Z Hnm exp[l(m£ - nﬁ)] (11a)

n m

H_,_n=H, (1.1

where the coefficient#,,, decay rapidly ag|, |m| — oo, and where the operat(f’r(X, P)
is a phase-space translation operator, defined by

T(X, P) = exp[i(Px — Xp)/h] . (1.2)

The Hamiltonian (1.1) can be viewed as either a periodic function afd p with Fourier
coefficientsH,,,, or alternatively as a sum of terms describing hopping between sites on
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a lattice, with amplitudeH,,,, to hop by (n, m). The translation operatoré(X, P) have a
non-commutative algebra

T (X1, P)T (X2, P) = expli(XoPy — X1P2)/2R]T (X1 + X2, P1 + Py) (1.3)

which is isomorphic to that of the ‘magnetic translation group’ describing an electron moving
in a plane with a perpendicular magnetic field [5,6]. The Hamiltonian (1.1) is therefore a
reasonable model for an electron moving in a plane with a perpendicular magnetic field and
a periodic potential energy (x, y), and it provides a realistic effective Hamiltonian for this
problem in the limit of weak potentiaV [7-9], and also in the limit where the magnetic
field is a weak perturbation [10,4,11,12]. An important parameter is the gatb 277

to the area (#2) of the unit cell; in the smallv limit this parameter equals the ratio of

the area of a flux quantum to that of the unit cell of the poteritiét, y). The extensively
studied Harper model [4] corresponds to a special case of our Hamiltonian, in which the
only non-zero coefficients arH1o = Hp; = 1 (and their symmetry related images implied

by (1.1b)); some of the remarkable properties of this model are discussued in review papers
by Simon [13] and Sokoloff [14], and references to some more recent papers are given
in [3].

Several authors have descrit@methods applicable to (1.1) based upon semi-classical
approximations [15—-18]. By contrast, the results presented in this paper are based upon an
exact procedure for writing down an effective Hamiltonian for a subset of the spectrum,
which collapses onto a Bloch band whgns rational. This method was introduced in [1]
for the special case in which the Hall conductance intedgrof the vth band is zero, and
it was later reformulated [2] to allow general valuesMf (the quantized Hall effect for
this system was discussed by Thoulesal [19], who show thatV/, is the Chern integer of
the Bloch band). The development used in [2] is not convenient for systematic calculations
of corrections to the effective Hamiltonian, and the calculations presented here are based
upon a more refined approach, which is described in [3].

The Schédinger equation corresponding to (1.1) can be written

> Hywm expl-iN Mh/2]exp[iMx, )¢ -n = Ev, (1.4)
M

N

wherey,, = ¥ (x,) andx, = nh + 8. If B is a rational numbep /g then the coefficients

of the difference equation (1.4) are periodicrirwith period ¢, and the solutions of this
equation can be written as Bloch waves(k, §) = exp[ikn] u,(k, 8) wherek is a Bloch
wavevector and,,, = u,. Equation (1.4) is easily transformed into an eigenvalue equation
for the vector{u,} and the dispersion relatiofi(k, §): because both the coefficients of the
matrix and the eigenvector are periodicrinthe ¢ distinct elements of the periodic vector
{up} can be obtained as an eigenvector off & ¢ matrix, H(k,8). We will use the
notation|u, (k, 8)) for the g-dimensional eigenvectors of this matrix; theeigenvalues are
the dispersion relation§, (k,8) (v = 1, ..., ¢ is the band index). In [1, 3] it was shown
that s is a Bloch wavevector for translations in tipedirection in the phase plane.

The RG transformation produces a new effective Hamiltonidf};, similar to (1.1),
which describes a subset of the spectrum which collapses ontathhBloch band in the
rational limit 8 — p/q. The renormalized effective Hamiltonian can be expanded as a
power series:

HY = A + ARHY + O(AR?) AR =278 — p/q). (1.5)
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The contributionsH” are periodic functions of operator8’ and p’ which have a
renormalized commutator;x], p'l = ik,. In the earlier papers, it was shown that the
zeroth-order term is obtained by quantizing the dispersion relajoh §):

A =&,& /9, p'/q) (1.6)

(periodic functions are understood to be quantized by evaluating their Fourier coefficients
and associating them with an operator using an expansion of the for@);(1his is the
Weyl quantization [20]). The formula for the renormalizationiotlepends on the Chern
integer M, of the band

4B —p

R, =27, B, = m a.7)

where N, is conjugate to the Chern integéf, under the relation
PN, +gM, =1. (1.8)

In this paper we obtain for the first time the first-order correcﬁﬁ?i), which is expressed
conveniently in terms of the eigenvectpr, (k, §)) of the g x g matrix representing the
Hamiltonian in the rational case. We find th‘ﬁf) is obtained by quantizing the following
function of (k, §) by the substitutiong — x'/q, § — p'/q:

HY (k, 8) = H” (k, 8) + HY (k, 8) + H\" (k, §)

i Ju ~ u au » Ju
HY k,8) = | [ 2 ]6kK, 8) — HK, )|~ ) = 06k, 8) — Ak, 8)| "
) o |ouy \9E, [ |du, &, (1.9)
Hy'(k,8) =i uy — i u,
ok ) 98 a8 ) 9k
kgN, 0E
H(V) k,8 — v v )
1c ( ) o 9k

The vector|u, (k, 8)) is assumed to be given as an analytic functiork gfnd §, and it is
periodic ink and§ apart from a phase factor exp[i which will be specified later. The
expressionH,” in (1.9) was previously discovered by Bellissard and Rammal [21], who
wrote down an expansion of the effective Hamiltonian about the extrema of the dispersion
relation; in their theory the meaning of this term is only defined at the extrema of the band.
Later, Helffer and Sjstrand [18] identified the termll(,f) in a semi-classical calculation:
their effective Hamiltonian differs from ours in that it does not contain the t&iffi, and
it is quantized using a different value bf. Remarkably, Helffer and 8gtrand’s formulae
give the same Bohr—Sommerfeld quantization condition as our effective Hamiltonian, but
their semi-classical approximations are not valid in a small range of energy centred on the
separatrix of the Hamiltonian. Our expression is valid throughout the band, including the
separatrix.

The vector|u, (k, §)) can be subjected to a ‘gauge transformation’

|y (k, 8)) — |u, (k, 8)) = expli6 (k. )] lu, (k, ). (1.10)

The expressiongd,” and H,” are gauge invariant, bubl}’ is not. We will consider
the effect of an infinitesimal gauge transformation with phaée §)dr periodic on the
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Brillouin zone (0< k < 2 /¢, 0 < § < 27 /g). We show that this is equivalent (to lowest
order in AR) to evolving the effective Hamiltonian for timerdunder the dynamics of a
‘gauge Hamiltonian’, obtained by quantizig§A% 6 (k, §). Because evolution of an operator
leaves its eigenvalues unchanged, the gauge transformation does not alter the spectrum of
the effective Hamiltonian.

The form of H,” given in (1.9) is not symmetric betweenand 5. We note that,
allowing for a more general gauge transformation of the vediaré, §)), we can write
this term in a symmetric form

H"(k,8) = H + A AVE, (k, ) A =i|Vu) + A (1.11)

whereV represents a vector operatq%, a%), and wheré\’ is chosen such tha is periodic
and

27/q 21 /q
/ dk/ dsVAA=0. (1.12)
0 0

The formulation of the renormalization group transformation is considerably simpler in the
case where the Hall conductance integetMis= 0. For this reason we confine our detailed
discussion of the lengthy calculations leading to (1.9) to this special case: we will summarize
the formulae describing theG procedure forM, = 0 in section 2, before presenting the
analysis leading to (1.9) in sections 3 to 5. In section 6 we indicate how the calculation
proceeds in the general case. Section 7 discusses the effects of gauge transformations, and
section 8 describes some numerical tests of our results.

2. The renormalization-group method

Here we will summarize the equations which define the renormalization-group transforma-
tion. The general form of these equations, which are given in [3], are quite complicated;
in this section we will quote the simplified form of these equations which are obtained in
the special case whepe= 1 andM, = 0O, before discussing the general case in section 6.
This case was originally discussed in [1], but we will follow the slightly different notation
of [3] for consistency with the results of section 6. We will use the notation (3.N.M) to
refer to equation (N.M) of [3].

When g is the ratio of two integerg/q, the eigenvectors of the Hamiltonian (1.1) are
Bloch waves, for which the wavefunction can be obtained by sampling an analytic, periodic
function U, (x; k) as follows:

o]

(x|B, (k. 8)) = > explikx/h] uy(k,8) $(x —nk — 8)
el (2.1)

u,(k,8) = U,(x,; k) X, =nh+3§ U,(x +2m; k) =U,(x; k)

(this is discussed in subsection 2.1 of [3]). Note that writing the Bloch waves in this
form has implications for the gauge of the vectars(k, §). The rational Bloch states are
eigenstates both of the Hamiltonian, and of operators which translate by multiples of the
lattice periodicity:

Ho |B,(k, 8)) = &,(k, 8) | B, (k, §)) (2.22)
To(—=2mm, —27n) | B, (k, 8)) = (—1)"7 exp[—ig(ns — mk)] | B, (k, 8)) . (2.20)
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The subscript zeros indicate that the translation operator and the Hamiltonian are evaluated
in the rational case} = ho = 27p/q; (2.20) follows from (1.3) and (3.3.15). I/, = 0,

the Bloch waves can be gauged such that they are periodicaimd § over the Brillouin

zone. We can form a basis Wannier function which will then be both analytic and spatially
localized by integrating ovet ands:

21/q 2n/q
9™ = /0 dk fo ds | B, (k, 8)) (2.3)

(this result is a special case of (3.A.4), which applies wpea 1 andM, = 0).

The renormalization procedure uses the Wannier functions as a basis for representing
the effective Hamiltonian of a sub-band whegds close top/q. The Wannier states are
projected into the band by applying a projection operator

Py = fu(H) =) W) fu(Es) (Wl (2.4)

where |y,,) and E,, are the eigenstates and eigenvalues of the HamiltoRiaand S (E)
is a function that is unity ifE lies within thev™ band of the spectrum, and zero#f lies
within other parts of the spectrum [2]. Note that we are projecting the Wannier functions
at o onto the exact eigenstates/at

The matrix elements of the Hamiltonian and the identity operators in a basis formed
by the projected Wannier statdg2nn, 2nm)13|¢) are the same as matrix elements of the
following operators:

=YY Hyy expliMz' — Np'l =Y > Hy), T(NR,, MR,)
N M N M

ZZM expli(Mz’ — N p'] ZZN% T(NK,, MT,)

N

(2.5)

with [%/, p'] = ik),. These relations are equivalent to (3.5.1), but we have corrected a sign
ambiguity. Using (1.7), we find that whem = 1 and M, = 0, the renormalized Planck
constant is given by

=2np’ B =1/8—1[1/8] (2.6)

([X] means integer part of). The Fourier coefficients defining the renormalized
Hamiltonian and normalization operators in (2.6) are given by

H) = (=1)™4(¢™|P T (—27m, —27n) H P|p™)
@2.7)
N(U) ( 1)mﬂl/ (¢(U)|P T( 271'm _27.”,1) P|¢(v))

which are obtained by specializing (3.4.15) and (3.5.8).

The eigenenergies of this renormalized Hamiltonian operator can be obtained from the
relation (H, — EN)|v) = 0. It is possible to transfornki/ to an orthonormal basis by
multiplying the above equation from the left kgy/)~1:

A& = W)~ A 2.8)
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Equation (2.8) gives an effective Hamiltonian which provides an exact representation of the
subset of the spectrum which collapses onto itte band in the rational limit. We will
expand the Fourier coefficients (2.7) to first orderih = 2 AB aroundho =2np/q, and

then use (2.8) to determine the expansmnl—@ff BecauseP, H and T (—2wm, —2mn)

are all functions oft, to first order we have for the Fourier coefficients of the Hamiltonian

HY) = (=1)™9 (¢ | PoHoTo(—2tm, —27n) Polp™)

H()To( 277,’1’)1 —27TI1)P()

p
+ (=™ AR |:<¢(V) | ( o
0
>|¢(V)>
0

+ PoHoTo(—2m, —

R
L dH | . .
+(¢<v>|< — | To(=27m, —27n) Py
+ PoHo—— 2nn)ﬁo) |¢<”>>] + O(AR?) . (2.9)

In (2.9) the subscript zeros indicates that all these quantities are to be evaluated at
ho = 2mp/q. There exists an analogous expression for the Fourier coefficients of
the normalization operator. From (2.2) and (2.3), and recognizing By, (k, §)) =
|B,(k,8)), we see that the zeroth-order term is simply the:)th Fourier coefficient of the
dispersion relatiod, (k, 8) [1,3]. In section 3 we show that the first-order term involving the
derivative of the projection operator vanishes. The other terms can be expressed in terms of
the g-dimensional vectorg, (k, §)) defining the rational Bloch states; some results required

to relate these vectors to the Wannier states are established in section 4. In section 5 we
evaluate the first-order correction in (2.9), and obtain the effective Hamiltonian using (2.7)
and (2.8).

3. First-order effect of the projection operator

Our aim in this section is to show the term in (2.9) involving the derivadi?gdh vanishes.
We can write the projection operator as a Fourier transform

P = f(H) =/ dr f(t) expl—iHt/h) =/ dr f(1) U®) (3.1)

WhereU(t) = exp[—|Ht/1 is the propagator. We will write the Hamiltonian in the form
H = Ho+ AH + O(AR?), where H is the Hamiltonian with commensurabilitg and

Hy is the Hamiltonian at rational commensurabilfly = p/q. In the limit 8 — Bo, the
difference between these two operators is smallxfalose to the origin, but grows to be
O(1) at large values of. Because we are interested in the effect of the projection operator
upon a Wannier function which is localized around= 0, we are justified in applying
perturbation theory im A. To develop this perturbation theory, we note thasatisfies a
‘Dyson equation’

U@t) = Uo(t) — iiz_/odt/ Ut —t)YAH U (3.2)
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where Uo(r) = exp[—iHot/h] and AH = %AE. We can obtain the first-order term in
the perturbation expansion in% by replacing thel in the RHs of (3.2) by Us. From

this we can calculate the expansion of the projection operator, which we will write as
P = Py+ AP + O(AR?). In order to calculate the first-order corrections to the Fourier

coefficientsH () and N(?) due to the expansion of the projection operator, (2.9) shows that
we must evaluate

9P| . .
(@ == | HoTo(—2rwm, —2mn)|¢p")
on |,

__i_ mn * 3 ! / W) 77 _/%
= E( 1) qﬁmdlf(l)/()dl (¢ |Uo(t t)aﬁ

0

x Uo(t"YHoTo(—2tm, —27n)|p™) (3.3)
and its complex conjugate. Expressing the Wannier functions as integrals over Bloch waves
using (2.3), and using (2.2), we have

I:Iofo(—Zﬂm, _27Tn)|¢(]))>

0
i 21/q 21/q 2m/q 2m/q
= Lqyma / dk / K’ / ds / A8’ expl—iq(ns — mk)]
h 0 0 0 0

A

oH
oh

w2
oh

x &, (k, 8)(B,(k', 8] |By(k, 5))

0

X /Oodt f@ /tdt/ exp[—i&, (k', 8 — t')/h] exp[—i&,(k, 8)t' /h] .
—00 0
(3.4)

We will write the first set ofr-independent terms aS(k, k', 8,8"). If £,(k,8) # E,(k', 8")
then performing the integrations ovérand therr gives

w2
oh

HoTo(—2nm, —27n)|¢p™)
0

2/ 21 /q 21 /q
=ih / dk / dk’ / ds
0 0 0

2r/q _ Y
[ con, ) TEI D SEE),
0 vk, 8) — &K', 8)

Now since bothe, (k, 8§) and&, (k’, 8') are within thev” sub-band of the original spectrum
then f(&,(k, 8)) — f(E,(k',8)) = 1— 1= 0, so both this term and its conjugate vanish,
provided the denominator in (3.5) does not vanish€ ik, §) = &, (', §'), we have

(3.5)

P
o

- HoTo(—2wm, —2mn)|p™)

0
21/q 21 /q 27 /q 21/q
= / dk/ dk’/ d5/ ds’ C(k, k', 8,8"
0 0 0 0

X /Do dt (1)t exp[—itE, (k, 8)/h] (3.6)

(@]
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and we can write the time integral as

9 [ . . 9
Ihﬁ/_wdt exp[-ic, (k. 8)1/R] f(1) = T f (€. (k. 5)) (3.7)

which vanishes becausg¢(E) is a constant ifE is within the vth band. We have
demonstrated that there is no first-order correction to the Fourier coefficients of the
Hamiltonian due to the perturbation of the projection operator. An analogous argument
produces the same result for the Fourier coefficients of the normalization operator; we
can therefore ignore the term containig®/o% in (2.9). Also, note that because
Polp®) = |¢™), the projection operator can be dropped from the other first-order terms
of (2.9).

4. Representation by finite matrices

In this section we shall introduce a number of relations between matrix elements in a basis
of Bloch states defined on the real line by (2.1), and matrix elements in a bagis of
dimensional vectors. We notate vectors in the Hilbert space of states defined on the real
line by the Dirac bracket- - -), and those in the Hilbert space @fdimensional vectors by
a rounded bracket- - -).

In (2.1) we introduced a representation of the Bloch si8i&, §)) on the realx-axis
(in this section we will drop the band labe). We will introduce another Bloch-like state
vector

(X|C(k,8)) = Y explikx/R) v,(k,8) 8(x — nk — 8) (4.1)

n=—0o0

where the sefv,} is formed by periodic repetition of the elements of anotpelimensional
vector |v(k, §)); we will assume that, by analogy with (2.1), the,} are obtained by
sampling a periodic, analytic functioVi(x; k). We will require matrix elements of and
p between the statesB(k, §)) and |C(k,§)). We will also consider the case in which

~

|C(k, 8)) = A|B(k, 8)) whereA can be represented by a Fourier expansion
A=>"%"Ayu T(NK, M) (4.2)
N M
and show howA can be represented bygax ¢ matrix. We shall simply quote the results
here, the proofs of the results in subsections 4.1 and 4.2 are dealt with in appendices A

and B.

4.1. Matrix elements of canonical operators

The overlap of two vectors is given by
(C(K', 8)|B(k,8)) = 8(8 —8)8(k — k') (v(k, &)ulk, 8)) (4.3)

where

q
(', 8)uk, 8)) = Z vi(k', 8 uy(k, 8) . 4.4
i=1
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The matrix elements op are
(CK', 8"\ p|B(k, 8)) = m% |:8(8 — 88k — k") explitks — k'8")/R] (v(k', 8")|u(k, 8))}
+ k88 — 8)8(k — k) (v(k, 8)|u(k, 8))

%(k, 5)) (4.5)

— R85 — 8)8(k — k) <v(k, DIFs

and the matrix elements daf are

(C(K, 8)|%|B(k, 8)) = —iﬁ% [5(3 — 88 (k — k') expli(ks — k'8")/R] (v(K', &) |u(k, 5))}

+ R85 — 8)8(k — k) <v(k, 8)

ou
ﬁ(k’ 8)) . (4.6)

It should be noted that although these results are similar in structure, there is a term in (4.5)
which has no parallel in (4.6). This asymmetry is a consequence of the constraints on the
gauge of thdu(k, §)) which are implied by writing (2.1).

We remark that (4.5) and (4.6) are similar in structure to the matrix elements of the
position operator in a basis of conventional Bloch states, as discussed in [11].

4.2. Matrix elements of periodic operators
Here we relate an operatar which is periodic inx and p, to ag x g matrix Ak, 8) =
(A, (k, 8)}; we require that if C(k, §)) = A|B(k, 8)), thenv, = > 7 . A,,.u,. The details

m=1
of the derivations are contained in appendix B. In terms of the Fourier coefficietds of
defined by (4.2), we find

Ak, 8) =" Ay g (k. 8)
= 4.7)
Al (k. 8) =" Ay €Xpl=ik(n — m)] exp[iM8] exp[iM (n + m)h/2].
M
We also define three new operatcfm Ax and/ik,(; acting on the Hilbert space of operators

on the real line, which can be thought of as derivativesiofith respect tos, k andk, .
They are defined by the relations

(u(k/,cs/) % vk, 5)) = (B(k/,8/)|A5|C(k,8))
/ool 8A ARV

(u(k ,6) Tk v(k, 8)) = (B, §)|A|C(k, 5)) (4.8)
K8 A k,8) ) = (B, 8")|As 1|C(k, 8

(l’t( ) ) 989k U( 5 ))_< ( ) )l 8,k| (» ))

It follows from (4.7) that the operators are related to the Fourier coefficients lnf
A =—1Y_ NAyy T(Nh, Mh)
NM
Ay =1 MAyy T(NR, MR) (4.9)
NM
Asp =) NMAyy T(Nh, Mh).
NM
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5. First-order correction to the effective Hamiltonian

We shall now use the results in section 4 to calculate the first-order corrections to the Fourier
coefficientsH("), N(*) of the renormalized Hamiltonian and normalization operators. The

results will be written in terms of the eigenvector, (k, 8)) of the ¢ x ¢ matrix H (k, §)
representing the Hamiltonian, constructed using (4.7). We shall write these first-order
correction terms a\H(») and AN\). Considering (2.9), and remembering that for the

nm

first-order corrections we can ignore the projection operators, we have

AHDY) = (=1)" AR <¢<“>| fo(—an, —27n)|p™)

nm

+ (= 1)'""th(¢>(”)|1‘10 T( 2wm, —2mn) |¢><“>>
= (L + )AL (5.1a)
AN = (1)'""th<¢<“>| T( 2mwm, —2mwn) |¢<“>> (5.10)

(the termslIy, I correspond to the two Dirac brackets in @)L To proceed we need to
consider derivatives of the Hamiltonian and translation operators with respéct We
will consider the operator$ and p in the coordinate representation $6= x, p = —iE%;

differentiating 7 (—27m, —27n) gives
aT 2 .
ﬁ(—an, —27n) = Ez—nni(rrm + )T (=2nrm, —27n). (5.2)

Also, for the Hamiltonian (1.1) we have (using equation (4.9))

== —;l: ZZ N Hyy expli(M% — N p)]p — - D> HyuNMexpli(M# — N p)]
M

9 24

= —H, —fH 53
7 kP 2 8,k ( )

We are now in a position to evaluate the terms in (5.1); using equations (4.3)—(4.5), the
integral I; is

2n/q 21 /q 21/q 21/q
Iy =/ dk’/ dk/ d(S/ ds’ expl[—ig(né — mk)]
0

x (B (K, 5)|< Hkp+2Hka>|Bu(k,3))

2r/q g Tk 9H
= /(; dk/o ds |:E<uv(k, 8)‘81( u, (k, 8))

oH 8uv
- < vk, 5) o (k 3))

2( J(k, 8)‘ aias |1 & 5))} expl—ig(ns — mk)] . (5.4)
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Similarly, using equation (4.6) we have

2 27r/q Zn/q 21 /q 21/q
”'"/ / / dk/ s £,(K. 8)

(B, (K, 8")|%|B,(k, 8)) expl—ig(ns —mk)]

2 %inm

27r/q 2n/q
/ / ds &, (k, 8) exp[—ig(n§ — mk)]

2ﬂ/q 2n/q 272 27
= / / d8[ n<uu(k ) )]
0 h

x &,(k, §) exp[—ig(ns — mk)]. (5.5)

We can simplify this expression by writing the multipliers in (5.5) as derivatives of the
exponential factor with respect tb and §. Noting that&, (k, §) is periodic across the
Brillouin zone in both directions, as is the overldép,|du,/dk) in the gauge we have
defined for thelu, (k, 8)) in (2.1); we can therefore integrate by parts and write (5.5) as

T [ [19%6 d
/ k/ 5 |:28k88(k 8)+|85< v (k, 8)‘ " (k, 8))5 (k, 8)}
x expl—ig(né — mk)] . (5.6)
Before combining/; and I, we will re-write (5.4). By starting with the eigenvalue equation

H(k, 8)|uk,8) = &, (k,8)|u(k,8)) and differentiating with respect tb and thens, the
following two identities can be derived:

OH
(uv(k, 5)’(7@5)
(k. 8)| oH 8””(k 5)
\) 83 )
i[/0ou, | ou, du,, ~| du,
= i _ _ i
2[(ak5 o)~ (e a5
[ 92H i 928, . 9E, du,
U, R %y _ 5.7
2<“ “>+2ak35+'ak <“ > (5. 7)

d0kad a8
Note that the first term in theHs of (5.7) is the expressiorHl(;) appearing in (1.9). We
now combine the two terms which make a¥("): the terms involving double derivatives
of the dispersion relatio#, (k, §) and the HamiltoniarH (k, §) cancel, leaving

uy (k, 5)) = %(k, 8) (5.7)

2n/q 2”/‘f du, \ &, [ |ou, dE,
AH) = Ah/ dk/ N Raatl) R PV
ok ) 08 26 ) ok
ou k 0E
HY +i&—(uy| -2 ) + =2 | exp[~ig(ns — mk)] . 5.8
+H, +1 88<u 8k>+h8k] Xp[—ig(n mk)] (5.8)
A similar calculation leads to
2r/q 277/(/ P du
AN = Ah/ dk/ [ 33 (u B >] expl—ig(nd — mk)] (5.9)
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for the correction to the Fourier coefficients of the normalization operator.
We now use (2.8) to calculate the effective Hamiltonidf}) = (N/)"A!; writing

H, = & + 0H| Al + O(AR?) and N, = I + 9N, Ak + O(AR?), whereé, is the operator
obtained by quantizing, (k, §), we have

HY =&, + OH, — dN.E,) AR + O(AR?) . (5.10)
In appendix C we prove that, to zeroth orderAf, the product of operatora B is given

by quantizing the product (k, §) B(k, §). This means that the first-order correction to the
Fourier coefficients of the effective Hamiltonian is given by subtracting

21/q 2ﬂ/q
(8N E)im _/ dk/ [ )i|€ (k, 8) exp[—ig (né — mk)] (5.12)

from AH("). The final expression for the Fourier coefficients of the first-order contribution
to the effective Hamiltonian is therefore

(H)m = " Zmda expl—ig(né — M
1 am = pl-ig(né — mh)] H, (5.12)
0

ou,\ o0&, .
—ifu,
ok ) 06

This establishes (1.9) in the special case where=0 andp = 1.

where

(5.13)

HY" = HY + i<u\,

du,\ 9, | kq 9&,
3 ) ok ' 2m ok

6. Extension to non-zero Chern integer

6.1. General form of the renormalization-group equations

In this section we discuss how to generalize the derivation of (1.9) to the case where

the Chern integeM, is non-zero. We will first summarize some of the important results

from [3], again using the notation (3.N.M) to denote equation (N.M) of that paper.
Although |B, (k, §)) can not be made periodic ihands unlessM, = 0, a gauge can

be chosen such that the state ved©y(k, §)) = T5(0, —gM,k)|B,(k, 8)) is periodic, for

any value ofM,. A set of N, generalized Wannier functioﬂ&fﬁ), w=1 ..., N, can be

obtained from the Bloch states as follows (equation (3.A.4), with a different normalization

factor):

1 21/q 27p/q
|¢(u)> fN Zexp[ZmuA/N]To(ZnA/NU,O)/ dk/ ds expligkr] |C,(k, 8))
e (6.1)

Cy (k. 8)) = To(0, —gM,k) | B, (k. 8)) .
Here the subscript zeros again mean thatZtheperators are evaluated/ai = 27p/q, and
it is assumed that the Bloch wavéB, (k, §)) are gauged such that tHe,} are obtained

by sampling an analytic functioty, (x; k) with period 2r, as in (2.1). The renormalized
Hamiltonian is of the form (2.5), and the Fourier coefficients are given by equation (3.5.8):

Hn(;)n) = ZZ HNM 'L'nNmM . (62)
N M
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Here theHy,, are the Fourier coefficients of the original Hamiltonian, and the coefficients
M are obtained from the generalized Wannier functions using (3.4.15) and (3.4.18):

— ( 1)(nN+mM nmq)p Z ¢(D) "NM|¢(V)>
nm "
= (6.3)
tNM = (M —ng, N —mq) T ((=27m + N«,)/ Ny, (—=2n + M,k /x,) .

In this expression
ky =27 M, + N, (6.4)
is the period of the Brillouin zone for a set of generalized Bloch functions defined in

subsection 2.2 of [3] for irrationg®; we havekx, — 27 /q in the limith — 27p/q. The
operator (i1, o) is defined (for integer values af;, 1,) by the relation (3.4.16):

) 27iM,
r(xl,xz)w,&”):exp[ - lxl)xz}m ) (6.5)

The (11, 2) Operators have a non-commuting algebra analogous to (1.3).

6.2. Zeroth-order term

We will now use these results to calculate the zeroth-order term of the Fourier coefficients.
The result has already been given in [1,2,3], but the approach used here, based on (6.2) and
(6.3), is different from that of the earlier papers; it will be used as a model for calculating
the first-order correction.

First we consider the matrix elements appearing in (6.3); using (6.5), we have

2miM,

(0 T 6) = eXp[ (k= 5(M = ng)) (N — qu

v

< (¢ |T ((=2m + Nie,) /Ny, (=270 + Mc)h /i) 168 ) - (6.6)

If we now substitute for the Wannier functions using (6.1) then we have

TNM — NZ( 1) N AmM=nm)p exf —7iM, (M — ng)(N — mgq)/N, ]
N, N, N,
xZZZexp[M(M (N — mq)—)»—l—k’)}exp[ 2i(M —ng))'/N, ]
r=11=

2ﬂ/q 2ﬂ/q 2ﬂp/q 27rp/q
x/ / / f 5" explig (kA" — k'3)]
0

—2TA -2 Nk, —2x Mk,
< (Co K 8)|T ,O)T( wm + Nk 7 n+ Mk
N\) Nu KU/h

L (2N
x To< ;\T] ,0)|Cu(k,8)) (6.7)

v
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(note that in this expression, one of the translation operaioris, evaluated at;, while
others denotedj are evaluted akg = 27p/q). The sum ovep will vanish unless

(M,(N —mqg) —A+A)modN, =0 (6.8)

so that substituting in (6.2) and performing the sum, we have

1
Hrfl‘qjq) — N ZZ(_l)(nN+mM—nmq)p Hyuy
PNy T

N,
x exgd—miM,(M — ng)(N —mq)/N,] Z exp[—27i(M — ngq))'/N,]

=1

2ﬂ/q 2ﬂ/q 2ﬂp/q 27rp/q
x/ / / f 5" explig(\'k — Ak')]
0

_2 Nk, —2mn+ Mk,
<c(k/5)|To< N ,O>T< mm + N nt K)

N, ’ 3
. (2N
x To(;, 0)|cv<k, o) (6.9)

where A is given by (6.8). This result is exact; we now use it to calculate the first two
terms of an expansion inh.

To calculate the zeroth-order term &R we proceed setting = 27 p/q andk, = 27 /q;
applying (1.3), we find after some work that (6.9) reduces to

2;1/4 27/q 27rp/q 27p/q
H(v) = (- 1)nmpq / / dr’ / f ds’ expligh(k — k)]
Ny r= 1

x (B, (K, 8")|To(—2mwmp, —2mnp) HoTo(0, g M, (K" — k))|B, (k, 8)) + O(AR) .
(6.10)

We now define stateldD, (k, §)) and |V, (k, §)) as follows:

|D, (k, §)) = —p Z|B (k,8 + 27 1/q)) = expliks /R]|V,(k, 8)).  (6.11)
n=1

Equation (6.11) will be re-written in terms of matrix elements of the(k, §)) states, with
the integral oves restricted to the range from 0 tor2g. These matrix elements are

(Dy(K', 8" | To(—2tmp, —2rwnp) Ho To(0, M, (K — k)| D, (k, §))

= exp[—ig(nd — mk)] £,(k, 8) (V, (K", 8")| exp[ipN, (k — k")x]|V, (k, §))
N,—1
= expl-iq(n§ — mk)] £, (k. 8) Y 88 —8) 8k — k' — 217 /qN,) I, (k. 8)
J=0
(6.12)

where the last equality defines the coefficiehtg, §), and the factob(k —k' — 27 J /g N,)
arises because the stat®s(k, §)) are derived by sampling ther2oeriodic functionU, (x; k)
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at points separated byrZq. Note that normalization of the Bloch states implies that
Io(k, 8) = 1. Re-writing equation (6.10) in terms of these matrix elements, we have

271/q 27r/q 2r/q 21 /q
HY = (- 1)nmpq / / f ds / ds’ expligh(k — k)]
Ny =

x &,(k, 8) exp[-ig(ns — mk)] (D, (k', 8)|To(0, g My (K" — k)| Dy (k, 8))

+ O(Ah)
N, N,—-1
=(— 1)’“"”‘1 Z Z exp[2rirJ/N,]
V r=1 J=

Zﬂ/q 2r/q
X / / ds &, (k, 8) exp[—ig(né — mk)] I;(k,8) + O(AR). (6.13)
0

The sum oven vanishes unlesg = 0, in which case we use the fact thigtk, §) = 1 and
obtain our final result, that to zeroth order

2n/q 2n/q _
,f,‘jf = (- 1)’”"pq/ dk/ ds &, (k, §) exp[—ig(né — mk)] + O(Ah) (6.14)

as expected.

6.3. First-order correction

Here we calculate the first-order correction to the Hamiltonian in the general case. We only
highlight the differences from the cad¢, = 0 considered in section 5; some of the details
are therefore omitted.

To calculate the first-order term we must go back to (6.8) and differeritigte 27 m +
Nk,)/N,, (—2rnh/x, + Mh)) with respect toh. Remembering that, and/ are related
by (6.4), we have four terms

0 . A A . ~ . ~
= @rinN,/kD)iTo — (N /R)Top — SINM Ty + (2 %inm k)T . (6.15)
0

The required first-order correction to the Hamiltonian is

_1 .
AH") = AR Z Z(—l)M"N*'"M*Q"m) Hyu exp[—miM,(M — ng)(N —mq)/N,]
V' N M

Ny
x Z‘ exp[—27i(M — ng)x'/N, ]

27r/q Zﬂ/q 2ﬂp/q 27rp/q
/ / / / 5" explig(\'k — Ak')]

X (C,(K', 8)|To(— ZNA/NV,O) To(zn,\ /N, 0)IC, (k, 8))

ok
= (4 I+ Is+ I) AR (6.16)
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where the integrald; to I, are obtained by substituting the four terms in (6.15), and

is given by (6.8). The final two integrals are straightforward as they are similar to those
calculated earlier for the zeroth-order term. Following similar procedures to those in sections
5 and 6.2, the third term gives us

2n/qd 27T/qd 821:1
k 5 — 8§ —mk N u, 6.17
——5 [ [ expbigms —mo(w| ) )
and the fourth term is
i Zﬂ/q Zn/qd
Iy = 5/0 / 5 exp[—ig(ns — 888k k,8). (6.18)

The first two terms which involve matrix elements ofand p require a little more care;
the second term reduces to

Ny p2r1/q 27/q 27p/q 27p/q
= / dk / dk’ / ds / ds’ expligh(k — k)] exp[—ig(nd — mk)]
h =170 0 0 0

x ; ; N Hyy (B, (k', 8T (Nk, M%)

x To(0, gM, (k' — k))[~kgM, + pl|B,(k, §)) (6.19)

where we have commutedl with 7o(0, —g M, k); we find

21 /q 21 /q
L= / dk/ d5 expl—igq(ns — mk)] [qu 9& (u

2

aH
ok

u,
25 )] (6.20)

The first term requires a lengthy discussion; in appendix D we show that

2r/ 21/
L= / qdk/ qda[( a””>85”+igva< au)]exp[—lq(n(S—mk)] (6.21)

k) a8 ok
Combining/; to 14, we find H(?), and the Fourier coefficient§ (") are given by replacing

E,(k, 8) in by unity in these expressions. Therefore following the same argument as in
section 5 we finally obtain

_r2t/q 2n/q
(AHM),m = AR / dk / ds expl—ig(nd — mk)] H" (6.22)
0 0
where

(6.23)

ou, \ &, .
— —ilu,
dk ) 06

This establishes (1.9) in the general case.

du, \ d&,  kgN, 9&,
aé ) ok 2n ok
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7. Effects of gauge transformations

We shall consider the effect on the effective Hamiltonian of making an infinitesimal gauge
transformation to the original Bloch states or, equivalently, a gauge transformation on the
finite-dimensional vectorg, (k, 8)):

|B,(k,8)) — |B,(k,8)) = exp[i (k, §)dr]|B, (k, 8))
(7.1)
luy (k, 8)) — |u,(k, 8)) = exp[i6 (k, §)d]|u,(k, 8)) .

Any finite gauge transformation can be constructed by integrating over infinitesimal ones.
Because we wish to maintain the periodicity (up to a specified phase, Whea 0) of the
Bloch waves ink andsg, the gauge functiol (k, §) will be periodic on the Brillouin zone,

with a Fourier series

0. 8) =Y > Oyu expl-ig(Ns — MK)]. (7.2)
N M

We shall find that the effect of this gauge transformation is equivalent to allowing the
effective Hamiltonian to evolve for a timerdunder the action of a ‘gauge Hamiltonia6’,
where

G=R 6&"7q.p/q). (7.3)

i.e. G is related to the gauge functi@tik, §) by the same type of Weyl quantization as that
used in (1.6).

Substituting equation (7.1) in (1.9), we find that the effective Hamiltonian is transformed
as follows (the band index will be omitted):

0008 0008 __ —
r_ oy e YT 2 2
H—>H—H+|:388k akaa}Ahdt—i—O(Ah)—}-O(dt)
| 0H a6 dH 060 —
= HX', p')+q?Ah| — — — —— — |dt + O(AR?) + O(dr?) (7.4)
ax’ ap’  dp’ ox’
where we have used the fact thdt= gk, p’ = ¢8 in (1.6), andH = £ + O(AR). The
change in the effective Hamiltonian induced by an infinitesimal gauge transformation (7.1)
is therefore proportional to the Poisson bracket of the Hamiltonian with a Hamiltonian
G(', p)), given by (7.3), which acts as the generator of an infinitesimal canonical
transformation:

H' = H + {H, G}dt + O(dz?) + O(AR?) G="ho (7.5)

where {A, B} is the Poisson bracket of and B in the (x', p’) phase space. The Moyal
identity [22] shows that the commutatoA [ B] is equivalent to the Weyl quantization of
the Poisson bracket'i{A, B} up to terms @7'®). We therefore have

H' =H — —[H, G] + O(dr?) + O®"?). (7.6)

7

=

We have shown that, up to correction terms which ar@’4 (and therefore beyond the
accuracy of our approximations), the change in the Hamiltonian induced by an infinitesimal
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gauge transformation is equivalent to a unitary evolution under the Hamiltahiaiwe
remark that, beyond the zeroth-order approximation, the low field effective Hamiltonian
for Bloch electrons in a magnetic field also depends on the gauge of the Bloch basis
states [11,12].

We could arrive at the same conclusion by considering the action of the gauge
transformation on théB, (k, §)) state vectors rather than the, (k, §)) vectors; this leads to
a much lengthier calculation. It is of interest however to note how the gauge transformation
specified by (7.1) and (7.2) transforms the Wannier functions. In appendix E we show that
the effect of the infinitesimal gauge transformation is to induce the following transformation
of the Wannier functions:

87) = 167" = 19(") +idT Y 0 S (=M By
N M
x T(=2wM/N,, =2 Nh/k,) {(~Nq, —Mq) |¢") . (7.7)

Apart from the unusual form of the translation operator, this relationship is similar to
that found for the effect of an infinitesimal gauge transformation on conventional Wannier
functions.

8. Numerical experiments

In this section we describe numerical work which confirms that equations (1.5) to (1.9) do
fully describe the spectrum up to ordaf:. We present Fourier coefficients of the zeroth-
and first-order terms of the effective Hamiltonian (1.5), and we compare the spectrum of
the first-order approximation to the effective Hamiltonian with the exact spectrum of the
Harper model, for a sequence of high-order rationalgg1, which approximatep/q. We

find that therms error in the positions of the band edges scales é870), as expected.
Because the Fourier coefficients are dependent on the gauge choice |of (the)), we

must first specify the gauge imposed on this vector.

8.1. Choice of gauge

We used the Harper model for our numerical investigations, and obtained the vector
lu,(k,8)) as thevth eigenvector of @ x ¢ Hamiltonian for which the non-zero elements
are (using (4.7) and the Fourier coefficients quoted below (1.3))

2cognh + §) n=m

H,,(k,8) = (8.1)
explxik] n=m=1 modg.

We set up a grid ink—s space with 0< k < 2r/q and 0< § < 27p/q, with Ny, N
equally spaced points, separated &¥, AS respectively. For every point in this grid, the
elements of thesth eigenvector of the matrix (8.1) are stored in an array. These vectors
are initially gauged such that their first non-zero element is real. Before applying a specific
gauge, we first ensure that the vectors are an analytic functignaofd §; this need not

be satisfied if the first element of any of the vectors vanishes. We satisfy this requirement
by imposing a connection rule along specified paths covekidigspace. Starting at the
origin, we move up thé axis tok;, gauging the vecto, (k + Ak, 8)) so that the overlap

(u(k, 8)|lu(k + Ak, 8)) is real. Then starting from = 0 and moving along the liné = k;,
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we gauge the vectdu(k, § + Ad)) so that(u(k, 8)|u(k, § + AS)) is real for all values of
in the interval [Q 27 p/q]. We repeat this for different values &f in the interval [Q 27 /4].
Having ensured that, (k, §)) is an analytic function, we next adjust the gauge such that
the vector|C,(k, §)) defined in (6.1) is periodic i, with period Zr/q. We construct the
wavefunction(x|C,(k, §)), and for each value of a comparison is made betwegn(0, 3))
and|C(2r/q, d)); these vectors are identical up to a phase aagle. The functiond(5)
is defined such that7 < 6(0) < 7, andé(8) is a smooth function of. The|u,(k, §)) are
then multiplied by a phase factor explidefined byy (k, §) = —6(8)kq /27, which makes
the statgC, (k, §)) periodic ink.
Now it remains for us to make a final gauge transformation to ensure that the function
U, (x; k) defined in (2.1) is periodic in with period 2r. We compare the vectors, (k, 0))
and|u,(k, 27/q)). These are identical up to a phase and a permutation of the elements of
one of the vectorsu, (k, 0) = exp[ip (k)]u,, (k, 27 /q), wheren = m — N, (and again the
phase is defined so that0) lies between-z andx, and the function is a smooth function
of k). We then multiply all the vector§:, (k, §)) which have 0< § < 27 /g by exp[i],
whereé&(k, 8) = —¢(k)8q/2r. The vectors which havé > 27 /¢ are then defined by the
requirement that, (k, 8) = u,,(k, 8§ + 27 /q) wherem =n — N,.

8.2. Fourier coefficients and spectrum

Having determined a choice of gauge we can use (1.9) to evaluate the Fourier coefficient
definingﬁl(”). We list the first few coefficients in table 1 for one choice of commensurability
p/q and band index; we used a grid size al; = N; = 60 for these calculations. The
Fourier coefficients of the dispersion relation, which deffii’, are also tabulated. The
Fourier coefficients(Hl(”)),,m do not have the symmetr¥d,,, = H, _, exhibited by the
original Hamiltonian, and by the Fourier coefficients of the dispersion relation. This is a
consequence of the choice of gauge specified in section subsection 8.1; in [3] it is shown
that gauges can be chosen which do respect this symmetry.

We compared the spectrum of a band computed using the first two terms of the Taylor
expansion of the effective Hamiltonian with the appropriate subset of the ‘exact’ spectrum
of Harper's equation, computed numerically at some high-order ratighals pi/q1
which approximate the low-order rationg)q. The renormalized commensurability, given

Table 1. Fourier coefficients of the first two terms of the effective Hamiltonian for the case
p=2,q=5v=2,M,=-1,N, =3.

(n, m) Hym  REH ) IMEH )
(0, 0) —1.909 961 0099 091 0000 000
0,1 —0.053291 -0.305237 0024 538
0,2 —0.002487 —-0.014 164 0010928

(1,-2) —-0.001350 -0.010963 —0.010671
(1,-1) —0.004348 -0.122362 —0.013177

1,0 —0.053291 -0.408 219 —0.020 010
1,1 —0.004 348 —-0.115926 0001 398
1,2 —0.001350 -0.007 481 0009 351

(2,-2) —0.000501 —-0.004753 —0.007 130
(2,-1) —-0.001350 -0.076575 —0.013 427
(2,0) —0.002 487 —0.099 689 —0.014 807
2,1 —0.001350 -0.073020 —0.002 460
2,2 —0.000501 —0.002 535 0005978
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Table 2. Root-mean square errd in the spectrum of the effective Hamitonian for different
values of AB; the data for all three cases show tifat= O(AB2).

pi/a1 p'/a AB N

Case (@)p=1¢=3, v=1 M, =0, N,=1
196/571 17/196 992 x 1073 571x 1073
160/473 7/160 493x 1073 1.48x 1073
50/149 1/50 224 x 1073 3.07x10°*
100/299 1/100 112x 1073 7.34x10°°
200/599 1/200 557 x 1074 1.66x 10°°

Case (b).p=2, ¢=3, v=2 M,=-1, N, =2

329/487 13171 890 x 1073 9.00x 1073
100/151 —2/49 —442x10%  281x10°3
200/301 —2/99 —222x 1073 7.28x 10°*
200/601 -—2/199 -111x10%  1.80x10*
337/505  1/169 660x 104  4.64x10°°

Case (C).p:z, q=57 v=2 M,=-1 N,=3
154/371 2§91 151 x 1072 1.62x 1072

20/51 —2/9 —7.84x10°  672x10°°
40/101  —2/19 —396x 1073 1.64x 103
80/201  —2/39 -199% 103  349x10*
109/273 —1/54 —7.23x10°* 6.04x 10°°

by (1.7), is also rationalg, = p’/q’. Both spectra consist of a set @f bands with upper
and lower band edges!"*® and E* respectively for the exact spectrum, aafi*",
Ef“e“) for the spectrum of the effective Hamiltonian. In table 2 we show the statistic
L& o g pen 2]
S:|:24/Z(E,-' —E7T)+(E; T —E )i| (8.2)
i=1

which is a measure of thewms difference between the spectra; the results clearly show
that § = O(AR?), as expected. We used Fourier coefficienksf“))nm of order up to

|n|, |m| = 18 to evaluate the effective Hamiltonian.
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Appendix A

Here we derive results quoted in section 4. Firstly we shall consider the overlap
(C(K', 8Bk, 0)):

(C(K,8)|Bk,8)) =Y > expl-ik'(nh + &) /Rl explik(mh + 8) /R]v; (K, 8" Yu (k. 8)

n=—00 m=—00

x/oode(x—nﬁ—S/) 8(x —mh —§). (A1)
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The integral reduces t§,, x §(§ —§’) wheres,,, is the usual Kronecker delta function, so
that

o0

(C(K', 8")|B(k, 8)) Z explin(k — k)] vi(k', 8" u,(k, 8) expliks — k'8") /K] (8 — &) .
T (A.2)
Now since botht,, andv, are periodic iz with periodg, we can write (A.2) as
Xq: vk, 8" ) u, (k, ) explin(k — k)]
n=1
x i explimg (k — k')] exp[i(ks — k'8")/R] (5 — &) . (A.3)

m=—0oQ

The second sum vanishes unleks = k’. Normalizing the Bloch states so that
(B(K',8)|B(k,8)) = 8(8 — 8)8(k — k'), we have

(C(K', 8)|B(k,8)) = 8(8 —8)8(k — k') (v(k, 8)|u(k,8)). (A.4)

We will also consider matrix elements of the operatorg: the x matrix element is

(C(K,8)2|BK,8)) = Y > explimk —nk")] expliks — k's")/h]

n=—00 m=—00

x vk, 8 u,(k, 8)(mh + 8) /Oo dx §(x — nki — &) 8(x — mh — §)

(A.5)
which, after writingmh explikm] = —iﬁ% explikm] and simplifying gives (4.6).
Similarly
(C', 8| p|Bk,8)) = —ih Z Z expliimk — nk")] expli(ks — k'8")/R]
x Uik, 8 u, (k, 8)/ dx §(x —nh — 8/)3i8(x — mh — §) (A.6)
NS X

and the integral gives&nm%a(a — &), so that

(C(K', 8)|p|By(k, 8)) = ihS(k — k') expli(ks — k'8")/h] (v(K', 8")|u(k, 8)) %3(3 -3,
(A7)

Alternatively, we can write this in the form (4.5).
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Appendix B

Here we relate the operatdrto ag x ¢ matrix A(k, 8) such that ifiC (', §")) = A|B(k. ),
thenv, =), Aumun. If A is represented by its Fourier expansion (4.2), then

o0

(x|C(k,8)) = > explik(nh + 8)/h] v, (k. 8) 8(x — nf — 5)

n=—oo

= Z explik(nh + 8) /h) un(k, 8)
x YY" Ayu T(NR, MR) 8(x —nk —8). (B.1)

N=—00 M=—00

Using the fact thal (N7, Mh) = exp[—iN MT/2] exp[-iM p] exp[iN£], the term in (B.1)
becomes

T (NR, MR)S(x — nki — 8) = exp[iM ((n + N/2)k + 8)]8(x — (n + N)i — 8) . (B.2)

Therefore from (B.1) we have

o0

(X|C(k, 8)) = > explik(nh + 8)/h]

n=—0oQ

Xup(k.8) Y > Any eXpliM((n + N/2)h + 8)] 8(x — nh — 8)

N=—00 M=—00

= > explkmh+8)/R] Y > Aywm exp[i(Ms — Nk)]

n=—00 N=—00 M=—00

x expliM(n — SNIR] up_y(k,8) 8(x —nh —§). (B.3)

Comparing with (4.3) we have

q
Uy = zN: ; Ay expli(Ms — Nk)] exp[iM (n — SN)Rlu,—y = Z;Anm(k, Sup  (B.4)

from which equation (4.7) follows immediately. This allows us to relage<a matrix to the
Fourier coefficients of an operator defined on the real line, so(#dt, §")|A|B,(k, §)) =
(u(k, 8)|A(k, 8)|u(k, 8)).

Appendix C

Here we consider the Fourier coefficents of a product of operators

C=AB=>"> AyuexpliNZ' —Mp1Y > " By explils — Jp]
M 1 J

N

DY Cumexplint’ —mp']

n m

(C.1)
¢
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with [x’, p'] = ik!,. Comparing the two lines of (C.1), and using (1.3), we find

Cvu = Z Z ANn—1,m—y By exp[’(IM — NJ)/2]. (C.2)
T 7

Now from (2.6) we havé:, ~ ¢?AF, implying that to leading order iz the phase factor
in (C.2) can be neglected. Using the convolution theorem, we then have

Cvm =YY Ay-xm-y Bxy + O(AR)
X ¥

21 /q 27/q
= / dk/ ds exp[—ig(N§ — Mk)]A(k, 8) B(k, 8) + O(Ah) . (C.3)
0

To lowest order the product of operatots is therefore obtained by quantizing the product
A(k,8)B(k, §).

Appendix D

The first term in (6.15) gives
271 2n/q 2ﬂ/q 27!1)/(1 27!17/11
nh=2" p " / dk / / / 5" expligh(k — k)]
=1

x expl—igmé — mk)]&, (k, 8)(B, k', 8)|[Xx — 2mA/N,]
x To(0, gM, (k' — k)| B, (k, 8)) . (D.1)

We have two terms to calculate, one involvifigand the othei; we will consider the latter
one first. Consider the expression

Zﬂ/q 2rp/q
= / / ds’” expligh(k — k)]
Ny i

x (By(K', 8)|To(0, gM, (K" — k))|B, (k. 8)) . (D.2)

Writing g expligh(k — k)] = —(3/0k") expligh(k — k')], and integrating (D.2) by parts we
have

1 M p2r/q 2np/q
L, = > / dk’ / ds’ expligh(k — k)]
0

qNV A=1 0

a N
x @(Bv(k/, 8)1To(0, g M, (K" — K))| B, (k, 8)) . (D.3)

Writing | B, (k, 8)) = exp[iks /A]|U (k, 8)),

1 M p2r/q 2np/q
Iy = — Z/ dk’/ ds’ expligr(k — k)]
0

X %(B (K', 8" | expligM, (K" — k)% /h]| B, (k, 8))

2ﬂ/q 27p/q
= / / ds’ expligh(k — k)]
Ny =1

[(ak/(k/ 8")| explipN, (k — k"% /R]|U (k, 8))

IpN

(B, (K, 8)|To(0, gM, (k' — k)))2|Bv(k,8))] (D.4)
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As in section 6 the sum over will ensure that the only contributing term from the overlap
isk =k": we find
(B,(K', 5/)|fo(0, gM, (k' — k))%|B,(k, 8))
ih 9
=2 3(8 — 8)8(k — k') expli(ks — k'8") /R (u, (k', 8")|u, (k, 8))

pN, Ok’
ih 88 =88k — k')
N,

v

du,(k, 5)
ok’

It can be seen that on integrating owéands’ (D.4) gives no contribution. Thus from (D.1)
we have

i 2Nv N, 2 /q 2r/q 27p/q 2np/q )
I = 7’“{2 " 3 / dk / dk’ / ds / ds’ expligh(k — k)]
h s=1J0 0 0 0

x (By(K', 8)|RT (0, My (k' — k)| By (k, 8)) E,(k, 8) exp[~ig(ns — mk)] .

u,(k, 8)) . (D5)

(D.6)
We have seen in (D.5) the result of placifidetween two Bloch states, so we can rewrite
(D.1) as
2r/q 2n/q u,
I = —f dk/ ds gn exp[—ig(né — mk)1E,(k, 8) (uv ok ) . (D.7)
0 0

Appendix E
The Bloch states can be obtained from the Wannier functions as follows (equation (3.3.15)
of [3]):

N,

B9 =C 30 30 3 el - (mat M

n=1n=—00 m=—00

x T(0,2rm) T(=27n/N,,0) T(0, 27 Myk/x,) 1¢") (E.1)

whereC is a normalization constant. Consider the effect of one term of the Fourier series
(7.2) on the Bloch stateB, (k, §)): using (E.1) and replacing by n + M in the summation

exp[—27i(Npd/h — Mk/k,)] | By(k, §))
al 27 (k + ph)(n + M)
x exp[2riMk/k,] T (O, 27m) T (=27 (n + M)/N,, 0)
x T(0, 2r M,k /k) 16)
N, _ _
- Z Z Z exp[—z_m (m(S + (kA phon Mh)n)]

n m p=1 h Ny

x exp[4r%iNpn/N,h] exp[-2riuM/N,]

x T(0, 2rm) T(=27n/N,,0) T (0, 27 M,k /x,)

x T(—27xNp,0) T(~27 M/N,,0) |$") (E.2)
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(equations (1.3) and (6.4) have been used to simplify this result). Now in the rational case
I = 2np/q, the phase factor involving is exp[4r2iNpn/N,h] = exp[2tiNgn/N,], SO
that (E.2) can now be written

exp[-2wi(Nps/h — Mk/k,)] |B,(k, 8))
N, H 7
=Y >N exp[—zgI <m8 - ("J;\fm)")] exp[—27i(u + 3Ng)M/N, |
n m H:]- v
x T(0,2xm) T(=2wn/N,,0) T(0, 27 Myk/k,)
x T(=2r M/N,, =27 Np) |$}) x,) - (E.3)

Using equation (1.8), the additional phase factor in (E.3) can be rewritten as follows:

v v

2mi 2wiM,
exp|:— Izltl (,u I ;NQ)M:I — (_1)17(1NM exp[_ n]\ll (M + %Nq)Mq:I . (E.4)
Inserting this result into (E.3), and using (6.5) gives

exp[—2xi(Npd/h — Mk/«k,)] |B,(k, 8))

00 00 N, H o
VIS Zexp[zﬁm<ma+“‘+]v’”‘”1)}

n=—00m=—00 pu=1
x T(0,2xrm) T(—2wn/N,,0) T(0, 27 Mok /k,)
x T(—2xM/N,, —2w Nk /k,) i(—~Ngq, —Mq) |$\") (E.6)

(we used the fact that, in the rational cakgs, = p). Equation (7.7) follows directly from
this result.
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