Nonlinearity § (1992) 1137-1150. Printed in the UK

Statistical properties of parameter-dependent classically chaotic
quantum systems

Elizabeth J Austin and Michael Wilkinson

Department of Physics and Applied Physics, John Anderson Building, University of
Strathclyde, Glasgow G4 ONG, UK

Received 22 October 1991, in final form 16 April 1992
Accepied by I C Percival

Abstract. In this paper we examine the dependence of the energy levels of a classically
chaotic system on a parameter. We present numerical results which justify the use of a
random matrix model for the statistical properties of this dependence. We illustrate the
application of our model by calculating both the number of avoided crossings as a function
of gap size and the distribution of curvatures of energy levels for a chaotic billiard: the
distribution of large curvatures is determined by the density of avoided crossings.

Our results confirm that the matrix elements are Gaussian distributed in the semiclassical
limit, but we characterize significant deviations from the Gaussian distribution at finite
energies.

PACS numbers: 0365, 0545

1. Introduction

In many situations of physical interest it is important to understand how the energy
levels of a system vary as a function of a parameter of the Hamiltonian: an important
example is the dependence of the electronic energy levels of a molecule on coordinates
describing the configuration of the nucleii. Figure 1 shows an example of the dependence
of energy levels on a parameter for a system with chaotic classical motion: two
important features of this plot are that it displays no apparent regularity, suggesting
that a statistical description would be most appropriate, and that the curves do not
cross, but occasionally approach each other at events called avoided crossings. In this
paper we test a statistical model for the parametric dependence of energy levels, which
is applicable to systems with a chaotic classical limit.

To build a theory describing the statistical properties of plots such as figure 1 we
require statistical information about both the spectrum of the Hamiltonian H(X) for
a fixed value of the parameter X, and the matrix elements of d/dX in the basis
formed by the eigenstates |¢,, (X)), |¢,, (X)) of a (X) (the adiabatic basis). These matrix
elements contain information about how the energy levels vary as a function of X (see,
for example, Pechukas 1983). We will use the notation (dH /dX),,, to denote the matrix
clement {¢, (X)|dH/dX|$,(X)).

It is well known that random matrix models provide an excellent model for the
short-ranged energy level statistics of almost all systems with a chaotic classical limit:
some examples are given in a review by Berry (1983). There are three types of random
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Figure 1. Energy levels of the modified Sinai billiard plotted for 40 < E < 80; the levels are
transformed to unit mean spacing. The highest level shown has quantum number n = 70.

matrix ensemble, the Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble
(GUE), and Gaussian symplectic ensemble (GSE) (Porter 1965, Dyson 1962). The GOE is
appropriate for systems with time-reversal symmetry and integral spin, the GUE applies
to systems without time-reversal symmetry, and the GSE is applicable to systems with
time-reversal symmetry and half integral spin. The elements of these random matrices
are independent Gaussian random variables, with their variances chosen in such a
way that the ensemble is invariant under the appropriate group of transformations
(orthogonal, unitary or symplectic).

Much less is known about the statistical properties of the matrix elements. Using
the suggestion of Berry (1977) that the wavefunctions of classically chaotic systems are
quasi-random functions, it is possible to arguc persuasively that the matrix elements
we require are Gaussian distributed, and that the ratio of the variance of the diagonal
matrix elements to those of the ‘nearby’ off-diagonal elements is the same as for the
appropriate random matrix ensemble (Wilkinson 1990, appendix B). The off-diagonal
elements have mean value zero, but the diagonal elements can have a non-zero mean.
For example, if the system has GOE like energy-level statistics, it is expected that the
variances of the matrix elements satisty

() A& e

when m is close to (but not equal to) n, and the angle brackets indicate suitable averages
over state labels n, m, which we discuss in section 3. In this paper we report numerical
results on a particular example of a classically chaotic quantum billiard, which indicate
that in the semiclassical limit the matrix elements are indeed Gaussian distributed, and
satisfy (1.1). Alhassid and Feingold (1989) have also studied the statistical properties
of the matrix elements of a classically chaotic system, and find that the transition
strengths satisfy the Thomas-Porter (Porter 1965) distribution: this is equivaient to the
matrix elements being Gaussian distributed.
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A surprising finding from our work was that the semiclassical Gaussian distribution
of the matrix elements only emerges slowly as the energy is increased, and we find that
the distribution of matrix elements is much better described by the distribution

N
Py() = —— 1D _ (1—%) . (1.2
v (151)

This is the distribution of one component of an N-dimensional vector of length
v/N, uniformly distributed on the surface of an N-dimensionai sphere (Porter and
Rosenzweig 1960): it approaches a Gaussian in the limit N — oo. In appendix B we
give tentative arguments which justify the use of this distribution for matrix clement
statistics of classically chaotic systems.

The GOE and other random matrix models can be extended to a family depending
on a parameter X. By choosing an appropriate parametrization it is possible to ensure
that both A and dff /dX are elements of the random matrix ensemble {be it GOE, GUE
or GSE), with the variance of the elements of both of these matrices independent of X\
An example of such a parametrization is

H(X) = cos(X)H, + sin{X)1,. (1.3)

Because of the invariance of these ensembles under the appropriate group of
transformations, the statistics of the matrix elements of dH/dX remain unchanged
when we transform to the eigenbasis of H(X). By allowing X to depend on time,
it is also possible to model the dynamics of generic quantum systems under a time-
dependent perturbation using (1.3) (Wilkinson and Austin 1992).

A parametrized GOE model was introduced in an earlier paper (Wilkinson 1989),
where it was used to compute the density of avoided crossings. At that time it was not
possible to test the application of the model to a chaotic quantum system, because of
the large amount of data required to get good statistics, In this paper we illustrate the
applicability of our model to a chaotic quantum billiard by calculating the density of
avoided crossings and the probability distribution of second derivatives {‘curvatures’)
of the energy levels with respect to a parameter. The distribution of the curvatures
was originally calculated by Gaspard et al (1990) using a rather different approach
to our own model. We re-derive their result using an expression for the density of
avoided crossings, which was computed by Wilkinson (1989). Numerical studies of
the curvature distribution for kicked quantum tops corresponding to the three types
of matrix ensemble (Saher et al 1991), and for the stadium billiard (Takami and
Hasagawa 1992), have confirmed the power law predicted theoretically. These studies
did not consider the statistical properties of the matrix elements and were therefore
unable to predict the numerical prefactors.

In section 2 we re-derive the distribution of large curvatures from the density of
avoided crossings. Section 3 presents the results of a numerical study of a modified
Sinai billiard, which validates the use of the parametrized GOE model: the statistical
properties of the matrix elements are studied and the form of the curvature distribution
and distribution of gap sizes arc confirmed. The significant deviations of the matrix
elements from the setniclassical limiting Gaussian form are discussed in appendix B.
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2. Calculation of the curvature distribution

Gaspard et al (1990) have obtained expressions for the distribution of curvatures
K = (4*E/dX?) for a parameter dependent extension of the three matrix ensembies.
Their method involves converting the parameter dependence of the energy levels into
the equation of motion of an infinite gas of particles (Pechukas 1983); statistical
mechanical arguments are used to obtain the tail of the distribution for large values of
the curvature K. This quantity is related to the density of avoided crossings because
large curvatures are corrclated with the occurrence of avoided crossings. In this section
we derive the distribution of large curvatures from the density of avoided crossings,
An avoided crossing in which a pair of levels approach to a separation which is
much less than the mean level separation is characterized by three quantities, the gap
size A, and the difference (4) and mean (B) of the two asymptotic slopes. The derivation
of the density of avoided crossings {described in detail in Wilkinson (1989)) takes as
a starting point a parametrized GOE Hamiltonian such as (1.3) with the variances of
the matrix elements of H and df /dX independent of X, When two levels of such a
system are close to an avoided crossing at parameter value X, their behaviour can be
parametrized using clementary degenerate perturbation theory as

EX(X) = Eg+ B(X — Xo) + L[A® + AX(X — X,)7]2. 2.1)

In order to derive the density of avoided crossings from the form of expression (2.1)
use is made of the statistics of the diagonal and near-diagonal elements of dff /dX in
the basis formed by the eigenstates of H {X) (adiabatic basis); for a parametrized GOE
the diagonal and off-diagonal matrix elements are Gaussian distributed with variances

Ay 2
<(51§) >=(1+6m,,]0'2 (2.2

{cf (L.1), but note that for the GOE both the diagonal and off-diagonal elements have
zero mean). The statistical properties of the random variables E; ,B, A, X, and A can
be expressed in terms of those of the matrix elements of A and dA/dX. Tt is also
necessary to make use of the form of the level spacing distribution for this system; for
the GOE this has the form

P[5]dS = {n’n3SdS (2.3)

for small S; n, is the density of states (Porter 1965). Using the above information it is
possible to obtain the density of avoided crossings as

N(4,B,A)dAdBdA = P[B]dB 0 A2 exp(—A42/862}d4 dA (24

24q?
where P[B]the probability distribution of B, is a Gaussian with variance 202 Full
details of the calculation are given in Wilkinson (1989); the extension of the calculation
to the GUE and GSE cases is straightforward. The results for the density of avoided
crossings for the other ensembles are:

3/2,,3

T empA,

N(4,B,A)dAdBdA = P[B]dB —— Adexp(—A?/40Y)dAdA  (2.5)
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for the GUE, with B Gaussian distributed with variance o2 and

8" 2n3 A}
135v/205

for the GSE, with B Gaussian distributed with variance /2. In each case this density
represents the density of avoided crossings with the relevant parameters encountered
by a particular level with the level above it; including levels both above and below a
given level introduces an additional factor of 2. It should be noted that the assumptions
entering the derivation are minimal, i.e. statistics of the diagonal and next-to-diagonal
matrix elements, and the level spacing distribution, so that only these minimal properties
are needed to generalize the results to real systems.

The curvature distribution for the three ensembles can now be derived from
the above results. Figure 2 is a schematic iflustration of the variation of K
as a function of the parameter X; a maximum in K occurs at each avoided
crossing. Define dP = P[|K|]dK as the probability that the curvature satisfies
K| < |®E/dX? < |K|+d|K|; from figure 2 this can be seen to be the sum of
the absolute values of the projections on the X axis, each divided by the length of the
interval AX:

N(A,B,A)dAdBdA = P[B)dB A exp(—A2 /200 dAdA  (2.6)

1
= z U]
dpP A ,- dpP

dX

dPO = | = dK. 2.7

In the vicinity of an avoided crossing expressions for K and dK/dX can be obtained
from (21); since the position X, of the avoided crossing is irrelevant, we take
Y = (X —~ X;) and obtain

d’E A’A?
avz| = K= sy ey 28

K

dK

X, dX, ~ X

Figure 2, Schematic illustration of the variation of the curvature K of a level as a function
of the parameter X. The curvature passes through a maximum at each avoided crossing,
The contributions to P(K) from one avoided crossing are indicated.
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and
dCE| |dK| _ 34'A%Y)|
avs| ~|ar| T 2Ty vy 29
Substituting for Y from (2.8), the derivative required in (2.7) is
dy 2)’5/2A4/3
= (2.10)
dK 343 (A3 — AN

with y = (A42/2|K|)¥>.

As (2.10) is independent of B, P[]K[] can be obtained as an integral over 4 and
A; this corresponds to estimating the sum in (2.7) by integrating over the density of
avoided crossings.

0 A2/2UK|
PlK{] = 4/ dA/ dA f{A, A)
0 0

dy
a?l (A, A) 2.11)

where f is obtained from the density of aveided crossings by integrating over B:

2
2442

(For the GOE case { is independent of A; we use this notation because the corresponding
expressions for the GUE and GSE cases are functions of A as well as 4.) The factor
of four in (2.11) allows for the counting of avoided crossings due to levels both above
and below a particular level and the double contribution (positive and negative values
of dY /dK as shown in figure 2) for each avoided crossing . The expression (2.11) can
be evaluated by first performing the integration with respect to A. This requires the
evaluation of

f(AA) = A% exp(—A?/8a?). (2.12)

/2

7 GAAY?
1=/0 CATT— BT 2.13)

The substitution A = y*2sin® 6 gives

[= 3~,:2f0n/2 4@ sin* @ = % (2.14)
Substituting this result into (2.11) gives
PK|] = g f " 44 A exp(—A? /857 (2.15)
12802|K3} Jo
giving
PIIK] = 472‘5’(’4 (2.16)

Using the appropriate form of f(A, A) in (2.11) gives the form of P[|K|] for the GUE
and GSE:
_ 25112”306

P[Kl] = —i (2.17)
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and

297!:4}150.10
PlK|] =220 .
(1Kl 3KE (2.18)

Since these results are obtained using the density of avoided crossings with small
energy gaps, they correspond to the large |K| tail of P[|K|]; the small |K| form of
the curvature distribution cannot be obtained from this calculation. The results agree
with those of Gaspard et al, confirming the correctness of both methods. In their
calculations Gaspard et ol use the the parameter §, which is the inverse of the variance
of dE/dX. § and o are related by

B =1/26° (GOE)
g=1/d° (GUE)

B =2/d* (GSE). (2.19)

For direct comparison their results must also be multiplied by 2 to convert from P [K]
to P[iK|].

3. Numerical results for a parametrized billiard

In this section numerical results are presented on the matrix element statistics, number
of avoided crossings as a function of gap size, and curvature distribution for a
parametrized billiard model. The following resuits are obtained:

{i) The scaling properties of the matrix elements are obtained by considering the
properties of the classical correlation function.

(i) Using these scaling properties, the statistical properties of the matrix elements
are shown to be in accordance with {1.1), ie. the diagonal and off-diagonal elements
are approximately Gaussian distributed with the variance of the diagonal elements
twice that of the ofl-diagonal elements. The actual distribution of the matrix ¢lements
was in good agreement with (1.2), with the parameter N increasing in the semiclassical
(large energy) limit.

(i1} Using an appropriate scaling, the expression (2.16) for the curvature distribution
is shown to apply to this system, including the numerical factor. The number of avoided
crossings with gap sizes between 0 and A is also obtained and shown to be in agreement
with the theoretical expression derived from the density of avoided crossings (2.4) by
integrating over all values of 4 and B and over energy gaps from zero to A

The billiard model used is a variant of the Sinai billiard ; the geometry is iliustrated
in figure 3. The variation of the eigenvalues as a function of the parameter r is shown
in figure 1. The classical motion of this system is known to be purely chaotic with
exponential divergence of all pairs of nearby orbits (Brown et al 1987). For the analysis
of properties associated with avoided crossings, it is necessary to use a subset of states
of one symmetry class. To obtain an appropriate subset of the cigenstates the numerical
calculations were performed on the smaller domain (1/8 of the whole) shown by the
bold line in the figure. The vanishing of the wavefunction on the perimeter of the smail
domain corresponds to a subset of states of one symmetry class for the entire billiard.
The billiard differs from the usual Sinai billiard in having a concave boundary defined
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1

Figure 3. The modified Sinai billiard used in the numerical calculations.

by the angle 8; this is introduced to eliminate the effect of a one-parameter family of
unstable classical periodic orbits which can bounce between the straight sides of the
usual Sinai billiard. Classical orbits of this type produce a slow (1/t) decay of the
classical correlation function, which is undesirable for reasons which will be explained
shortly.

The eigenvaiues and matrix elements of dH /dr in the adiabatic basis were calculated
for closely-spaced values {(Ar = 107%) of the parameter r using the Green’s function
method described by Berry and Wilkinson (1984)}; the parameter § was held constant
at @ = 0.1. A more detailed account of the calculation is given in appendix A. The set
of energy levels obtained show the level repulsions expected for a classically chaotic
system; it was verified that the levei spacing distribution is of the form (2.3) for small
values of A.

The matrix eiements obtained have properties which differ from those of the matrix
ensembles; whereas the latter are deliberately designed to have matrix clements with
no dependence on energy, we anticipate the existence of energy-dependent structure in
the statistical behaviour of the matrix elements of dff/dr. This can be quantified by
expressing statistical properties as a local function of energy. Denoting dH /dr by A,
the local second moment of the matrix elements is obtained as a function of the mean
E and difference AE of the energies of pairs of states contributing to the sum.

PEAE) = 5 T S A5, (E — L (E, + E)S,(AE ~ (E,~ E,). (1)
0 rEMm m

Here the pseudo-d functions are spread out over an energy range ¢ which is large
compared to the mean level spacing but small compared to the classical energy
scales of the problem. In the results presented beiow the technique of dividing each
matrix element by the local standard deviation is used to obtain the underlying near-
Gaussian distribution of the scaled matrix ¢lements. This calculation is analogous to
the procedure of accounting for the energy-dependence of the density of states when
‘unfolding’ a set of eigenvalues to unit mean spacing.

The variance of the off-diagonal elements can be related to the correlation function
for the classical motion (Wilkinson 1987):

1 e

YEAE) = m——
cEAR =50 )

dt C 4(E, tyexp(iAEt/h) (3.2)
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Figure 4. Plots of the function g(x) {x = AE/VE). The data were taken from matrix
elements with r centred at (a) 0.72 and (b) 0.83.

where the correlation function C,(E,t) and the weight of the energy shell (£} are
defined as

CAE.1) = j dg f dp Alq. DA @ 5, 0.7 @. . OSE — Hg,p) (33)

(¢', p) represents the phase space point that the point (g, g} evolves into after time t
under the classical equations of motion} and

Q(E) = / dg ] dpd(E — Hig, p) (3.4)

Unlike the stadium or the standard Sinai billiard, our system has a correlation function
which decays faster than 1/t, so that (3.2) converges. Because the classical trajectories
of a particle in a billiard consist of free motion between reflections at the wall of the
billiard, it can be scen that ¢ and p can be expressed in terms of the energy E and
scaled time variable 1 = VEt as ¢ = Q(1), p = VEQ'(t). Without considering the
detailed form of the function @ and its derivative @' (including the dependence on
the initial coordinates and direction of the trajectory which has no effect on scaling
properties), scaling arguments can be used to obtain the results that the correlation
function is of the form Ezco(\/ft) and that Q is independent of E. These results allow
a scaling relation for ¢2(E, AE) to be obtained:

o*(E,AE) = E¥%g (AE /\/E) . (3.5)

The function g is determined by the classical dynamics and hence depends on the
value of the parameter r; in the calculations described below the range r = 0.65-0.95
was processed in 12 subintervals such that r = constant within each subinterval. This
enabled the variation of g with r to be obtained. Since the calculation of the classical
correlation function for this system presents congiderable computational difficulties, we
obtained the function g(AE/+E) empirically. This was done by dividing each matrix
element by E¥* and computing the variance of these scaled matrix elements as a
function of the scaling variable (AE/vE). The form of g(AE/vE) is shown for two
values of r in figure 4. We do not at present fully understand the complex structure of
this function.
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Figure 5. Distribution of scaled off-diagonal matrix elements s for all values of r: {a}
E = 65, (b) E < 40. A Gaussian of unit variance and the best fit to the distribution (1.2)
with (@) N = 8.72, (b)) N = 6.23 are aiso shown.

The underlying form of the matrix element distribution was obtained by dividing
each matrix element by the appropriate value of ¢(E, AE) and combining the data for
all » values; this would be expected to give a sct of scaled matrix elements which are
Gaussian distributed with zero mean and unit variance. The results, obtained using all
matrix elements with E = 65, are illustrated in figure 5(¢): they show a reasonable fit
to a Gaussian, but they are fitted much more accurately by the distribution {1.2), with
N = 8.72. The it to a Gaussian is worse at lower energies: figure 5{b) shows results for
all levels below E = 40, for which the best fit to (1.2) is N = 6.23. We discuss a possible
reason why the distribution (1.2) fits that of the matrix elements in appendix B.

The variances of the scaled diagonal and near-diagonal (n,n 4 1) and (m.n + 2)
elements were calculated for E = 65, giving the result 1.860%(E,AE ~ 0) = agiag(E),
reasonably close to the ratio of 2.0 predicted from (1.1). We assume that the deviation
of the ratio of variances from 2.0 is due to the relatively poor statistics of the data.
Although approximately 8000 near-diagonal and 4000 diagonal elements were available,
data taken at adjacent r values are correlated, so the effective number of data points
is much less than this. (The correlation length is given approximately by the mean
distance between avoided crossings, which is iarge for ow-lying states; even the highest
states in figure | encounter only about 10-15 avoided crossings over the full range of
r)

The calculated billiard energy levels include about 200 avoided crossings with small
gaps (ngA < 0.5). This number is insufficient for a full study of the avoided crossing
density (2.4). It is however possible to study the partial statistic F(A} which is the
number of avoided crossings with gap sizes between 0 and A. The theoretical expression
{Wilkinson 1989) is

Fiay = { ar [ aB Eaﬁt—jn%i\rs E)oir, E)A. (3.6)
o 3vz2
This expression is obtained from the density of avoided crossings (24) by integrating
over all values of 4 and B and over energy gaps from zero to A, Here g3 is the variance
of the near-diagonal elements of dH /dr:
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AE =~ 0
oo = E¥g (—m—ﬁ ,r) = E¥f(r). (3.7

The function f(r) was obtained numerically from a least squares fit to a linear function;
the expression obtained was

fr) = =325+ 7.13r. (3.8)

(Use of a quadratic fit did not significantly affect any of the results discussed below.)

The value of n, also varies with the billiard geometry and energy (Baltes and Hilf
1976):

L
Ho = 1 —_———— 3.9
0 24w AE (39)

where L is the length of the perimeter of the billiard and A is its area. The expression
for nio was integrated over the range of r and E (r values from 0.66 to 0.92 and
E values from zero to 85 were used). The gap sizes were obtained by identifying
avoided crossings and fitting to (2.1) and the gaps were indexed in order of size. A
plot of the total number of avoided crossings with gap sizes less than A should be a
straight line with slope given by substituting (3.7),(3.8) and (3.9) into {3.6). This plot
and the theoretical prediction are shown in figure 6 and can be seen to be in excellent
agreement.

The curvature distribution was obtained from the full set of energy level data in a
scaled form by calculating K numerically at cach value of r and scaling each curvature:

!

[ 2
K' = K/Iinnyo",

P B I a kY
(3.10)

The large [K'| tail of the scaled curvature distribution should, from (2.16), be

P(IK') dK' = [K'~}|dK’. (3.11)
FIA}
o.0 A Q.S

Figure 6. Plot of F(A) versus gap size for narrow avoided crossings. The theoretical
expression (3.6) is also shown.
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Figure 7. Histogram plot of the scaled curvature data; bins of width proportional to | K2
are used so that each bin should contain the same number of points. The full line shows
the theoretical curve (3.11).

This was confirmed by sorting the scaled curvatures into bins of width proportional to
|K|; figure 7 shows a histogram of the distribution of curvatures, compared with the
theoretical prediction. It can be seen that both the |K'°| form of the distribution and
the prefactor (2.16) are correctly predicted. The fit of the large | K’ tail is reasonable
given the limited data, which only gives a small sample of large curvatures. Because
a fixed value of Ar was used it was also necessary to reject a number of points with
large values of |K'|, duc to the breakdown of the finite-difference approximation to the
derivatives.

4. Conclusion

£ tha vamsatrrad AT madal ta o
i the lJa.J.dll].CLLILDLI OUre mioal: W0 a

k.

chaotic quantum billard and have verified that this random matrix model provides a
good statistical description of the matrix elements of the quantum billiard. We have
also shown that the parametrized GOE provides a good model for the density of avoided
crossings, and the large |K| tail of the curvature distribution.

We re-derived the theoretical form of the curvature distribution, originaily obtained
using the Pechukas level dynamics model, from the density of avoided crossings
computed for the parametrized GOE. This result illustrates the close relationship
between these two approaches.

We have found significant deviations of the distribution of matrix elements from the
Gaussian form expected in the semiclassical limit, These deviations can be understood
by noting that quite small numbers of matrix elements are constrained by the sum

i la 1V and (19D
Tuie, 1\.) 1) djia (J. 4,)
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Appendix A. Calculation of the eigenvalues and matrix elements of the billiard

The eigenfunctions of the billiard can be obtained by solving the Helmholz equation

2mE
Vi + %w =0 (A1)

with p(R) = 0 on the boundary of the billiard. We used units such that i =m = 1.
The energy levels were scaled to correspond to a system with area 4m, which gives a
mean level density asymptotic to unity. Small deviations from this value are due to
corrections related to the perimeter and curvature of the boundary and discontinuities
at the comers (Baltes and Hilf 1976).

In order to compute the matrix elements it is necessary to specify exactly how the
boundary is moved: it is not sufficient to specify how the shape varies; we must specify
how the shape moves relative to a fixed coordinate frame. Although the diagonal matrix
clements of the displacement are zero for displacements corresponding to translations
or rotations of the boundary, the off-diagonal elements do not vanish. The matrix
elements can be computed from the normal derivatives of the wavefunctions around
the boundary and the displacement d{(s} = dR/dr of the boundary at arclength s due
to the perturbation (Berry and Wilkinson 1984):

- ]
(@ulofi/or10,) = § a5 Lo T4 - i) *2)

We chose the displacement d(s) to be the sum of the displacement due to varying the
radius r plus a multiple of R corresponding to a unifoerm dilation of the system, with
the origin at the centre of the interior scatterer of the billiard:

dis) = y(s)R + uR (A3)

here y(s) is unity if s lies on the curved segment parametrized by r and zero otherwise,
and R is the unit vector in the direction of R. The value of 4 was chosen so that the
areca of the billiard remains constant: we find

2

(A4)

H= nrl [ cos
ENR sint@  smb 1

==

Appendix B. Distribution of matrix elements

Our results show that the distribution (1.2) is a good fit to the empirical probability
distribution of matrix elements, normalized by dividing by the local value of their
standard deviation. The distribution (1.2) is the distribution of one component of
a random vector, uniformly distributed on the surface of an N-dimensional sphere
of radius +/N. This distribution was introduced by Porter and Rosenzweig {1960) in
defining a random matrix ensemble similar to the GOE, in which the trace of the square
of the matrix is rigidly constrained. The components of the eigenvectors of the GOE
also clearly have the distribution (1.2). It is not however immediately clear why this
distribution should characterize the matrix elements of a system with a classical limit.
Here we present a tentative theory for this observation.
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Equation (3.1} defines a sum rule which the matrix elements should satisfy, in the
form of a constraint on the sum of the squares of the matrix elements in a range of
energies of size e: this is exactly the type of constraint which leads to the distribution
(1.2). The sum is expressed in terms of classical quantities by means of (3.2): when
e is small, there are a series of corrections to (3.2) corresponding to the periodic
classical orbits with periods up to © = i/e (Wilkinson 1987). This does not yet provide
an explanation for the applicability of (1.2), because the number of matrix elements
constrained by this sum,

N = €2n% (B.1)

can apparently be arbitrarily small. We must argue that the constraint imposed by the
semiclassical sum rule expressed by (3.1}, and (3.2) and its periodic orbit corrections,
ceases to be valid if we make ¢ sufficiently small.

The periodic orbit corrections to (3.2) become meaningless for large values of the
period 7, because they are based on semiclassical approximations which are not valid
in the limit © — oo, with % fixed (Wilkinson 1987). Because we consider a chaotic
system, with exponentially diverging trajectories, the break time scales as

= 1 log(Sy/h) ®2)
where ‘7, and §; are a characteristic time and action for the classical motion, which
for a billiard scale as E~'2 and E'/? respectively. We assume that the sum rule ceases
to constrain the matrix elements for values of € smaller than %/7". Combining (B.1)

and (B.2), we estimate that for a billiard system the leading order dependence of the
parameter N on energy is

N = const. E/(log E)® (B.3)

‘We have not been able to test this prediction, because for large N, the value of N fitted
to the empirical data is very sensitive to statistical fluctuations in the data.
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