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Abstract. We describe a semiclassical approach to estimating the absorption of electromagmetic
radiation by small conducting spheres, in which the motion of the charge carriers is ballistic.
The resuits are strikingly different between the cases of rough and smooth walled particles. For
a rough walled particle the absorption coefficient is proportional to w? in the low-frequency
limit, For a smooth walled sphere the absorptmn coefficient has a low-fregnency cut-off at we,
the angular frequency of a circumferential “whispering gallery’ classical orbit of a carrier at the

_ Fermi surface, At frequencies above . the spectrum consists of a sequence of overlapping
resonance bands which oombme to.give an absorptmn coefﬁc:ent proporuonal to w2 only for
w3 wee .

1. Introductmn, review and prmc:pal results

1.1 Inrraductzan

The absorption of radiation by smalt metallic particles is a subject of considerable interest;
experimental and theoretical work in this field has recently been reviewed by Perenboom et
- al 111, Carr et a! [2] and Halperin [3]. In this paper we analyse the case where the motion
of the charge carriers is ballistic (i.e. where the mean free path is much larger than the
dimensions of the particle); this has not previously received a fully satisfactory treatment.
‘We model the charge carriers (which we will refer to as electrons) by a gas of non-interacting
fermions characterized by a charge e and isotropic effective mass m. The potential energy
" is taken to be uniform inside the boundary of the small metal particle, and infinite outside.
We give an analysis of this system based on the semiclassical approach (4], in which the
dynamics of the electrons is modelled by classical trajectories, and the eigenfunctions and -
energy levels are not required. We consider only spherical particles: it will become apparent
that a theory for arbitrary shapes would not be tractable. Our objective is to give physical
insights into the problem using this simplified model, and to give some explicit results that
could be used as a benchmark’ agamst which fully quantum mechanical calculations could
be compared.

We begin by describing the various types of electron dynamlcs and frequency regime
for this problem. If the size of the conducting particles is large compared to the Fermi
wavelength, it is meaningful to consider the classical motion of the electrons, which may
be classified as either diffusive or ballistic. In the diffusive regime an electron is scattered
_ many times as it traverses a distance equal to the particle radius @, and can be characterized
by a bulk conductivity. In very small particles the motion. is ballistic, i.e..the electron
bounces off the walls of the particle many times between internal scattering events. "The
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case of diffusive electron motion is adequately treated in the early classical work of Mie [5]
on absorption and scattering by dielectric spheres. In this paper we only consider ballistic
electron motion.

If the electron motion is ballistic, it is useful to distinguish beiween chaotic and
integrable classical motion of the electrons (the relevant concepts are reviewed by Gutzwiller
[6]). If the particle has a smooth suiface, so that the electrons are reflected specuiarly at
the boundary, integrable classical motion will occur for some shapes of the boundary. In
particular, motion of electrons in a smooth walled spherical enclosure is integrable, because
angular momentum is conserved. However, some other smooth boundaries are known to
give chaotic classical motion [7]. If the boundary of the particles is rough, or the internal
scattering is significant, the electron dynamics is chaotic. The specular refiections required
for integrable motion can be realized physically if the effective surface roughness of the
boundary is small compared to the Fermi wavelength. The Fermi wavelength can be very
large compared to the atomic scale in systems (such as semiconductors or bismuth) with very
low densities of charge carriers. Our calculations will show a marked difference between
the absorption spectra of rough and smooth walled particles, which is characteristic of the
different types of classical electron dynamics.

QOur model for the small metal particle has three characteristic frequency scales. The
lowest characteristic frequency, which we denote by wp, is associated with the typical
spacing AE of the single-particle energy levels: wy = AE/h. The highest characteristic
frequency is the plasma frequency wp: below wyp the electron gas is able to screen out the
applied electric field from the interior of the particle, whereas above w, there is a uniform
internal electric field. Intermediate between these two frequencies is a third frequency we,
which is the typical frequency of collisions of an electron with the surface of the particle:
) = Up/a, where vg is the Fermi velocity. In this paper we will be primarily interested in
what happens above the level spacing freqency ayp but below the plasma frequency w,. We
pay less attention to the response above the plasma frequency, because the applicability of
semiclassical methods is somewhat limited in this regime. Analysis of the response at or
below g requires a fully quantum approach, and is outside the range of this paper.

1.2, Brief review of relevant literature

There is a large theoretical literature on the interaction of small metal particles with
electromagnetic radiation. To establish connections with the present work, we briefly review
some of the principal contributions.

(a) Classical electromagnetic calculations of the absorption and scattering of radiation
by dielectric spheres were carried out by Mie [5] and Gamett [8,9]. The Mie theory
is appropriate for the case of diffusive electron dynamics, where the dielectric constant
is characterized by a bulk conductivity. The extension to ballistic dynamics is unclear,
although many authors have used an effective conductivity derived by replacing the
relaxation time 7 in the Drude model [4] with a time a/vg characterizing the frequency
of collisions with the walls. We will term this the effective conductivity ansatz.

(b) Kawabata and Kubo [10] have calculated the absorption coefficient quantum
mechanically for the case of ballistic electron motion, at frequencies above the plasma
frequency. These results have heen extended [11] and corrected [12] by others. The
calculation depends on a knowledge of the electron wavefunctions, and for this reason it
can only be carried through for a smooth walled sphere and some other geometries with
classically integrable dynamics.

{c) Gorkov and Eliashberg [13] studied the structure of the absorptmn coefficient in the
vicinity of wp using random matrix theory. Their calculation contains a significant error in
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that it ignores screening of the external electric field due to surface charges [14]; an algebraic
error has also been corrected [15]. Gorkov and Eliashberg assume that the single-particle
energy levels have random matrix spectral statistics. More recent work on semiclassical
quantum mechanics, reviewed by Gutzwiller [6], indicates that this assumption is valid for
a rough walled particle, in which the electron motion is chaotic, but not for a smooth walled
spherical particle in which the electron dynamics is integrable.

(d) A large number of quantum mechanical calculations employing self-consistent field
methods have been described; some examples are [16]-[18], and references therein. These
studies have concentrated on exactly spherical geometries, and do not discuss the distinction
between the behaviour of rough and smooth walled particles. -

' {e) There is a close analogy between the dynamics of electrons in small metal particles
-and the motion of nucleons in the collective model of the nucieus. Various workers {19, 20]
have discussed semiclassical models for dissipation in nuclear processes that are analogous
to the approach we adopt here.. The principal difference is that the perturbation is a
displacement of the nuclear surface rather than an externally applied field. -

1.3. Principal results
The organization of this paper and its principal results are as follows.

(a) In section 2 we give a semiclassical discussion of the absorption of energy by an
electron gas due to an external perturbation. The principal result, equation (2.6), should
be very widely applicable in. sem1class1ca1 analyses of absorption of energy by electrons in
ballistic systems.

{b) Section 3 cliscusses the effect of an extemally applied electric ﬁeld with a frequcncy
below the plasma frequency, on the energy of electrons rebounding from the wall of the
particle. Our analysis, based on a Thomas—Fermi approach, appears to be the first treatment
of the effect of screening of the applied electric field on the dynamics of the electrons.

" (c) In section 4 we consider the case of ballistic electrons confined to a smooth walled
_ sphere. We find that the absorption coefficient vanishes below a cut-off w, = vp/a, which we
will term the ‘bounce frequency’. Above w,, the absorption spectrum contains an increasing
number of overlapping bands, which sum to a quadratic frequency dependence in the limit
@ 3 we. The coefficient of this quadratic dependence differs from that obtained from the
effective conductivity ansatz by a material dependent parameter. In the neighbourhood of
the bounce frequency, the frequency dependence of the absorption spectrum has a complex
structure reminiscent of that predicted by Gorkov and Eliashberg. Both phenomena are
_ related to the crossover between a discrete and a quasi-continuous spectrurn, but beyond
that they are unrelated: our result concerns the smooth walled sphere close to ., whereas
theirs refers to a rough walled system close to «yg.

(d) Ballistic electrons confined to a rough walled sphere are discussed in section 5. We
describe a realistic model for the rough walled sphere, in which the absorption coefficient
is proportional to @® both above and below the bounce frequency w.. The distinction
between the rough and the smooth surface illustrates an earlier analysis by one of us [21]
which predicts that at low frequencies the rate of dissipation should be greatly suppressed

.in systems with integrable dynamics. We also describe a novel mechanism by which the
absorption of energy is enhanced by the roughness of the surface.

(e) In section 6 we present, for completeness, a semiclassical analysis of the absorption
of radiation above the plasma frequency, giving results in agreement with those of the
Kawabata and Kubo method where they overlap. Our theory only applies if %, is small
compared to the Fermi energy Ep, but it is applicable to arbitrary geometries.
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Qur results are confined to considering electric dipole absorption. At frequencies
below the plasma frequency, magnetic dipole absorption may be the dominant process
in sufficiently large particles with diffusive electron dynamics, because the electric field is
screened from the interior of the particle. We hope to publish a corresponding semiclassical
analysis of magnetic dipole absorption with ballistic electron motion at a later date.

2. Semiclassical model for energy absorption

We characterize the electron gas by its phase space density f(r,p,!), representing the
number of electrons per unit volume in the single-particle phase space at coordinates
7 = (x, y,z) and momenta p = (px, py, ;) at time £. To simplify the notation we will
abbreviate the set of phase space coordinates by a single symbol ¢, and write the phase space
density as f(x, ). Because the electrons are regarded as independent quasiparticles, their
dynamics is defined by a single-particle Hamiltonian H (v, p, 1) = H (&, t). This consists of
an unperturbed part plus a sinusoidally oscillating term proportional to the applied electric
field £:

Hig, tY = Hylor) + EoHy (o) sinwt. 2.1)

It will also be useful to consider a coordinate system in phase space where the position &
is labelled by the unperturbed energy £ = Hp(w) and a set of five other coordinates L,
describing the position on the energy shell at energy £, which we need not specify in detall
We will write dv = dE dE(E) for the volume element in phase space.

We assume that the system is initially in its ground state, for which the phase space
density corresponds to the zero-temperature Fermi-Dirac distribution:

F(@,0) = 2h 36 Ep = Ho(e)] (2.2)

where Er is the Fermi energy and ©(x) is the unit increasing step function. A factor of
two is included in (2.2) to account for spin degeneracy. After applying the perturbation for
“a time ¢, the phase space coordinates of an electron injtially at & are transformed to o, and
" the energy of each electron will have changed by a small amount A E{e, t) which will be
computed by using classical perturbation theory (see figure 1). We must consider how to
compuie the change in the total energy of the electron gas from the change in the energies
of the individual particles, AE.
The total energy Er of the electron gas is the summ of the sinple-particle energies.
Approximating this sum by an integral, this is

Ex(t) = [ do F (@, 1) Hole) = 2073 f do ©[Ez + AE(e) — Ho(e)] Hole)

=2h“3defd2(E)E®IEp+ AE(S,E)~E. @23
Now we subtract the initial total energy Ep(0) to find the total energy absorbed. We can
replace the measure of the energy surface dE(£) in the integral over T by dZ(Eg) because
the integrand of the energy integral is zero except for a small interval of width ~ AFE close
to Eg:
AET(t) = Eq(f) — Ev(0) = 2R3 f dE(EF)de E[&(Ex+ AE — E) — B(Ep — E)]

=2k | dS(EF) [ErAE(T) + LAEX(Z)). , 2.4)
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The volume V of the =phase; space enclosed by any surface is constant, i.e.
5V = 0= fda[f(oz = F@ 0] | ' | 2.5)
f dE(Ep) f dE [@(EF + AE — E) - @)(Ep - E)] = f dE(EF) AE(E)

Comparison with (2.5) shows that the component of (2.4) that is linear in AE vamshes and ’
that the energy absorbed is therefore )

CAEND) =k dz'(EF')AEZ(E,ég):='h*3o(ﬁg)(AE2(EF))' @6

where (AE?(Eg)) is the variance-of AE for electrons mmally at the Fermi energy, and
Q(E) is the weight of the energy shell at energy E:

| Q(E):f_d}](E)=fda6[E—Hg(cx)]. _ e

In all of the calculations below we find that the energy absorbed grows linearly with time,
apart from unimportant fluctuations that oscillate with the frequency @ of the applied field.
For this reason it is possible to characterize dEy/dt by its cycle averaged value.

- Equation (2.6) has been given in an earlier paper [21], where it was derived under the
assumption that the energies of individual electrons evolve diffusively. The more general
derivation above is included because, although this assumption is valid for low-frequency
perturbations of electrons undergoing chaotlc motion [22} it does not hold for electrons
undergoing integrable motion.

The quantity 2~3Q(Ep) is the density of states at Er multiplied by the volume of the
particle; as this expression is required for the calculations described later, we quote it here
for a spherical particle of radius a:

R 3QUER) = aPmbks /32T R , @8

where kg is the Fermi wavevector.
The quantity most frequently used to charactenze the rate of absorption is the absorptlon
“coefficient y, which is the fractional loss of the energy density of the incident radiation per
unit distance along the path of the beam, and this is conventionally expressed as a function
of the volume fraction 7 of the particles. Using the fact that the energy density of the
electromagnetic field is €€, we find :

y:

3F 1 (ggq:) 29

dradeqc £

where (dEr/dt) is the time averagod rate of absorpuon of energy for 4 single metallic
particle.
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3. Interaction of electrons with the particle boundary

3.1. Surface charges and screening

In this section we discuss the interaction of the electrons with the external electric field.
Although we model the electron gas by a system of independent particles described by a
single-particle Hamiltonian, the potential energy experienced by a single electron depends
on the phase space distribution of the other electrons, The plasma frequency

wp = [n(Ep)e*[eom]'/* (3.1)

where n(Eg) is the number of electrons per unit volume at the Fermi energy and m is
the effective mass, separates two regimes in the response of the electron gas. Below ay,
the electron gas is able to rearrange itself in order to screen out the applied electric field
from the bulk of the particle, by developing a surface charge. At frequencies above w,
the electron gas is not able to respond quickly enough to create significant screening, and
there is a uniform internal electric field, which for simplicity we will assume is identical to
the applied external field £, (The polarization of the background lattice may have an even
higher cut-off frequency: this can be taken account of by reducing the internal field by an
appropriate factor.)

We do not discuss the behaviour of the system at frequencies close to the plasma
frequency, as this appears to be very difficult. Instead we describe two distinct models
for calculating the change in the electron energies below and above w,. In both cases we
find that the energy of the electrons changes discontinuously when they collide with the
boundary of the particle. In this section we calculate the change 8E of the energy of an
electron due to a single collision with the boundary when @ <« ey, Discussion of the case
@ > oy is deferred until section 6.

We discuss the low-frequency behaviour using a2 Thomas—Fermi analysis, in which the
electrons move in a classical self-consistent field that incorporates the potential due to the
other electrons as well as the background potential. The applied electric field £ causes a
small change 8V in the potential experienced by an electron which causes a corresponding
‘change 8n in the electron density, [4]: '

sn = (3n/2Ep)SV (3.2)

provided that w <« w,. The perturbation is screened out over a length scale A, comparable
to the Fermi wavelength Ap.

The effect of the external field is to induce a surface charge 4 per unit area, which is
related to the potential §V as follows:

g =efd28n(z) = %fﬂz 8V (2) (3.3)

where z is a coordinate that measures distance normal to the surface of the particlé. Classical
electrostatics shows that for a sphere this surface charge at a given point is [23]

g =3efcosy 7 (3.4)
where x is the polar angle of the point relative to the direction of the field. Figure 2

illustrates the interpretation of the angle y. Comparison with (3.3) enables the integral of
8V (z) to be evaluated.
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Figure 1. Schematic illustration of the region of phase
space filled by the electron gas before and after applying
a perturbation:. a phase space point ¢ with energy
Hyla) = Ep is mapped to a pomt o with energy
Ep + AE(w,1).
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Figure 2. At low frequencies, the surface charge is
confined to a narrow layer of width A.. The angle of
reflection and the polar angle of the point of impact of
an electron trajectory are ¢ and y respectively (these
angles need not lic in the same plane).

3.2. Effect of surface potential on electron energies

Now we consider the effect of the potential 8V (z) on the motion of the electrons. If
the electric field is changing while an electron bounces off the boundary of the particle,
the energy of the rebounding electron will change by an amount §E. We now calculate
the change in energy of the electron as it collides with the boundary of the particle and
encounters the potential 8V (z) induced by the external field. For simplicity we consider
. a simplified model in which the electrons are confined in the volume bounded by two flat
parallel planes with separation L. The potential therefore only depends on one coordinate
z, s0 that the analysis is essentially one dimensional.
~ The time dependent electric field £(r) gives rise to a varying potential 8V (z) cosw! in
the vicinity of the surface. In order to evaluate the effect of this time dependent perturbation,
we expand the wavefunction as follows:

W)= Z Ca(t) expli®at) éx) (33)
where the |@,) are the mstantaneous elgcnstates of the Hamiltonian H[E (z‘)], and
| ®, =—[ dr’ E, (1. (.3-.6)
The equation of motion of ¢,(z) is
6o Z: (Bnl2H /3 Igm) - xpli(@y — Gm)] . a7

Ep —Ep

 IfE, and (¢,,|8H /86E¢m} are assumed to be such slowly varying functions of £ that théy

cant be taken to be constant, and the ¢, are small, the solution of (3.7) with the initial
condition ¢, (0) =

nm is

(¢n|3H/35I¢m 8exp[i(w _

oty = R e E ¢

{z)m)t] (3.8)
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with w, = E,/A. In order to study the scattering process an incoming wavepacket with
significant contributions only from states with energy close to Ep is considered. In this case
the matrix elemenis of 94 /3€ can be set to a constant value V. We also assume that the
perturbation varies slowly compared to the timescale of the interaction of the electron with
the boundary: the rate of change £ can be considered to remain constant throughout the
collision process. Using the définition of the evolution operator

CALO1Y = {€a(®)lcm (0) = 8} (3.9)
and defining the initial wavepacket as
W) =D anléhn) : (3.10)

gives
E@) = (yOIAW ) = GO ORTOIWO) =Y avan (el UT@AT @) |60)-

(3.11)

Use of the approximate expression for the elements of U obtained from (3.8) gives

EQ@ —Z:kz,,l R I I A ‘“” expli(@n — o)t (3.12)
" om#n

Converting the sums to integrals, we have
a{E)a*(E")
E-—-F

where Eg is the initial energy of the wavepacket and p is the density of states (for each
spin state). The normalization of the coefficients a{E,) ~ a, is

E(t) = Ep— ipzﬁf:'V' f dE f dE’ expli(E — ENt/R]  (3.13)

[ dE |\a(E)|* = ;. - (3.14)
Differentiating (3.13) with respect to time gives
%? = p*EV f dE f dE' a(E)a* (Eyexpli(E — ENt/h] - (3.15)

which can be integrated to give the total _enefgy transferred duf'ing the interaction

3E = p?EV f dE f dE' a(E)a*(ED | " expli(E — E')i/A]

-

= mhp*EV f dE |a(E)? = 2xhp€V. (3.16)

For the case of an externally applied smusmdal field the function £ is gwen by Lowcos wit
so that

8E = 2mh&ypVecoswt. (3.17N
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33. Thomas4F ermi model for the 'screeﬁfng potential

To calculate the energy absorbed by an electron colliding with the wall of the partlcle
using (3.17), it is necessary t¢ model the potentlal it cxperiences. A fully sclf-consistent
calculation is not anatytically tractable. The simplest model of the response of the electron
gas to the field is the Thomas—Fermi model [4], which assumes, in accordance with 3.2),

that the induced charge density is propomonal to the potentlal so that Laplace s equation
reads :

9%V e%n 3
7 az2 - €p '_'ZEOEF

sV, o (3.18)
The solution of (3.18) is
SV = Voexp(—ozsz) . | (3.19)

The inverse séreening length o can be o_btained direcﬂy from (3.18_) and Vo /e from (3.3):

Vo 2e0€Epcosy . 3ne? 2 : .
o SSUEerE A = 3.20
5 “en &= 260 EF T apAp @20

where gy is the Bohr radius and ip is the Fermi wavelength. We now compute the matrix
elements of the potential 5V (z) between single-electron wavefunctions. The z dependence
of the wavefunctions for the electrons trapped between planes at z =0 and z =L is

¥;(z) = 2/ Lsin( j;-‘fé/L'} | | .32y

which gives matrix elements

2V [ L fjmz\ | {jz
Vip = 712 fo dz exp{—-c_csz;) sm_(J—L—) sin (J—L_)

Voors -1 ‘ 1 . :
o _ 22
L (a§+(j —j")zJTZ/Lz a32+(j+j')27T2/L2) (3:22)

‘where the approximation oL 3> 1 has been made, which corresponds to the short rangé of
the screening potential compared to the separation of the planes. For states that are close
in energy,-j = j’; and the required matrix element.V can be obtained as

_ 8mVeE.. - SMVOEFC_()52¢ -
Las(Ba? + 8mE;)  Log(h%e? + 8mEpcos® ¢)

) (3.23)

Here E, =% j*x%/2mL? is the kinetic energy in the z direction, for a particle at the Fermi
surface. This is related to the total energy Er by E, = Epcos® ¢, where ¢ is the angle of
incidence of the electron.against the boundary.
The density of states (for each’ Spll‘l state) for a particle of energy E, ina one—d1menswna1
box is
mlL - . —
p= hn2mE, cos¢ o - D324
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Using the expression (3.20) for Vo/a, (3.17) now gives the energy transferred as the electron
interacts with the wall as

4Eg cos¢p dg _ deg EpenEy cos ¢ cos y cos ot

E = — = - 3.25
3enve (I + cos? @) dr enve(l* + cos? @) (3:25)
Here I is a material dependent parameter given by
3nhle? 2A 2573
= e _e_ 7 L . L (326)
16mEke, may 3rtBay

where r; is the radius of a sphere defining the volume occupied by a conduction electron.
Values of the parameter r;/ay are tabulated in [4], and show that I is of the order of unity for
ordinary metals. Comparing (3.20) and (3.26) it is clear that I" is proportional to (Ar/As),
where A; = 1/u; is the screening length. The energy transferred to the rebounding electron
is reduced when I is large, because in this limit only the tail of the wavefunction penetrates
into the region where the potential §V (z) differs significantly from zero.

Equation (3.25) is the principal result of this section. It is instructive to compare this
with the predictions of a purely classical analysis, in which the change in energy of an
electron bouncing off a surface with potential 6V {z,¢) is

oH 2 asvVv 2 d
3E_fdr¥_ vpa)sqbfdz an vpcosqﬁﬁfdzav' 327)

Using (3.3), we find

_tE 14
" 3nevgcos¢ dt

(3.28)

This result has an unphysical divergence at ¢ = —%n‘, corresponding to the electron sampling
the potential 8V for a long time if it strikes the boundary at glancing incidence. The more
realistic quantum model (3.25) does not have this divergence, but at all angles other than
¢ = %:rr, the quantum expression approaches the classical value in the limit I' — 0.

4. Ballistic electrons in a smooth walled sphere

We now consider the calculation of the energy absorption in the case where the electrons
move ballistically inside a spherical boundary, and are refiected specularly at the walls.
First we discuss briefly the classical dynamics of the electrons.

The trajectories of the electrons are confined to planes that contain the centre of
the sphere. The motion of an electron in one of these planes is a typical example of
integrable motion for a system with two degrees of freedom [6L. In such a system a
canonical transformation can be found that maps the phase space coordinates (x', ¥, pt., py)
into anather set of coordinates (8,8, J, I), termed action angle variables, such that the
Hamiltonian is independent of the coordinates 8, 8. The conjugate momenta J and I are
therefore constants of motion. For motion in the sphere, the Hamiltonian is independent
of the polar angle 8 in the (x’, y") plane, and the conjugate momentum is the angular
momentum, J = x’p, — ¥'p,. We will not need to characterize the remaining action angle
variables ([, ") for the radial motion in any detail.
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The motion of any given electron can be described by a vector angular momentum
J, which is normal to the (x’, y') plane and has magnitude J. The set of six variables
consisting of the energy E, the angular momentum J = (J,, J,, J;) and the two angle
variables €, 6’ uniquely specify the phase space coordinates of an electron. In order to
evaluate the energy absorption using (2.6), we must perform an integration over the energy
surface (the level surface of E). This integration is most conveniently carried out using the
coordinate system described above. In appendix A we show that the measure de of phase
space volume is . .

- do =dLdE =(t/J)dEde a8’ dJ, d.fg,d.!,. , (4.1}

-where t is the period between bounces. .

We now calculate the total energy AFEq7(t) absorbed in time f by summing the
contributions 8E for each bounce of each electron. The energy AFE(#) absorbed by a
given electron can be obtained as a sum of the energies transferred in each collision. Using
the expression (3.25) for the energy transferred in a single collision gives

A COS ¢

N
AE@) =Y E = ——2
. ; 1"+c 52 ¢ &=

Z COS Xp COS Wiy B 4.2)

where N = ¢/t is the number of collisions with the wall, y, is the polar angle of the nth
" reflection, occurring at time f,, relative to the direction of the electric field (the z axis), and
A =4egEBpwE [envr. Some elementary geometry shows that we can write

cos X, = sin @ cos, o . ' o (4,3)

where 8, is the polar angle of the nth reflection measured in the plane containing the

electron trajectory, and © is the angle between the vector J and the z axis. These angles are
illustrated in figure 3, from which it can be seen that 8, is given by 8, = 2n(x/2—d)+0y =

2ng’ 4 6p. Use of these expressions and 1, = nt gives :

A cos ¢ sin ®

T +cos ¢ ZCOS(anb + 6y) cos nwT. o 44

AE(@)=
The sum can be written in the form

4 Z[cos(znqb +6p—nwt)+cos(2ng’ +6+nwt)] = L Z[cos(n891+90) +cos(n86;+6p)]

=1 n=l1

= iRe exp(le}o) Z[exp(mwl) + exp(msez)]
n=1
exp(leg)[l ——Vexp(lNSBI)] +1Re exp(ifg)[! — exp(iN882)]

R .
T T —exp(i6) 2 1 — exp(i662)

(4.5)

H
sl

‘where Re denotes the real part, 66; = 2¢' — wr and 36, = 2" + wz.
It can be seen that a resonance can occur in expression (4.5) if 68, or 86z is close to a
muitiple of 2x. These resonances will dominate the response of the system to the field. In



8472 E J Austin and M. Wilkinson
A‘\ | ?
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(@ (b)

Figure 3. (g) In the smooth walled sphere, the electron motion is confined to planes. The polar
angles in the plane of motion of successive impacts are 6,. (&) The plane of motion is tilted at
an angle L — @ with respect to the direction of the electric field.

order to proceed further, it is necessary to study the possible resonance solutions. For the
first term the condition for the kth resonance is

2¢;, + 2km = (2wa/vg) sin gy (4.6)

Since -%:r — ¢, is the angle between the electron direction and the normal fo the particle

surface, we have 0 < ¢} < 3, and & can take the values 0, 1,2, .. .. In order to understand
the solutions of (4.6) it is convenient to re-write it in the form

(vr/aw) (@), + k) = sing. 40

For & = 0 and small ¢/, examination of (4.7) shows that there are no solutions below
e = ¥g/a. Above w; one or more solutions exist; as w increases the intercepts vekm /aw
move closer to the origin and the number of solutions increases. By substituting ¢, = 57

sing, = 1 into (4.7) it can be seen that the condition for the kth solution to exist is
@ z vpa(2k + 1}/2a. When o is sufficiently large, the solutions ¢; effectively form a
continuem with all values of ¢’ allowed; the condition for this to occur can be seen to be
that o is large compared to we,. For the second term of (4.5) the analysis of the solutions
" ¢an be performed in a similar manner; the analogue of {4.7) is

(ve/aw)(kwr — ¢}) = singy}. : i : (4.8)

Solutions of (4.8) can be found for £ > 1. The construction of the solutions to (4.7)
and (4.8) is illustrated in figure 4. The condition for the kth solution of (4.8) to exist is
w z vpr(2k — 1)/2a. Solutions of (4.7) and (4.8) only coincide if @' =0 or ¢’ = 3

The solutions of (4.7) will be considered first. By defining 86|, = 66, + 2k, it can be
seen that near resonance, when 36;, is small, the denominator of the first term in the last
line of (4.5) can be approximated by i56, whilst the second non-resonant term is negligible
in comparison to the first. Equation (4.5) becomes

% 9, —-—Tmexp(itp)[1 — cxp(1N591k)} =3 9, —[sin 6y — sin(fy + N 8611 4.9
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1

0 : C w2
¢
Figure 4. Illustration of the a!lcwed solutions of (4.7} and (4.8). The solutfons ¢* correspond

10 the intersections of the strajght lines with the cbrve y == singh. The example shown is for
@ = 106

where Im denotes the imaginary part. Substituﬁng into (4.4) gives

Acos'gsin ®

AEO = S T+ cov d)

[$indp —sin(6y + N38,)1 - (4.10)

where N = t/t. The. average required to calculate the energy absorbed using (2. 6) is
obtained by averaging over the initial angle 6, and the angular momentum J. Perfonmng
~ the mtegra] over J is equnva]ent to integrating over ¢’ and therefore to summing over the
rcsonanccs The average of the square of (4. 10) over fg is - -

A? cosqusin2 ©g(36;,) o '
A B2 ¢ ] Pie o i
A_E ® = 2T + cos2 ¢)? “ 11.)
where
’ s 2 1
.. sin(N38.,/2)
80 ) = — 1B 4.12)
8(80) = @82 _(

The ihtegral over J is

. . Kmax 2 89
(BE) = 42) f dJu(J)""Z(f.Tciffb)z") / f T @13

where ,u,(J) =1/J = 2acos¢/ Jug (see appendix A). Usmg J mavpsm¢ the integral
in the denommator is

w2 . 3.2 . .
8ra'mve f d¢p cos® g sing = f!_r'z_a_é"m___v_g. (4.14)
Similarly, the integral in the numerator is-
8 Alm2advp o 72 i’ sin® ¢’ cos ¢ sin®[t(2¢’ — wt -+ 2km) /2] @.15)

3 = /o (T +sin¢)? = (2¢' — wt +2kn)?
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Denoting the integral over ¢’ for the kth resonance as f; and making the substitution

g @8- w;: 2t _ % (asz¢ ot a"::;;) (4.16)
gives

L = -:-Fi dy filg )Sm @.17)
with

fi¢) = sin’ ¢ cos e/ @18)

(T + sin® ¢/)?[sin ¢’ — (¢’ + kmr) cos ¢']

where the -+ sign is used for £ = 0 and the — sign otherwise. For large ¢, 3¢'/9y is very
small, and the function f(¢") can be taken out of the integral in (4.17)%

vefigh) [, sin’y

fe= 8a —o ¥*

4.19)

where ¢7 is the solution of (4.7), Note that, despite the close similarity to the derivation of
the Fermi golden rule, we are dealing here with 2 classical rather than a quantum resonance
phenomenon. The value of the integral in (4.19) is m; collecting the multiplying factors
together and summing over all solutions gives

2;1'60 Eiw

2
A ) = " wpelnia

st;) (4.20)

k=0

By using (4.7) it is possible to express fi(¢y) in the form

o3 ok
. sin” ¢y cos ¢
= 4.21
f1@i) (T +sin” ¢1)2(1 — A cos ¢*) e
with & = wa/vr. Using (2.6) and (2.8) gives
dEr 2e2E, 2m2w252 2 kpax .
= = ] 31:;2”2;,3 E filod (4.22)

which includes all the resonances satisfying (4.7).
Repeating the analysis for the second set of resonances (4.8) gives an expression with

the same form (4.21) but with a function f,(¢*) obtained from f; by changing the sign of
A. The final form of dEr/dr is therefore

dBr 2} Eim*e?Ela® (4o
dr | 3&in2n3 (MZO filgh) + kzz_:: [ 2(4’?;,2)) (4.23)
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Figure 8. Absomption coefficient as a function of frequency for a smooth sphere with specular

Figure 5(a) shows the individual resonance bands up to & = 2

corresponding to solutions of (4.7) and (4.8) and the total absorption coefficient (bold curve)
obtained by adding the contributions of these bands. Figure 5(b) shows the effect of many
- overlapping resonances to produce the limiting quadratic behaviour. Sca]edl units are used such

that & = /e, and the asyaptotic form (4.27) is # = &2 F ().
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The number of allowed solutions increases as  increases, as discussed above. The
absorption coefficient has a low-frequency cut-off at w. and consists of a series of
overlapping bands at frequencies above vpm/a. The form of the bands obtained from a
numerical solution of (4.7) and (4.8) is illustrated in figures 5 and 6. The lowest-frequency
absorption hand corresponds to a circumferential orbit at its low-frequency end, and a
diagonal bounce at its high-frequency cui-off. All of the other bands have no upper cut-off.
. The absorption coefficient displays an oscillatory structure, reminiscent of that predicted
" by Gorkov and Eliashberg [13] in the vicinity of wy, although the physical mechanism,
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resonances between the electron bounce frequency and the field frequency, is completely
different. Such resonances arise from the regularity of the classical motion and would be
anticipated to occur in any system in which the electron dynamics is integrable. It should
also be noted that our results show that the effective conductivity ansarz (described in
section 1.2} is oversimplified. The geometrical resonance effects as displayed in figures 5
and 6 are more complex than the w? behaviour predicted by this model, and the absorption
coefficient is also a function of the material dependent parameter T,

In the continuum limit & > @, the sum over the bands can be obtained in analytic
form. Converting the sum over & (4.23) to an integral over ¢’ gives

I 7 1
> F = f o (S;“Jr";;";‘f’)z ;F(P) (4.24)

for both f; and. f2. The integral is independent of @, so from (4.22) the absorption coefficient
is proportional to w? in this region. Using (4.22) and (4.24) dE¢/dr can be written

dEr  4elEim’e’Ela’ , . .
= F(T). 4.25
- de 3we2n?h® © #:2%)

By making the successive substitutions x = sin ¢, y= x;z,‘ F{I') can be calculated:

¥ (1+I) 1
F(P)‘zf orrm=al (5 ) e

It is also possible to obtain the sum over the resonances by an alternative method in the
limit where the resonances are dense in ¢, by using a formalism in which sucessive bounces
are considered to be uncorrelated. This caleulation is described in appendix B.

We conclude this section by making a direct comparison between the absorption
coefficient obtained from (4.25) and that obtained from the Mie theory using the effective
conductivity ansatz, Substituting (4.25) into (2.9) gives

On2 Folegh®

The Mie theory gives the expression [2]
¥ = 9Fwlep/dmoc : - 4.28)

where ¢ is the conductivity. The expression generally used for comparing (4.28) with -
experiment is obtained by using the Drude conductivity ¢ = ne?z/m; for a ballistic system

the relaxation time t is set equal to the bounce time a/vg, With these substitutions (4.28)
becomes

y = 277:.?'&: eo?z3/88 acmEp i L 4.29)

Comparmg (4.27) and (4 29, it can be seen that the predicted depcndence on particle radius,
Fermi energy and effective mass is identical and the numerical prefactors are very similar.
However the function F(I") in (4.27) introduces an extra material dependent multiplier, and
reduces the predicted absorption coefficient considerably compared to (4.29). (The funcuon
F(yis~0,1 for T = 1 and ~2.x 103 for T = 10.)
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5. Ballistic electrons in a rough walled sphere

Unlike the smooth walled case, there is no unigue definition of the electron dynamics
in a rough walled particle. We will consider one specific mode! which represents an
extreme degree of roughneéss. We were not able to find any analytically tractable and
physically reasonable model with a variable degree of ‘roughness’, which would interpolate
continuously between this limit and the smooth walled case. .

“There is a complication that arises in the case of a rough walled particle, nameiy that
the surface charge density will be concentrated at ‘prominences’ on the surface, and will be
very small inside *pits’ (see figure 7(a)). It would be a formidable task to obtain a general
model for this non-uniform charge distribution in'terms of the statistical topography of the.
surface. Instead we use a specific model which is analytically. tractable. The model we use
is illustrated in figure 7(b): the particle has a large number of randomiy placed ‘whiskers’
protruding from its surface, which are tall enough, in relation to their typical separatlon,
that the induced surface charge density is confined to the tips of the whlskers

Figure 7. On a rough surface (a), the surface charge is concentrated on pmmmeucés We
consider a model (b) in which the surface charge is concentrated at the tips of ‘whiskers’, whxch
occupy a fraction » of the surface area.

An electron approaching the boundary will often be scattered back into the interior of
the particle without reaching the exterior surface itself. From:(3.25), we see that only those-
electrons which reach the exterior surface, where the charge density g resides, can have
their energies modified by the interaction with the wall. This feature of the model simulates
the effect of the non-uniform distribution of charge density in figure 7(a): in both models,
many of the electrons colliding with the wall rebound with their energies unchanged.

If the fraction of the surface occupied by the ‘whiskers’ is 7, the surface charge density

. within the ‘whiskers’ is increased by a factor 1/5. From (3.25), it follows that the energy
transferred to an electron is increased by a factor 1/x for each bounce in which the electron
penetrates to the-end of a whisker, and the- energy transfer is zero for the other bounces.

" Even for a rough walled sphere, the positions of the successive bounces are correlated: it
is clear that the successor of a given bounce is more likely to be in the opposite hemisphere
than the same hemisphere.  If the surface is rough, w1dely separated bounces may be

) assumed to be- uncorrelated If the density of whiskers 7 is-small, the bounces upon which
the electron penetrates to the end of a whisker, and rebounds with a changed energy, will
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almost all be widely separated, and their positions can therefore be regarded as uncorrelated.
We can therefore write

N N N
(AE* () =Y ) (SE;SEp) = _(SE]) = N(SE) (5.1)
Jj=1 j'=1 i=1
where AE(r) is the energy transferred to an electron in time ¢, § £ is the energy transfer at
an individual bounce, and N is the expected number of bounces resulting in a transfer of
energy occurring in time ¢, The average in (5.1) is taken over all possible positions of the
bounces, with all possible angles of incidence. '
The number of bounces occurring in (3.1) is N = nt/{7), where {r) is the mean interval
between bounces for ergodic motion; the factor of # accounts for the fact that most bounces
do not result in any energy transfer. The mean interval (7} is

(t) = Q{E)fdatS(E H(a))_fde(J)t/fdJ,u.(J)

mﬂ‘vp mavpe
= aJ J 72 / f diJz
0 0

x/2 /2
_ 2 f d sing cos® ¢ / f 4o singcos? = —= G2
Ve Jo 0 2up

where we have used (4.1) and J = mave sin¢, T = (2a/vg) cosP.
The expression for (8E2) is similar in form to (3.24), apart from dimensionless

geometrical factors, but contains a factor 1/5? to account for the enlianced surface charge;
hence

A? cos? ¢
2y AT, 2 2

BE*) = i {cos” wt){cos x}(—-—-——(r oo 9) ) (5.3)

The average over ¢ is performed in the same way as for (5.2)
cosz f,b _ mave COquﬁ mave
(W) = j(; dfzJ (F +COSZ ¢)2/f ditJ = 3G(F) (5.4)
where
_ ™ singcostg
O 5:5)

can be expressed in terms of a hypergeometric function [24].

Setting {cos® w?) = 1/2, {cos® ¥} = 1/3, using these results with (2.6) and (2.8), and
substituting for A gives

dEr 326§E 2mlw?Eia?
dr S neZnih’

The absorption coefficient is proportional to w? at all frequencies; there is no low-frequency
cut-off as is found for the smooth sphere. The effect of the factor of 1/7 is to considerably
enhance the absorption coefficient compared to that for a smooth sphere. This enhancement,
which is due to the increased charpe density on surface prominences, will be a feature of
any model for a rough sphere. It could play a role in explaining the anomalously large
absorption coefficients that are often observed in suspensions of small metallic particles
{25]. Other models, typically involving clustering of particles, have also been proposed to
explain this effect; references are given in [25].

G(T). (5.6)
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6. Semiclassical model for absorption above the plasma frequency

In this section we.present a semiclassical theory for the absorption of radiation at frequencies
above the plasma frequency, This problem was originally treated by Kawabata and Kubo
{10], whe gave a fully guantumn mechanical analysis. They found that the absorption depends
~ on the parameter v = hiw/Ep which is related to the parameter I' introduced in secﬂcn 3
for the free electron model

u2=£39(w/mp)2r.- N | | (6.1)

Qur semiclassical method is only applicable in the limit v — 0, and it therefore would not
be relevant to any real system. We include this calculation because we feel it gives useful
physical insight, and because the correspondence with the fully quantum calculation, in the
regime in which the theories overlap. is reassuring.

At frequencies above e the electric field penetrates the interior of the paﬂ:c]e Because
the plasma frequency is much higher than the bounce frequency w., the electron is
accelerated and decelerated many times as it traverses the particle; the change in the
momentum in the direction of the applied field oscillates cosinusoidally:

(e&;/w)k coswt ' . o - (6.2)
where k is a unit vector in the dlrectton of the electric field. There is a comSpond.mg
oscillation of the energy of the electron about its mean value.

The mean value about which these oscillations occur changes when the electron strikes
the wall of the particle. Consider what happens when an electron strikes the boundary of

the particle at time ¢*. The instant before it strikes the wall the momentum of the electron
is :

p'=Po+8p = po + (efo/w)kcoswt™. - (63
The instant after the impact its momentum is
| p'=Rpy + (ebo/w)REcos wr* o ' (6.4)

where Ra is the vector obtained by specular reflection of the vector & (figure 8). After the
impact, the time dependence of the momentum of the electron is given by

| p =D+ (eEo /@) cos wi ' _ 65

ie. the momentum oscillates about a new mean value o/ Setting ¢ = t* in (6.5), and
equating- with (6.4), we find

= Rpo + (& /w)(RE — E) cos wt* = Rpy + (2eEo/w)(k + A} cos wt* (6.6)

-where 7 is the inward unit vector normal to the boundary at the point of impact. The
change in the mean energy of the electron after the collision is

SE = (p ﬁ - p%)/Zﬁ = (—2e€0/ m_m)(I; «F)(po - 1) cos wt™, 6.7)
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e\
/2 &,

Figure 8. Illustration of vectors used in the discussion
of the response above the plasma frequency in section
6.

We must sum the contributions 8E to the change in the energy of an electron given
by (6.7). First we specialize this formula to the case of a spherical boundary. The factor
('pn - 7%) is equal to mv cos ¢, where ¢ is the angle of incidence of the electron. The factor

(k 7) is equal to cos x,, which is given by (4.3). The energy transferred in a single
collision is therefore

$E, = (2ev&y/w) cos ¢ sin © cos B, sinw,. ' (6.8)

The absorption coefficient can be obtained as a sum of resonance terms as described in
section 4. Because o is very large compared to the bounce frequency, the resonances are
dense in ¢, and the discussion of appendix B shows that we are justified in treating these
SE as a set of uncorrelated random variables. The total change in the energy of a given
electron is therefore treated as a random variable with mean value zero and with variance

2
(AEXJ)) =((Z§E,,) >= = (_’Zez&’o) cos® ¢ sin® @( Zcose smwt,,)

=~ (evé’o) cosngsinz@) 7 (6.9}

T

where we have approximated the number of bounces by N =~ ¢/z. To find the total energy
absorbed using (2.6) we must compute (AE?), the variance of the change of the single~
electron energies averaged over the whole of the energy shell, The average over the angle
variables # and 6’ has already been computed in (6.9). It remains to average over the
angular momentum J: using the measure (4.1), we find

(AE?) = f dJ;(AEz(J)} / f dJ%. : (6.10)

The denominator of this expression was evaluated in (4.14). The numerator is

b4 . S .
erf de sin3@f dJ J cos? ¢ (6.11)
0 0
b 2,.2..2 2
= ——3-:'5- [d] Jeoslgp = Bxm a vF[ d¢ cos® psing = fhr_mg’ﬂ.

The result for {AE?) is

{AE?) = 282vit [40ia. (6.12)
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. Substituting this result and the expression for the dénsity of states at Ep (2.8) into (2.6), the
rate of change of energy is found to be '

dEr _ 26°63a*E}
dt  Bahte? _
This can be directly compared with the quanturn mechanical calcnlation [12] using the

Kawabato—Kubo method. ([12] corrects errors in the original paper [10].) The quantum
mechanical result for the iraginary part e2{w) of the dielectric constant is

(6.13)

253
ﬁ44

VIn the semiclassical l|m1t v = fw/ Ep < 1, the expressxon gwen in [12] for H(v) has the
property H(v) ~ v as v — 0. In this limit we therefore have ex(w) = 42 EE/nhw’
Using the relanonshlps :

Q) = 2B hoiE. ' 614

€ = (4 /w)o ' . 7 I (6.15)
where o is the conductivity, and _ | .
. dBrjdr=iegy - (6.16)

where V is the volume of the particle, gives an expression identical to (6.13).

Our semiclassical computations are only valid if the quantum energy % is small
compared to the Fermi energy Eg. Because the calculation applies. when @ 3> @y, we must
have v, = hw,/Er <1 for the theory to be applicable, whereas v, is of the order of unity
for most metals, and is large in materials with fewer charge carriers. Unlike the quantum
mechanical calculations, which require expressions for the wavefunctions, cur calculation

can readily be generahzcd to other parucle shapes with either mtegrable or chaotic class:cal
‘motion. ,
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Appendix A

In this appendix we show that tﬁe Jacobean K of the transformation between the
canonical phase space coordinates (v, p) = (x, ¥, Z, Px, Py, Pz) and the set of coordinates
6,8, Jes Jy, ey E) is

a(x.’ ¥+ 2, Pz: py: pz) T . ' ) ’
= LA : : - (Al
36,0, 4y, Iy I E) T G

The slectron orbits are confined to planes containing thé origin with coordinates (x’, ),
and corresponding momenta (px, py) The primed and un-primed coordmates are related
by rotauon matrices:

r=R(®, oy p=RO®, cb)p ﬁ(@,cp):ﬁz(&:)ﬁy(@)'_ o (A.z)l
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where R,(®) and R(®) are rotations about the y and z axes, so that

cos@cosd sind®  sin®cosdP
) (A.3)

§(®,¢)=(+~cos®sin¢ cosd —sin@sind
—sin@® 0 cos ®

Note that © and ¢ are polar cooordinates for the direction of the angular momentum vector,
ie. (Ji, Jy, J7) = (J sin @ sin @, J 5in © cos &, S cos @), and therefore

dJ,dJ,dJ, = Jsin@dJs dO d. (A4

Setting z’ = p} = 0, we obtain the following transformation between the (r, p) coordinates
and the (x’, ¥, p, Py ©, ®) coordinates:

; x i P
r=R(®,d) (y’) p=R(O,d) (p;) (A.5)
0 0
Computing the Jacobean K, of this transformation, we find

a(xv y! Z, sz p_)’! pZ)
', ¥, b2y 95 @, P)

[ = = ('p; —x'p})sin® = Jsin ©. (A.6)

We can now compute the required Jacobean K quite easily. Because the transfomation
from the (x’, ¥', p. py) variables to the action angle vanables 6,8, J, I) is canonical, it
is volume preserving, and we have

3(x", Y, P 0} ©, ) dJ

K2= 8(6,9’, _}" E’ @’(I)) —E

AT

A standard result in classical mechanics shows that df /d E = t, where 7 is the periodicity of
the angle variable " which is conjugate to I; for the system we consider that this periodicity
is simply the period between between collisions with the walls, Combining {A.4), (A.6)
and (A.7) we find

K=K K/ Psin®=1/J (A.8)

as required.

Appendix B

In this appendix we give an alternative derivation of the limiting form of the sum over the
resoniances (4.23) in the limit where the resonances are dense. We show that the limiting
form ¢an be obtained by assuming that successive bounces are uncorrelated. Although
this assumption is physically incorrect, it leads to the same result as the limiting integral
expression of the type (4.24). The result does not depend on any specific features of the

dynamics of a particle bouncing inside a smooth sphere, and could be generalized to other
boundaries with integrable dynamics.
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Equation (4.2) can be written in general form as
. : o
AE(@,1,7) = F(zr) Y _ cos(pwr) cosfng (z)] . @B.D)
n=0 : .

where F(7) takes into account the variation of the energy transfer as a function of 7, and the
number of bounces is N = t/7. (The dependence on the variable 6y, which does not affect
" the general discussion, has been removed.) The final expression for (AEZ} is obtained by
averaging the square of (B.1) over all values of z:

(AE?) —fdrAEz(w t, t)/fdr o B (B.2)

As in the main text, the sum can readily be obtained as

(B;s)

IRe ( ~expliN (g —oD)] | 1—expliN(g +wt)]) _
1—oxpli@ —w0)] = 1 —expli(g + w7)]
The first term has resonances when
¢; —wr =2km. , (B4
For this term | - |
A0, 1,) = o > Sin;?(f:w:)f” ~ Z¥ P) Yigi-on. @

In order to perform the integral in the numerator of (B.2), the sum in (B.5) can be replaced,
when the resonances are closely spaced, by a density of resonances p(t)

23 ~ w1) > p(2) = I — 39/87)] (B.6)
k _ - .

which is obtained by differentiating the resonance conditi.on (B.4). Including the identical
contribution from the second term in (B 3), substituting for N and integrating over all values
of T gives

{AE%()) =27 f dr éFz(r)ZS(@?—mt) / . [ dr
" S(r—1) /
__Zn'fdr F()Zlawlat p” fdr
_= 2 (1) /
2] P Omma [ |
== f dr lFZ(r) / f dr. - 8.7
4 T , o

This expression is exactly the same as that which would be obtained from (B.l) and
(B.2) under the erroncous assumption that successive bounces are uncorrelated so that
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{cos? newt) = (cos? @) = 2. In this case, squaring (B.1), performing this averaging, and
integrating over T reproduces (B.7) directly.

We illustrate this result by rederiving (4.25) under the assumpnon that the bounces are
uncorrelated: using {4.2) and (4.3) and assuming uncormrelated bounces gives

Alcos® ¢

2 - i 2 2‘ 2
AE‘(w, 1, t) = - sin” ®{cos" 8,){cos mt")ﬁ_(r+cosz L

Cupt o, Alcosg 7 | g
~ 8 P tcon g ®

‘This expression must be averaged over phase space by integrating over angular momentum
as described in detail in section 4. The result is

N tvpn' f cos¢ 7 B.9

| AE@?) = W D) e g (B.9)

where u(J) = 7/J and D is thg integral (4.14). The integral in (B.9) can be shown to

have the value 2m2a?vsF(I"), where F(T') is the function defined in (4.24). Combining
B.9) wit=h (2.6) and (2.8) gives

dEy  AEIm e’Ela®
— = F 0 B B.10
dr 3me2n?h® ) ®.10)

which is identical to (4.25). Note that the result is obtained much more fapidly under the

assumption that the bounces are uncorrelated, and that the derivation only requires that the
resonances are dense.
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