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Absiract. We derive an exact sum rule satisfied by the dispersion relations of the
commensutable case of Harper's equation. We use this result to derive a lower bound
for the total bandwidth of the spectrum and to provide a stronger analytical justification
for a result due to Thouless concerning the total bandwidih when the commensurability
is a high order rational.

1. Introduction
Harper’s -equation
Yogr + Vaoy + 2acos(2ng8n+ A)Y, = E¢,, 1.1}

is a discrete Schrddinger equation which models an electron moving in a plane with
a perpendicular magnetic field, in a spatially periodic potential (Harper 1955, Rauh
1974, 1975). It is also (when (3 is an irrational number) a tight-binding model for
an electron in an incommensurately modulated potential. The spectrum has some
interesting properties. When 3 is an irrational number, the spectrum is generically a
Cantor set (Azbel’ 1964, Bellissard and Simon 1982), and numerical results indicate
that when o = 1 (called the critical point) the measure of this set vanishes, and that
it has a beautiful recursive structure (Hofstadter 1976). When 3 is the ratio of two
integers, 3 = p/q (where p and ¢ are relatively prime), Bloch’s theorem is applicable
and the spectrum consists of g bands, with dispersion relations £ = €,(k,A),v =
1,...q. Thouless (1983, 1990) has discovered a remarkable property of the total
bandwidth S (the union of the spectra over all values of A} at the critical point the
asymptotic behaviour in the limit ¢ — oc is independent of p and given by

lim g5 = %_C- (1.2)

g—oo

where C = 0.91596559... is Catalan’s constant (Abramowitz and Stegun 1972).
The derivation is based upon a WKB approximation, which is only valid for small 3:
in fact a derivation has only been given for the two special cases p = 1 and p = 2.
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The extension to general values of p and ¢ does not appear to be easy (Thouless
1990, Watson 1991, Thouless and Tan 1991a). It is a very surprising feature of this
result that although this is an asymptotic result and Thouless’s derivation depends in
an essential way upon G being small, numerical results indicate that it holds for all
rational 3 with large denominator,

This paper makes two contributions towards establishing an analytical basis for
equation (1.2). Firstly (in section 2) we derive an exact equality concerning the
dispersion relations at the critical point, which holds for all (relatively prime) p,q,
and which is closely related to (1.2). This equality leads directly (section 3}, to the
lower bound 4/q for the total bandwidth at the critical point. Secondly, (in section
4) we combine this new exact equality with some earlier semiclassical results by one
of us (Wilkinson 1987), to argue that if (1.2} holds for sequences of rationals obeying
8, — 0, then it should also hold for sequences of rationals obeying 3, — 3,, where
3, is any fixed rational. Some numerical illustrations of these results are included in
section 5.

2, An exact sum rule
The dispersion relations for the bands are given by the implicit equation

P (E)=2coskqg+2a%cos Agq 2.1
where P_(E) is a polynomial of degree ¢ (Bellissard and Simon 1982), i.e.

e, (k,A)= f,(2coskq+ 2a cos Ag) (2.2)

where f,(z) is the vth branch of the inverse function of P, (E). We will show that
when o == 1 the derivatives of the function P,(FE) at its zero crossings satisfy the
exact equality

1
E PRI @)

where E, are the g zeros of P, (E). This result gives the sum of the curvatures of
the dispersion relations at the saddle points in k, A space. It is also cleariy closely
related to (1.2): if we were to approximate P,(E) by a linear function with slope
PI(E,) at each branch, from (2.3) we would estimate that the total bandwidth would
be 8/q, instead of the expected value 9.3299... /q.

To prove (2.3) we make use of another exact result previously derived by Avron,
van Mouche and Simon (1990), for the intersection over A of the band spectra for
rational 3. They show that the total bandwidth of the intersection spectrum S_, for
« < 1, is given by the exact result

S_=4(1-a). 2.4)

From (2.1), we see that the intersection of the bands over A corresponds to values
of P,(E) in the range

—2(1-a?) < P,(E) < 2(1-af). 2.5)
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In the limit o — 1 both S_ and this range of P,( E) vanish, and the total bandwidth
of the intersection spectrum can be expressed in terms of the derivatives of FP,(E)
at its zero crossings, in the sense that

g
S~ 4(1h09)2m. (2.6)

Thus, we have

l-—«o
Z |P’(E 51 = A T oe @D

from which (2.3) follows immediately.

3. A lower bound on the bandwidth

The sum rule (2.3) can be used to derive a lower bound on the total bandwidth at
the critical point. For a = 1, define

E(R)Y=¢,(k,k) = f,(Acos kq) ' 3.1

then £,(k) is a monotone function of k from the interval [0, = /g] onto the vth band.
The width of this band is given by

fﬂ/q

d&, (k) _  4gsinkg
dk T Pj(£(k})’

The function 1/|FP{( E)| has a single minimum between every two zeros of Pj( E)
and it is monotone above and below the extreme zeros of P[(E). Therefore, it
has a single minimum on each band {which may be at the edge of the band), and
since £,(k) is monotone, the function 1/|FP{(£,(k))| {(as a function of & in the
interval [0, 7 /q]) has a single minimum for each band. Since the zeros {E_ } of
P, (E) correspond to k = = /2q (i.e. £,(7w/2q) = E,), this implies that for each
band, either for all k € [0, /24| (if the minimum occurs for k > =/2¢), or for all
k € [w/2q,m/q] (if the minimum occurs for k < = /2q), we have

dé, (k) dk (3.2)

and

(3.3)

1 1

TP, ()] ~ IPIE)I (3.4)
and thus (3.2) and (3.3) imply
4
) 5
% > [F(E.)) (35)

From (3.5) and the sum rule (2.3), we obtain

4
S>-—. 3.6
; @s)
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4. Further implications for the total bandwidth

In this section we consider the implications of (2.3) for the total bandwidth in the
limit g — co. We start by making some remarks about the derivation of (1.2). This
result is derived using a semiclassical (WKB) approximation, which assumes that 3 is
small. The semiclassical analysis depends on the form of the Hamiltonian function
corresponding to (1.1), which is (Azbel’ 1964)

H(&,p)=2cosp+2acosz. {4.1)

When o = 1, all the contours of the Hamiltonian function are closed curves, except
for those at the separatrix energy, £ = 0. The bandwidth is concentrated at the
separatrix energy, because at other energies the width of the bands is determined
by quantum mechanical tunnelling, which implies that the bandwidth is exponentially
small in 1/3 (Wilkinson 1984). The derivation of (1.2) (Thouless 1990, Watson 1991)
depends on a “detailed analyms of the behaviour of the wavefuncuon near the saddle
points of the Hamiltonian function in phase space, where the quantum mechanical
Hamiltonian can be approximated by a parabolic cylinder equation. In the region
between the saddle points the solution is a standard WKB approximation and the
form of the classical Hamiltonian function only enters via a phase integral, which
plays no important role in the analysis. It is clear that if the result (1.2) holds
for Harper’s equation it will also hold for any other Hamiltonian H(Z,p) in which
the only open phase trajectory forms a simple lattice and in which the form of the
Hamiltonian at the saddle points is alternately

Hm(p*-2%)  Hw~(3"-p%), “.2)
prov ided that B is 1S small.

Now we consider how the result (1.2), which is assumed to hold for small 3
{namely, for sequences @, — 0), can be extended to sequences 8, — (3, where
By = po/gy is any fixed rational. To this end we apply the results of (Wilkinson
1987), who considers the spectrum of an equation of the form of Harper’s equation
when G is very close to a rational number 3;. In this case the spectrum can be
divided into g, regions, each of which corresponds to the spectrum of an effective
Hamiltonian H (&', p'). The effective Hamiltonian is periodic in &' and ', and to
lowest order in §8 = 3 ~ 3, it corresponds to making the substitutions k& — &'/q,
and A — p’/q, in the dispersion relation for the vth band

H,(2,p) = Z mexpli(nd’ + mp')]

=, w'/qg,p/qo)+0(5ﬁ) (4.3)

The operators £’ and p’ satisfy the canonical commutation relation in the form

ar a . 2 — Py

&, p'l =2nig g'=p,= 4.4

(7] = 2mif ‘= =M et , Y
where M, is the Chern integer of the band, which can be identified with the quan-
tised Hall-conductance integer of the wth band in the case where Harper’s equation
represents a perturbed Landau level (Thouless ef af  1982).
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It follows from (2.2) that, if the higher order corrections in §3 are neglected, the
effective Hamiltonian for the v~th band can be written as a function of the original
Hamiltonian

H, (#,9) = f,(2cos &' + 2cos p'). @.5)

The pattern of the separatrices is therefore the same as for the original Hamiltonian
and the form of the Hamiltonian at the saddle points is

H, ~ f,(0)(3” - &) H, ~ f(0)(&7 - p”). (4.6)

From (4.4) we see that 3, — 0 in the limit 8 — §,. We can therefore apply the
result {1.2) to the effective Hamiltonian in this limit: the total bandwidth S, for this
effective Hamiltonian will therefore obey

1 32¢C
|PI(E)| =

32C
i 5 =|f 4.7
Jim a, 5, = 1£(0)|— 4.7

where 3, = p,/q,. The exact value of g, depends on the Hall-conductance integer
of the band, but in the limit §3 — 0

q./9—1/q (4.8)
and thus the total bandwidth satisfies

lim g8 = S2< @.9)

ge+00 T

which is the same as (1.2).

This result shows that if the Thouless conjecture (1.2) can be proved to be valid
for all sequences 3, — 0, then it should be valid for (at least sufficiently rapidly
converging) sequences 3, = p, /q, — Po/q,- Although the possible limiting values
Do/ o form a dense set, our results do not immediately imply that the result is true
for all sequences with g,, — co.

5. Numerical illustrations

In this section we illustrate the formulae (4.3) and (4.4) for the effective Hamiltonian
describing the splitting of a band, and the result (4.7) relating the measure contained
in the vth cluster of bands to the derivative Fi{(E,).

To apply (4.4) we first need to identify the Hall-conductance integers of the bands.
This can be achieved using the gap labelling theorem (Simon 1982), which states that
the fraction u of the integrated density of states below a given gap can be written as

Hom =nB+m 5.1)

where n and m are integers. It follows from the Stréda formula (Stréda 1982) that
the integer m is the Hall-conductance integer for the states below the gap. The
Hall-conductance integer of the w-th band can be obtained by taking the difference
of the values of m for the adjacent gaps. Unfortunately we cannot use this result
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immediately because when 3 = p;/q, is rational the labelling is ambiguous (i is
unchanged if we take n — n+ gy, m — m —p,). Instead we use a physical argument
to determine the integers. In the limit « — 0 the integer n is related to the size
of the gap: AE = O(a™), ie. the gap first opens at the nth order of perturbation
theory. When o is small we expect the gaps to open at the lowest possible value of n
consistent with (5.1). A result of van Mouche (1989) shows that the gaps of Harper’s
equation remain open for all values of o (apart from the closed gap at E = 0 for
even q required by symmetry of the spectrum about E = 0). This shows that the
labelling at « = 1 is the same as at small o. For example, when 3, = 3/7, these
considerations enable us to identify the gap labelling integers for the eight gaps as
(¢,0),(-2,1),(3,-1),(1,0),(-1,1),(-3,2),(2,0),{0,1), and the values of M,
are respectively 1,-2,1,1,1,-2,1.

In order to illustrate (4.3) and (4.4) we considered an effective Hamiltonian in
the form of a cosine Fourier expansion

H,(,p") = Z a, . cos(nd’ + mp') (5.2)

with [2',5'] = 2ni8’ given by (4.4) and with the coefficients constrained so that

H, (&', ') has all of the symmetries of the original Hamiltonian (4.1). When o =1,
these symmetries are four-fold rotational symmetry, implying a,, _, = @, ,, and
mirror symmetry, implying a,, . = a,, ,. We used a least-squares program to vary
the independent coefficients a,, ,, S0 that the edges of the bands of H, (&', 5') would
agree as closely as possible wnth the edges of the appropriate cluster of subbands of
the spectrum of Harper’s equation: a finite number of coefficients «, ,,, were varied,
with n = 0,...,N_,m = 0,...,n. The residuc of the least-squares fit, defined as
the sum of the squares of the deviations of the band edges from their target values,
was found to approach zero rapidly as /N, was increased.

Figure 1(a) and (b) illustrate the correspondence between the spectrum of the
least-squares fitted H, and a subset of the spectrum of Harper’s equation. The
top row in each of these figures is the full spectrum of Harper’s equation for 3 =
314/727, which is close to the low order rational 3, = 3/7. When 3 = 3/7 the
spectrum consists of seven bands, of which the second and sixth have Chem integer
M, = —2 and the remainder have M, = 1. Correspondingly, the bands of Harper’s
equation for 3 = 314 /727 form seven clusters. In figure 1(a) the structure of the
second cluster (bands 100 to 215) is magnified (centre row), and compared with the
spectrum of an effective Hamiltonian of the form (5.2), with 3; = 17/116 (obtained
from (4.4)). Similarly, in figure 1(&) the spectrum of the third cluster (bands 216 to
314) is compared with an effective Hamiltonian with 83 = 17/99. In each case the
Fourier expansion used for the least-squares fit included coefficients up to N, = 5
and an excellent fit of the spectrum is obtained.

According to (4.3), in the Yimit 3 — p,/q, the Fourier coefficients a,, ,, of the
effective Hamiltonian should tend towards those of the dispersion relation of the vth
band defined by

e,(k,A)= 3" b, ,, cos[(rk+ mA)g]. (5.3)

n,m

The Fourier coefficients o, ,, of the effective Hamiltonian were determined numer-
ically for a sequence of raucmal 3 approaching 8, = 1/3, for the first band of the
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spectrum. The results are shown in table 1. The Fourier coeflicients ¢ 4, a, , ap-
proach the limiting values b, o, b, o quoted in the last column. The e, ; and ay g
coefficients do not approach the llmmng value, but the linear combination 20,1 1tHaq
does approach the expected limit. The reason for this behaviour is that the fit of the
expansion coefficients a,, ,,, to the spectrum is ill-conditioned. An explanation for
the invariance of the combination 2a, ; + a, , is given in the appendix. The data
shows that the limiting values are approached linearly as a function of 63 = 3 - §,,
to within numerical uncertainties, confirming the estimate for the error term in (4.3).

Table 1. Fourier coefficients of the effective Hamiltonian for a sequence of rational 8

approaching #p = 1/3. The coeflicients in the last column are those of the Fourier
expansion of the dispersion relation.

g 50/149 99/295 102/307 200/601 1/3

40,0 —-2.422970 —2.422893 -2.434221 —2.432422 —2.430548
a10 0.089753  0.089840  0.086400  0.086921  0.087512
a1, 0.011806  0.010914  0.009668  0.010041  0.009834
azg 0.003343  0.005135  0.004474  0.004254  0.005169

az0 + 2a1, 0.027039 0.026 963 0.023810 0.024 337 0.024 836

We also performed some numerical tests of the formula (4.7) for the total band-
widths of the seven clusters of bands for a sequence of rationals approaching 3/7.
The results are summarized in table 2, which lists the fraction A, = 5,/S of the
weight of the spectrum in each of the first four bands (the weights of the other bands
can be obtained from the symmetry of the spectrum about E = 0). The limiting
values as 3 — 3, are given by ¢, /| P[(E )|, which is tabulated in the last column.
The table also lists the Thouless number T = ¢S and the mean absolute fractional
deviation & of the weights A, from their limiting values. The deviation § decreases as
B — (,, but the decrease is not monotonic: the deviation is anomalously large when
3., is of the form 1/q,. This is presumably related to the fact that the convergence
of ¢S is slowest when p = 1 (Thouless and Tan 1991a). The deviations of ¢S from
the limiting value 32C /= were discussed by Thouless and Tan (1991b): our results
confirm their prediction that the deviation is larger when ¢,p — p,¢ is odd.

Table 2 Fractional weights A, = S, /5 of the four lowest clusters of bands, for a
sequence of rational 3 approaching 8o = 3/7. The data in the last column is the
limiting values predicted from (4.7); 6 is a measure of the average fractional deviation
from these limiting values.

8 302/705 1053/2456 1723/4021 3433/8011 3848/89%79 3/7

A1 0.065 021 0.065037 0.065438 0.065350 0.064 917 6.065260
Az 0.210 149 0.209090 0.208 277 0.208473 0.209 923 0.208670
A3 0.183597 0.184673 0.184812 0.184776 0.184 057 0.184740
At 0.082467 0.082401 0.082947 0.082 804 0.082205 0.082659
) 4.82x10-% 2.23x10-% 2.12x10-% 1.07x10-% 5.12x10"% —

i8-8 2.03x10~* 175x10~* 7.11x10~% 357Tx10~5 1.59x10-°% —
¢S 9.325255 9,331060 9.329 949 9.329953 9.327 532 32C/n
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Appendix

The fitting of the Fourier coeflicients of the effective Hamiltonian (5.2) to the spec-
trum of 2 subband is ill-conditioned. It is possible to make unitary transformations
of the effective Hamiltonian (4.3) which leave its form unchanged: the Hamiltonian
remains in the form of a Fourier expansion, but with different coefficients. In this
appendix we examine the effect of these unitary transformations on the Fourier coeffi-
cients a,, ,,, in the limit 3 — 3,. Consideration of (4.4) shows that this is a semiclas-
sical (A — 0) limit and it is therefore most convenient to consider the corresponding
classical transformation, which is a canonica) transformation (x,p) — (z’,p').

In the limit # — 0, a canonical transformation of the Hamiitonian H(z,p)
changes its spectrum by O(A?). The canonical transformation can therefore be con-
sidered to be a good approximation to a unitary transformation, which leaves the
spectrum unchanged. The set of canonical transformations we must consider are
those which Jeave the Hamiltonian in the form of a 2=-periodic function of z and
p, with four-fold and mirror symmetries. Such a canonical transformation maps the
set of lines illustrated in figure 2 into itself. The canonical transformations required
arc generated by the action of a Hamiltonian #{(x, p) for which this set of lines is a
level surface. This Hamiltonian can be expanded as follows:

«© n=-1
H(z,p) = Z Cnim [sin(nmz)sin{mmp) — sin(mmz)sin(nwp)]. (Al)
n=0m=0
P!
2n
2 X

Figure 2. Canonical transformations which leave the Hamilionian in the form of a
Fourier series, with fourfold and mirror symmetries, map this set of lines into itself, This
is therefore a level set of the generating Hamiltonian H{z, p).
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The action of this Hamiltonian over a short time 6 generates a canonical trans-
formation of the form

g
r—+m'=z+~£6'r pﬁp'=P—%5T (A2)

which transforms the original Hamiltonian H{«z, p) as follows:
Hir
H(x

nY — H'(x
; 2T

LY o

-
A

where {.,.} denotes a Poisson bracket.

To a good approximation, the higher order Fourier coefficients of H(z, p) in (4.3)
are usually very small compared to the (1,0) coefficient. Consider the effect of the
canonical transformation generated by the c,, term in the expansion (Al) on the
Hamiltonian H(x,p) = cosz + cos p: using (A3)

H{z,p) =cosx+cosp+ 61 [% cos(z + p) + 1 cos(z — p) — cos 2z — cos 2p

~ Lcos(z + 3p) - L cos(z —~ 3p) - L cos(3z + p) - § cos(3x — p)

+ cos(2x + 2p) 4 cos(2z — 2p)] . (A4)

Table 3. Ilustrating the ill-conditioned nature of the Fourier expansion used to fit the

spectrum: the first perturbation is nearly iscspectral, in agreement with the analysis
presented in the appendix.

Perturbation Residue
None 2.3x 107
3L, - 33, 1) - (2,00 +(2,2) 1.2x107®
11,1 -1,1)-(2,0) T8x104
%(1, 1) - 33,14+ (2,2) 6.7 x 104
3(1,1) - (2,0)+ (2,2) 1.2x 104
-13,1)-(2,0)4+(2,2) 3.6 %104

This result shows that the spectrum will be insensitive to perturbing the Fourier
coefficients a, ;,a, 4, a31,0, 5 (and the others related by symmetry) respectively by
the following muItlples of a small number §7: 2, ,—+, 1. Table 3 shows the effect
of adding this perturbation, which is symbolized by the notatnon 2(1 1)-(2,0) -

1(3,1) + (2,2), with a multiplier 67 = 10~3. The residue of the least-squares fit
increases by a much smaller amount than for other comparable perturbations. The
example here used 3 = 200/601, 3, = 1/3, fitting the first cluster of bands (1 to
200) using coefficients up to N, = 5.

It is easy to confirm that the contribution to (A1) with Fourier coefficient c,, ,,
causes a nearly isospectral perturbation of the Hamiltonian H(z,p) = cosz + cosp
with Fourier coefficients (n~1,m),(n+1,m},(n,m—-1),(n, m+1). It is therefore
clear that, within the approximations used, the only term in (A1) which affects the
a, ; and the a, , coefficients of H(x,p) is the term with coefficient ¢, ;. It follows
from the isospectral perturbation (A4) that the sum of the coefficients 2a, , + as g
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is a canonical invariant, for small §+. This conclusion is confirmed by the data in
table 1. Invariants involving other combinations of coefficients can be obtained by
the same method.

References

Abramowitz M and Stegun 1 A 1972 Handbook of Mathematical Funcrions 4th edn (New York: Dover)
pp &7

Avron J E, van Mouche P and Simon B 1990 Commun. Math. Phys. 132 103-18

Azbel M Ya 1964 Zh. Eksp. Teor Fiz. 46 929 (Engl. transl. Sov Phys—JETP 19 634-45)

Bellissard J and Simon B 1982 J Funct Anal 48 408-19

Harper P G 1955 Proc. Phys. Soc. A 68 §79-92

Hofstadter D R 1976 Phys. Rev: B 14 223949

Rauh A 1974 Phys. Status Solidi B 65 131-5

—— 1975 Phys. Status Solidi 1975 B 69 9-13

Simon B 1982 Adv Appl Math. 3 463-90

Stréda P 1982 J Phys. C 15 L717-27

Thouless I T 1983 Phys. Rev. B 27 6083-7

~—— 1990 Commun. Math Phys. 127 187-93

Thouless D J, Kohmote M, Nightingale M P and den Nijs M 1982 Phys. Rev: Lei. 49 405-8

1982

Thouless D J and Tan Y 1991a J Phys. A: Math. Gen. 24 4055-66

—— 1991b Physica 177A 567-77

van Mouche P 1989 Commun. Math. Phys. 122 23-34

Watson G 1 1991 J Phys. A: Math. Gen. 24 4999-5010

Wilkinson M 1987 J Phys. A: Math. Gen, 20 4337-54

—— 1984 Proc. R. Soc. A 391 305-50



