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We characterize the evolution operator of a quantum system with generic spectral properties (in
agreement with random-matrix theory), with a time-dependent Hamiltonian. The results are applied to
the independent-electron model for the dissipation of energy: an example of a physical application
would be the absorption of low-frequency electromagnetic radiation by small metallic particles. We dis-
cuss the statistical properties of the various regimes of the model, which depend on whether the pertur-
bation is large enough to mix levels, and on whether the frequency is low enough for the quantum adia-
batic theorem to apply. We also show that the eigenstates of the evolution operator are Anderson local-
ized in the adiabatic basis, and present results concerning the localization length. This localization
causes a saturation of the energy absorption if the Hamiltonian is periodic in time. The addition of a
small amount of noise to the Hamiltonian destroys this nonclassical saturation effect.

PACS number(s): 03.65.—w, 05.30.—d, 05.45.+b

I. INTRODUCTION

In this paper we analyze the response of a small
quantum-mechanical system to a time-dependent pertur-
bation and relate the results to a noninteracting-electron
model for dissipation. Our results assume that the spec-
trum of the single-particle states has ‘““generic” statistical
properties, which can be described by a suitable random-
matrix model. A typical physical application would be to
the response of electrons in a small conducting particle to
low-frequency electromagnetic radiation. Problems of
this type are usually analyzed in terms of a linear-
response theory (Kubo-Greenwood formula [1]), which
assumes that the perturbation is not large enough to mix
the single-particle levels. This condition is often not
satisfied in situations of experimental interest, and we feel
that this problem is of sufficiently general importance to
warrant a thorough investigation, including the response
to large perturbations. The results presented here expand
upon those given in an earlier Letter [2].

We concentrate on the low-frequency response of the
system, which is determined by properties of the spec-
trum and matrix elements involving small differences in
energy. The statistical properties of the spectrum of
complex quantum systems are universal at small energy
scales and can be modeled by random-matrix ensembles.
In Sec. II we discuss the use of random-matrix models
and introduce the parametrized Gaussian orthogonal en-
semble (GOE), which is a natural random-matrix ensem-
ble for describing time-dependent Hamiltonians.

In Sec. III we characterize the evolution operator for a
generic system subjected to a slowly varying perturba-
tion. We show that there are several qualitatively
different regimes, depending on whether the perturbation
is large enough to mix levels and whether it is slow
enough to satisfy the quantum adiabatic theorem. The
most significant new results of this section concern the
form of the evolution operator when the perturbation is
large enough to mix states. In this case we model the sta-
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tistical properties of the evolution operator using a sto-
chastic differential equation (described in detail in Ap-
pendix A). The results are consistent with numerical
computations and with semiclassical arguments (dis-
cussed in Appendix B).

In Sec. IV we apply our results on the evolution opera-
tor to the independent-electron model for dissipation.
We show that the results are equivalent to the Kubo for-
mula in two of the regimes of the model, including one in
which the perturbation is large enough to mix levels.

We also characterize a situation in which the predic-
tions of the Kubo formula fail: this happens when the
perturbation is strictly periodic in time, so that the evolu-
tion operator for long times can be computed by succes-
sive multiplication by the Floquet operator (the evolution
operator for a single cycle). The eigenstates of the Flo-
quet operator exhibit Anderson localization, and this im-
plies that the amount of energy the system can absorb ex-
hibits a nonclassical saturation. A similar Anderson-
localization effect in the eigenstates of an evolution
operator has been discovered in the kicked quantum ro-
tor [3] and in a model for the response of a microscopic
loop to a time-dependent flux [4]. In Sec. V we use our
results concerning the evolution operator to characterize
this effect in generic systems.

We also show in Sec. VI that this saturation effect is
very sensitive to deviations from exact periodicity and
present estimates concerning the amount of noise re-
quired to recover the rate of dissipation predicted by
linear-response theory.

II. RANDOM-MATRIX MODELS

To characterize the response of a system with Hamil-
tonian A(X) to a perturbation parameter X, it suffices to
know the energy levels E,(X) and the matrix elements
(n|3H /3X|m ). For a system with a large number of
states contributing to the dynamics and in which there
are no symmetries or constants of motion, the statistical
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properties of the spectrum and matrix elements can be
modeled by an appropriate random-matrix model.

In a generic quantum system, the statistical properties
of the spectrum belong to one of three universality
classes, which are discussed in detail in a reprint volume
edited by Porter [S]. These universality classes are
exemplified by three random-matrix models: the Gauss-
ian orthogonal, symplectic, and unitary ensembles (GOE,
GSE, and GUE). In the case of systems with time-
reversal symmetry, the GOE describes bosons and fer-
mions in which spin-orbit coupling is negligible. Fer-
mions with a spin-dependent Hamiltonian are described
by the GSE, and in the case of systems without time-
reversal symmetry, the GUE applies. These models have
been applied successfully to systems with a chaotic classi-
cal limit [6] as well as to nuclear spectra [5]. The applica-
tion of these models to the response of small metallic par-
ticles to low-frequency radiation has been discussed by
Gorkov and Eliashberg [7] (see also Ref. [8], which
corrects a significant error in their work). The random-
matrix models mentioned above apply to this system pro-
vided the electron states are not Anderson-localized on a
length scale of the particle size or less and provided there
are no symmetries or classical constants of motion.

In this paper we discuss only the GOE, which is the
simplest model, but most of the results generalize in a
straightforward manner. A realization of the Gaussian
orthogonal ensemble is a real symmetric /XN matrix
with independently Gaussian distributed elements with
variance (1+38;). The density of states is p=V N/ at
the center of the spectrum, E =0. The spectrum of al-
most any complex spin-independent system with time-
reversal symmetry resembles that of a large-AN GOE ma-
trix, apart from an energy-dependent scaling of the
smoothed density of states. One of the important proper-
ties of GOE matrices is that the probability density in the
space of matrices is invariant under orthogonal transfor-
mations, so that changing the basis of a GOE matrix
yields another typical GOE matrix [5].

Having described a random-matrix model for the spec-
trum, we must now consider a random-matrix model for
the matrix elements of the perturbation, (|38 /0X|m ),
where [n(X)), |m(X)) are eigenstates of the Hamiltoni-
an B(X). Ina generic system these matrix elements can
be modeled by independent, Gaussian distributed random
variables with a local variance o 2(E,AE):

1 dA
UZ(E,AE)=?§§ l(ni§|m >|2

X8 E—LE,+E,,))

X8[(AE—(E,—E,)), (2.1)
where p is the smoothed density of states and 8(x) is a
pseudo-8-function with width € large compared to the
typical level spacing [9]. This function can be estimated
using semiclassical arguments [10] and is nonsingular at
AE =0 if the classical correlation function decays faster
than 1/t. The diagonal elements do not have mean value
zero, but their variance is closely related to that of the

nearby off-diagonal matrix elements:
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where =2 for GOE systems and =1 for the GUE. Ar-
guments supporting this result are given in Ref. [9], Ap-
pendix B.

Because we are interested in the low-frequency limit, it
is convenient to consider the Schrédinger equation ex-
pressed in terms of an adiabatic basis [i.e., the basis
formed by the eigenstates |[n(¢)) of the instantaneous
Hamiltonian A (X (¢))]. The conventions for the phases
of the states |n) and expansion coefficients ¢, of the
states |9(t)) are defined by

[9(2)) =3 c,(t)exp[ —i@,(t)]|n(X)) ,

a_n>=0 .

E,~E, ~Ep>»

nm

(2.3)

_.L L) '
put) =2 [AE, (X)), <n =

Inserting these definitions into the Schrddinger equation,
the equation of motion for the expansion coefficients c, is
then

;4
. ax
=X 3 E—_E"ﬂexp[i(qp,,—q;m)]cm. 2.4)
m(+#n) n m

The matrix elements U, (¢) of the evolution operator are
given by solutions of (2.4) with initial condition
¢,(0)=38,,,. We will be primarily interested in the solu-
tion of (2.4) when X () is sinusoidal, X (¢)=X,cos(wt ).

If we consider low-frequency perturbations, only the
matrix elements (n|38 /3X|m) with E,~E, are
significant because of the cancellations introduced by the
complex exponential in (2.4): this observation is the basis
for the quantum adiabatic theorem. The matrix elements
of 8 /dX for large |E,—E,,| are therefore irrelevant
and we can, in accordance with (2.2), take both the Ham-
iltonian and the matrix elements {n |38 /3X|m ) to be
GOE matrices.

It follows that we can use the following model system:

A =cos[X(¢)]A,+sin[X(¢)]],, X(t)=X,cos(ot),
2.5)

where A, and A, are two fixed GOE matrices. This is
the natural model to choose for two reasons. Firstly,
both A and dA /3X have the same statistical properties
for all X. Secondly, because 3 /3X is a GOE matrix, the
property of invariance under orthogonal transformations
implies that the variance o? of the off-diagonal matrix
elements in the basis formed by the eigenstates of H is the
same as in the original basis: for choices other than the
GOE, it would be difficult to compute these matrix ele-
ments. We will call this model the “parametrized GOE”:
it is the natural model to use for any system which has

GOE spectral statistics and in which the Hamiltonian



66 MICHAEL WILKINSON AND ELIZABETH J. AUSTIN

varies slowly as a function of time. Specifically, we pro-
pose that statistical properties of the evolution operator
of such a system can be modeled by this Hamiltonian,
with suitable scaling of the density of states p and the
typical size of the matrix elements, o.

III. CHARACTERIZATION
OF THE EVOLUTION OPERATOR

For the class of systems we consider, the matrix ele-
ments {n|dH /30X |m ) in the adiabatic Schrodinger equa-
tion (2.4) are Gaussian random variables, with mean zero
{(for mn) and a variance o%(E,AE), which is a smooth
function of AE=E, —E, : the response to slow pertur-
bations depends only on the variance at AE =0, which
will be denoted by o2, The other relevant parameters are
the smoothed density of states p, #, the size of the pertur-
bation parameter, X, and its frequency @. We can form
two independent dimensionless groups from these param-
eters, e.g.,

X=poX, v=pho ; (3.1

y is a measure of the strength of the perturbation (energy
levels are mixed if y >>1) and v is the ratio of the energy
scale associated with the frequency of the perturbation,
AE =%w, to the typical spacing between levels, 1/p.
Another important dimensionless parameter is given by

k=p’chXyo ; (3.2)
the quantum adiabatic theorem [11] applies if x<<1.
Note that « is related to the other dimensionless parame-
ters, k=xv. The model has several qualitatively different
regimes, depending on the values of Y and v.

The evolution operator will be characterized by a func-
tion P(n), which represents the probability of making a
transition from the ith state to the (i +n)th state:

P(n)=(|U,-,,-+,,|2>E ’ 3.3)

where { ) denotes an average over states i with energies
E; close to E. Now we discuss the various regimes of the
model, depending on the values of y and v.

Case (i): Large v, small y

When Y is small, the energy levels and matrix elements
in (2.4) can be regarded as independent of X. When
v>>1, the perturbation is able to induce transitions be-
tween states separated in energy by AE =#iw, and we an-
ticipate that the transition probability will be of the form

P(n)=(1—2p)8(n)+pd(n—phiw)+pdln+pfiv) .
(3.4)

Here §(x) is a pseudo-8-function, with a width € which
scales as €e=0(1/N), where N is the number of cycles
over which the perturbation acts. Simple perturbation
theory (a version of the Fermi golden rule) can be used to
derive this result: we find that after N cycles, the transi-
tion probability is

p=mNx*/v . 3.5
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This result is valid when N >>1 (so that the driving fre-
quency is well defined). It ceases to be valid for very
large N if p ceases to be small, and under other conditions
discussed in Sec. V.

Case (ii): Large Y, large

When Y is large, the energy levels and matrix elements
in (2.4) must be regarded as functions of the parameter X.
The matrix elements can be modeled as independent
Gaussian random functions of X with a correlation func-
tion C(AX), which decays over a range AX =(po)~..
Equation (2.4) must then be treated as a stochastic
differential equation: this is described in Appendix A. It
is shown that the occupation probability P, of the nth
state satisfies

dp,
a2

m(#n)

R, (P, —P,), (3.6)

where the ensemble average of the rate constants R,
can be expressed in terms of a joint correlation function
C*(AX) of the matrix elements and expansion coefficients
¢,. If P, is slowly varying, (3.6) can be approximated by
a diffusion equation,

P _ . P
—=D——. .
o on? 3.7)
The diffusion constant is given by
D =rfip’oX? (3.8)

so that the probability distribution after one cycle of the
perturbation is a Gaussian, with variance

A=2r% . (3.9

The value of P(n) at n =0 is double the value for other
small » if the system has time-reversal symmetry. This
effect can be understood in terms of constructive interfer-
ence between time-reversed pairs of paths leading to
scattering back into the original state: essentially the
same effect is well known in the context of “weak locali-

~ zation” and is discussed in Ref. [12].

In Appendix B we show that if the Hamiltonian we are
modeling has a classical limit, the case we are currently
considering corresponds to this limit, because both y and
Kk increase as #i—0 with all classical quantities held fixed.
The Gaussian distribution can therefore also be derived
from a purely classical argument in this case: this is dis-
cussed in Appendix B.

Case (iii): Large Y, small

In this case the adiabatic theorem is applicable because
K is small, but the perturbation causes energy levels to ap-
proach each other closely at events called avoided cross-
ings. The adiabatic theorem breaks down when the ener-
gy levels become nearly degenerate at these avoided
crossings, and electrons can undergo Landau-Zener tran-
sitions [13] between neighboring levels. The occupation

_probability spreads diffusively if the perturbation is large

enough that many avoided crossings are encountered:
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this has been discussed in detail in Refs. [9] and [14]. The
distribution P(n) is therefore Gaussian:

P(n)=2w(An?)) " V2%exp(—n2/2{An?)),

(3.10)
(An%(1))=2['drD(r).
(V]

The diffusion constant D can be computed analytically: it
is different for the different universality classes, and for
the GOE it takes the value

D =25/4wr(%)Piﬁ(pzalﬁX)3/z . (3.11)

This result is derived in Ref. [14].

Case (iv): Small v, small y

When v is small, the frequency of the perturbation is
small compared to the typical beat frequency between
quantum states. In this case the quantum adiabatic
theorem applies, and there are no transitions between
states unless energy levels are nearly degenerate. When
X <<1, the perturbation is too small to cause near degen-
eracies between levels, and in this case the matrix
representing the evolution operator is nearly diagonal.

In addition to the four regimes described above, there
are two intermediate regimes.

Case (v): Intermediate between cases (i) and (ii)

In case (i) the distribution P(n) has the form given by
(3.4) corresponding to resonant absorption, whereas in
case (ii) it is essentially Gaussian. There cannot be a sud-
den transition between these forms: as y increases with
k>>1 held fixed, the peaks in (3.4) start to broaden at
X =1 until they merge into a single Gaussian peak. The
three peaks merge when the width of the Gaussian distri-
bution predicted by (3.9), An ~yV'y, is equal to the spac-
ing of the three peaks, An =v. The three peaks are there-
fore only fully merged when

X /k>>1. (3.12)

Case (vi): Intermediate between cases (iii) and (iv)

In case (iii) the Gaussian form for P(n ) will only be ob-
served if the width An of the distribution satisfies
An>>1. BEstimating An using the diffusion constant
(3.11) gives An=(D /w)'’>~¥%*. The condition for the
Gaussian solution to be valid is therefore

(3.13)

If this condition is not satisfied, but y >>1, there will be
some Landau-Zener transitions between isolated states,
but not enough to give a significant diffusion of the occu-
pation probability.

Xue>>1 .

The forms of the distribution P(») in the various cases
are illustrated schematically in Fig. 1, and their asymp-
totic regions of validity are summarized in Fig. 2. The
boundaries between these regimes are not, of course, rig-
id: there are smooth transitions between the different
cases,

P(n)
l I
1 1

n
/’_\ -
Vv

o
o
|

FIG. 1. Schematic illustration of the form of the transition
probability for the various regimes discussed in Sec. ITI: (i) Res-
onant form, corresponding to small perturbations. (ii), (iii)
Gaussian form found when perturbation is large enough to mix
states. (iv) Diagonal form, when adiabatic theorem applies. (v)
Intermediate between cases (i) and (ii). (vi) Intermediate be-
tween cases (iii) and (iv).

We have performed some numerical experiments to
verify these predictions, using the parametrized GOE
model, Eq. (2.5). We computed the evolution operator
for this system using the fourth-order Runge-Kutta
method, for matrices of dimension /=100, with #=1.
We chose the energy E at which P(n) was evaluated to be
at the center of the band, where the density of states is
p=\/J_\/ /w. We computed the evolution operator numer-

‘ically for various values of X, and w, with several realiza-

tions of the random matrices. Figure 3 shows the distri-
bution P(n) computed for two different evolution opera-
tors, with different values of Y and v, chosen to typify the
cases (i) and (ii) above. Figure 3(a) shows P(n) with X,, o
chosen so that y=0.1, v=20, after N =20 cycles of the
perturbation: the position and area of the resonant peak
are in good agreement with (3.4) and (3.5). Figure 3(b)
shows P(n) for y=2, v=2, after N=1 cycles: the results
have been averaged over five realizations of the GOE.

Inz
\

I / 1I

III

tnX

v
VI

FIG. 2. A plot illustrating the asymptotic regions of validity
of the various regimes of the model discussed in Sec. III. The
horizontal axis represents In(y), where y is the dimensionless
strength of the perturbation, and the vertical axis represents
In(k), where 1/k is a dimensionless measure of the degree of
adiabaticity.
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FIG. 3. Numerical results on the transition probability P(n)
for the parametrized GOE model. (a) x=0.1, v=20, corre-
sponding to the resonant absorption case discussed in Sec. III
[case ()] after N=20 cycles. (b) y=2, v=2, corresponding to
the Gaussian behavior discussed in Sec. III [case (ii)], after one
cycle of the perturbation.

The solid line is a Gaussian, with variance given by (3.9).
The small deviation from the Gaussian curve near n =2
appears to be a relic of the resonant absorption illustrated
in Fig. 3(a).

IV. INDEPENDENT-ELECTRON MODEL
FOR DISSIPATION

It is often justifiable to model a many-electron system
by a system of independent quasiparticles, each of which
is described by a one-electron Schrodinger equation [15].
The energy of the system is the sum of the single-particle
energies. In this section we apply our results on the evo-
lution operator to the independent-electron model: the
perturbation X(t) causes an irreversible increase in the
energy of the system. An example of a physical problem
where these results are applicable is the absorption of
low-frequency electromagnetic radiation by small con-
ducting particles. The usual approach to this problem is
via a linear-response formalism (“Kubo formula”).
Below we derive a formula (4.8) which relates the change

in the total energy of the system to the transition proba-
bility P(n) defined by (3.3). Using this result, we show
that the Kubo formula applies in the nonperturbative re-
gime discussed in Sec. III [case (ii)], as well as the pertur-
bative case (Sec. III [case (i)]).

Assume that the system starts in its ground state, with
all of the energy levels up to Ny filled. After a time ¢, the
energy of the electron initially in the ith state is

GO OAOWi)=3 U 0)PE(2) (4.1)
i

where the E;(t) are the energies of the single-electron

Hamiltonian A (X(¢)) and the U,;(¢) are matrix elements

of the evolution operator: Uy(¢) is the amplitude to

reach the ith state starting from the jth state. The total

energy of the system of electrons is therefore

NF
Er(t)= 3 3 |UPE;(1) .

i=1j

4.2)

The energy absorbed by the system is related to the dis-
tribution P(n) characterizing the probability of making a
transition through n states, (3.3). To show this, we define
the filling probability f; of the ith state:

NF
f,'(t): 2 lUﬁ(t)lz. 4.3)
i=1

j
The total energy is then

Er=3 f;E;= [ "dn f(n)E(n), (4.4)
i

where m i‘he second equality we approximate the sum by

an integral. Integrating by parts gives

ET=—fowdn—g£E%(n), E;’-(n)=fo"dn'E(n'),

(4.5)

where E9(n) is the ground-state energy of a system of n
electrons. The total energy is most conveniently calculat-
ed in terms of (4.5): the first term in the integrand gives

3f 8 MV, "
—i—afo dn'P(n—n")=—P(n—~Nz)  (4.6)

on

and the ground-state energy can be expanded about N:
EX(n)=EQNp)+Ep(n—Np)+Lpp(n —Np)+ -«

4.7
Substituting (4.6) and (4.7) into (4.5) gives

AE;=Ap/2pp, Ap=[% dnn®P(n), 4.8)
where AE;=E;—E(N;) is the energy absorbed and
Ay is the second moment of the distribution P(n). Equa-
tion (4.8) is the principal result of this section.

The value of Ap can be obtained from the results of
Sec. III: in particular, in both cases (i) and (ii) we find
that Ap=2m%p*0*%iX3w, so that the energy dissipated per
cycle is

AEr=mp0"X}w . 4.9)



We can compare this with the conventional way of cal-
culating the energy dissipated using the Kubo-
Greenwood formula. In this approach the expectation
value of the force operator is computed, which has a term
proportional to the velocity X:

(F)=tr ﬁ% =F(X)+pX , 4.10)

where j'is the single-particle density matrix. The viscosi-
ty coefficient u is computed to be [1]

] I
a—XLm 8(E, —Ep)8(E,, —Ep)

p=mh3¥ 3

n m

=nhptol . (4.11)

The change in energy AE, over a cycle of the periodic
perturbation can be computed from the force

ABr= [ dt(F)X =rHphoiXfo=n"cx ,

which agrees with (4.9). This shows that the Kubo for-
mula correctly predicts the rate of dissipation in the non-
perturbative case discussed in Sec. III [case (ii)], as well
as in the perturbative case (Sec. III [case ()] ).

(4.12)

V. LOCALIZATION OF EIGENVECTORS

Several studies on periodically driven quantum systems
have shown that the eigenstates of the Floquet operator
can be localized, leading to a suppression of energy
transfer to the system: this has been demonstrated for
the quantized standard map [3], the response of a micro-

scopic ring to a time-dependent flux [4], and other sys-

tems. In this section we demonstrate that a similar local-
ization effect occurs in our very general model.

It is well known that the eigenvectors of a banded Her-
mitian matrix with random elements are localized
[16,17]. The matrix need not be strictly banded; the ma-
trix elements only need to decay sufficiently quickly as we
move away from the diagonal [18]. Many of the argu-
ments supporting these results are also valid for banded,
random, unitary operators, and we will give theoretical
estimates of the localization length and maximum energy
absorption, supported by numerical results.

The solution of the localization problem depends on
the form of the distribution P(n). We consider the two
most important cases, when P(n) is Gaussian and when
P(n) is of the form (3.4), corresponding to resonant ab-
sorption.

A. Gaussian case

We consider first the cases in which the distribution
P(n) obeys a diffusion equation and is a Gaussian with
variance A after one cycle of the perturbation. The vari-
ance Ay after N cycles is clearly

Ay=NA (5.1)

in the diffusive approximation. If the eigenvectors of the
Floquet operator are localized, however, (5.1) must break
down for large N. Consider the Nth power of the Floquet
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operator. If the eigenvectors of U are |u, ), with eigen-
values exp(i@, ), matrix elements of 0" can be written

(i|0N|j>=E(ilun)exp(iNqo,,)(unlj) . (5.2)

If L is the localization length, then all the terms in (5.2)
will be small if |i —j|>>L. The second moment Ay
therefore saturates at Ay=~L? after initially increasing
linearly. For small N, we expect that the correlations be-
tween the matrix elements will not exert much influence,
and (5.1) remains valid.

Now consider the implications of this argument for the
absorption of energy by a system of noninteracting elec-
trons. Recall that the energy transferred to the system is
proportional to Ay [Eq. (4.8)], so that (5.1) predicts that
the energy absorbed is proportional to the number of cy-
cles of the perturbation. This is in accordance with our
expectation that the responses to each cycle are indepen-
dent (the Markovian approximation). Localization of the
eigenvectors of i implies that after some number of cy-
cles N*, the total energy transferred saturates at a value

AE . ~constXL?*/p . (5.3)

The localization length can be estimated using an
adaptation of an argument first given by Chirikov,
Shepelyansky, and Izraelev [19] in an analysis of localiza-
tion of the eigenstates of the Floquet operator for the
kicked quantum rotor. If an electron is initially in an
eigenstate of the Hamiltonian, this state |1,) can be writ-
ten as a superposition of ~ ei%renstates of the evolution
operator. The state |4y ) =0y} is a quasiperiodic
function of N, but its ‘quasiperiodic nature only becomes
apparent after N*~L cycles. From (5.1), we argue that
after N* cycles,

ANzN*AzLZ R (5.4)
hence we estimate
L ~const XA , (5.5)

since N*~L.

We tested this localization hypothesis numerically and
found that the eigenvectors of the evolution operator are
localized and that the energy absorption saturates in
agreement with the results above. The saturation of the
energy absorption is illustrated in Fig. 4, curves (a) and
(b). Here we computed the Floquet operator of the
parametrized GOE model, (2.5), with dimension N'=100
and #i=1 with the Fermi level at the center of the band
(WNVp=S50), and with X, and  chosen so that y=1, k=2.
The energy absorption saturates after initially increasing
linearly at a rate predicted by the Kubo formula (the
straight line in Fig. 4). Curve (a) shows the results of one
realization, curve (b) the average over ten realizations.

It is noteworthy that the law for calculating the vari-
ance of P(n) after N cycles, Eq. (5.1), is the same as
would be obtained for a product of N independent
Gaussian-banded matrices with independent matrix ele-
ments. This suggests that the evolution operators could
be modeled by randomly generated, Gaussian-banded un-

itary matrices: a method for generating these matrices is
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FIG. 4. Plots showing saturation of the energy absorbed as a
function of time for the parametrized GOE model. (a) One
realization of the GOE evolution operator. (b) Average of ten
realizations. (c) and (d): effects of adding a small amount of
noise to the GOE Hamiltonian (discussed in Sec. VI). The
straight line is the prediction of the Kubo formula.

described in Appendix C. We find that the mean locali-
zation length for these matrices is comparable to that of
the evolution operator, but for all the cases we examined,
it is significantly higher. As an example, the mean value
of the maximum energy transferred is approximately
50% higher for the random unitary operators than for
the evolution operators, implying [from (5.3)] that the lo-
calization length is approximately 25% larger. We be-
lieve that the discrepancy is related to the finite sizes of
the matrices involved, but we have not been able to test
this conclusively because this would require evolution
operators of very large dimension N.

It is difficult to test the relationship (5.5) for the locali-
zation length of the eigenstates of the evolution operator
directly because the results need to be averaged over
several realizations, and each realization of the evolution
operator requires the integration of the Schrodinger
equation for W different initial states (where N is the di-
mension of the matrix). For this reason we tested (5.5)
using the randomly generated Gaussian-banded unitary
matrices produced using the method described in Appen-
dix C. The results for these simulated evolution opera-
tors (each averaged over 25 realizations) are shown in
Fig. 5. The localization length {(defined as the square root
of the second moment of the probability density of the
eigenfunction) was shown to be proportional to A: with
this definition the constant in (5.5) is approximately uni-

ty.
B. Resonant absorption

Now we consider the saturation of energy absorption
when P(n) is given by (3.4). This form corresponds to the
resonant absorption of energy in quanta of AE =fiw. If
the frequency of the perturbation were precisely defined,
only states separated by precisely fiw would experience
transitions. The frequency has an uncertainty Aw, how-
ever, because the perturbation is only applied for a finite
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FIG. 5. Localization length as function of second moment A

__of P(n) for random Gaussian-banded unitary matrices: the re-

sults verify Eq. (5.5). Different styles of point indicate different
values of the dimension N of the matrices.

time: Aw/w=1/N, where N is the number of cycles over
which the perturbation has been applied. Deviations
from the predictions of the Kubo formula are therefore
expected when N > N*=~v=pfiw, after which time the
frequency is sufficiently well defined that the quasicontin-
uum approximation breaks down.

When N >>v, the response of the system has to be con-
sidered in terms of Rabi oscillations of electrons between
pairs of states separated in energy by #w. Each of these
pairs is characterized by a detuning parameter,
8E =(AE —#iw). The amplitude to reach the upper state
of the two-state system, starting from the lower state, is
given by

VX,

la(z)|= BB+ VX372

sin 2—1ﬁ(8E2+ yix2)1 /2

(5.6)

in the rotating-wave approximation [20], where ¥V is the
matrix element of dH /3X between the nearly resonant
states.

To estimate the energy absorbed, we note that there
are approximately v=p#ieo pairs of states for which the
lower level is filled, and the upper level separated by
AE =#iw is empty. Only these pairs of states can contrib-
ute to the absorption of energy. Each pair of states has a
different value of the detuning parameter 8E, which can
be regarded as a random variable with uniform probabili-
ty distribution. Integrating over this distribution, the
dominant contribution to the energy absorption comes
from those pairs of states for which 8E is sufficiently
small that the amplitude (5.6) is of order unity. These are
the pairs of states for which the detuning 8E satisfies

SE<VX, . 5.7

The proportion of states satisfying this condition is
P=poX,=y, where we have used the fact that o is the
typical size of the matrix element V. The number of con-

tributing pairs of states is therefore
N ~Py=yv (5.8)

and each of these pairs accounts for an absorption of en-
ergy of order #iw. The maximum energy transfer is there-
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FIG. 6. Maximum energy absorption AE,,, in the resonant
absorption regime as a function of the dimensionless parameter
X+ the results verify Eq. (5.9).

fore expected to be

AE,,=const X yvfio=const X yv*/p . (5.9)

Some numerical results verifying (5.9) for the
parametrized GOE model are shown in Fig. 6, which
shows the maximum energy absorbed for a variety of
values of y <<1 and v>>1. All of the data in this plot
were for matrices of dimension N=100, with =1 and
Fermi level V=50, and the values of AE,, were aver-
aged over 15 or more realizations.

It is apparent from these results that the saturation of
energy absorption is most readily observable (i.e., the
number of cycles required before saturation becomes ap-
parent, N*, is small) in systems where neither y nor v is
large. :

VI. EFFECTS OF NOISE

The saturation of the energy absorption considered in
Sec. V depends on the Hamiltonian being a periodic func-
tion of time, and we argue that the effect is extremely sen-
sitive to deviations of the Hamiltonian from exact period-
icity. In the case of the application to the absorption of
electromagnetic radiation by small metallic particles, the
deviations from periodicity can be caused by the random
perturbation of the small particles by phonons in the sup-
porting material [2].

If |u}N) is the ith eigenvector of the evolution operator
at the Nth cycle of the motion, the evolution operator for
the Nth cycle can be written

Oy=3 luM)expliof)(ul] . 6.1)

The evolution operator for N cycles can therefore be
written

ON)=3 3 lufyMyull, 6.2)
k k'

where My, is the matrix formed from the product of all

the N overlap matrices with elements
mM = u|u T Yexplig}) . (6.3)

If the suppression of energy absorption is to be main-
tained, the off-diagonal matrix elements My, in (6.2)
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should be small for pairs of states |u)) and |u}. ), which
are localized in different regions of the spectrum: this
will certainly be satisfied if all the off-diagonal elements
of the matrices m, are small. Assuming the matrix ele-
ments in the product of the m}{. are of the form

mM. =8y expli¢¥)+erft. , (6.4)

where € is small and the r{{. are independent random
variables, with values of order unity, after N cycles the
matrix elements My, are of the form

]Mkk’|=8kk'+0(€» N) . (6.5)
If the number of cycles required for the saturation to be-
come apparent in the absence of noise is N*, the satura-
tion effect is still observable as a reduction in the rate of
absorption if

eVN* 1. (6.6)

If €V N*>>1, the quantum coherence required for An-
derson localization is completely destroyed and (provided
€ << 1) the energy absorption continues to increase at the
rate predicted by the Kubo formula after N* cycles.
These arguments are related to those used by Ott er al.
[21] in a discussion of the effects of noise on the kicked
quantum rotor.

Now consider the problem of estimating ¢, the typical
size of the off-diagonal matrix elements of (6.3). It does
not appear to be possible to give a general result here: we
consider the case where the correlation time of the noise
is comparable to the period of the periodic perturbation.
If the noise contribution to the Hamiltonian , s Were
time independent within each cycle of the perturbation,
the eigenstates of the Floquet operator 0M would be the
same as those of & and the typical size of the off-diagonal
matrix elements in (6.4) would be

€ g[)I:S.E s (6.7)

where 8E is the typical shift in the eigenvalues due to the
perturbation A, .- If, in addition, H, varies as a function
of time within each cycle, there are also contributions to
the matrix elements of (6.4) that arise because phase rela-
tionships are not preserved under the perturbation: these
are of order

1 pT

e [ dt 8E(t) (6.8)
where T'=27 /o is the period. The larger of the two con-
tributions €; and e, should be used in (6.6). Small
amounts of noise are sufficient to make either (6.7) or
(6.8) large enough that the inequality (6.6) does not hold.
The energy-localization effect described in Sec. V is there-
fore very easily destroyed by noise.

To investigate the effects of noise, we added a noise
term to the parametrized GOE Hamiltonian (2.5):

A=cos[X())A, +sin[X()1H, +af(t)B,, (6.9)

where « is a constant, f{¢) is a Gaussian random func-
tion with autocorrelation function C(t), and A, » is a fixed

GOE matrix. Because the numerical evaluation of the
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evolution operators is very computationally intensive, we
generated two evolution operators, each for one cycle of
the perturbation, with the same realization of the ma-
trices A, and A, but with different realizations of H,.
We then simulated the evolution by taking a random

product of these unitary matrices, each occurring with

probability 1. : .

Two examples are shown in Figs. 4(c) and 4(d), which
show the suppression of the energy-localization effect by
the addition of a small amount of noise. In these exam-
ples the parameters ¥ and v were the same as for the oth-
er examples in Fig. 4, the correlation function C(¢) was a
Gaussian with variance 0.125, normalized so that
C(0)=1, and the amplitude of the noise term was
a=10"*in case (c) and @=10"3 in case (d). Note that a
tenfold increase in the amplitude of the noise has little
effect on the rate of transfer of energy, indicating that
even this very small amount of noise is sufficient to des-
troy the energy-localization effect.
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APPENDIX A

When y >>1, the matrix elements cannot be assumed
constant, and we can model the X dependence of the ma-
trix elements {n|3H /3X|m ) by assuming that they are
Gaussian random functions with an autocorrelation func-

tion C(AX),
< 3R

1) ¢
The expansion coefficients c,(¢) also change very rapidly.
We therefore treat the equation of motion for the
coeflicients ¢, () as a stochastic differential equation. In
the following calculation we compute the rate of increase
of the occupation probability P, of the nth state in terms
of those of the surrounding states:

dp,
dt in

(X) ‘ﬁ

=5 .5, .C(AX).
o (X+AX)> BB CLAX)

nm n'm’

(A1)

= -3 R,,P, .
n(#=m)

(A2)
Reciprocity implies that the averaged transition rate for
transitions n—m is the same as for m —n. The total
rate of change of P, is therefore

dp, :
=S Ryn(P,—P,) .

(A3)
dt  Em

Now we integrate (2.4), treating the energy differences
E,—E,, as constant: this approximation is valid for all
terms except those where |n—m| is small. The change in
the expansion coefficient ¢, over a time interval Az can be
written

—_L._, At . _
~EE 2 J.dt expli(E, —E,, )t /#]

m m(s£n)

Ac,

aft

Xax

] (t)e,, (1) (A4)

.and the change in the occupation probability after time

Atis
AP, =|c,+Ac,|2—|c,[?=c*Ac, +c,A*c, +|Ac,|? .
(A5)

Only the last term in the right-hand side of this equation
need be retained, because the other two terms are rapidly
oscillating and average to zero. Hence,

(AP,)=(lAc,|)= 3 [A4m|*+Z 3 AumAum »

m(#n)
(A6)
where
A =—X:——f‘“dtex [i{(E,~E, )t /#]
nm En_Em 0 p n m
R4
X aX]nm(t)cm(t). (A7)

The matrix elements {n |38 /3X|m ) are independent for
different values of m, implying that the second term in
(A6) is the sum of uncorrelated random variables and has
mean value zero. If At is long compared to the correla-
tion time of the matrix elements of 34 /3X, we have

Xz
(E,—E, )
X [ 7 drexpli(E,—E,)r/HIC*(1), (A8)

(| Ay Y= (len YAt

where C*(7) is a joint correlation function of the matrix
elements and the expansion coefficients defined as follows:

[%] 0) %] (r)em(O)c,,,(T)>
Cc* — nm Jam
() (e )

(A9)

Combining (A6) and (A8), we find that the rate of in-
crease of P, due to transitions from other states is given
by (A2), with the rate constant given by

2
Rym X 7 f_wdj'eXp[i(E,,——Em yr/HIC*(T) .

" (E,—E,
(A10)



The correlation function C*(7) has a discontinuity in its
first derivative at 7=0, due to nearly degenerate pairs of
states which vary very rapidly in X(7). This implies that
R, decays as AE "*as AE — .

Equation (A3) can be thought of as a discretized
diffusion equation with a long-ranged interaction: if P, is
represented by a slowly varying function P(# ), this equa-
tion can be approximated by a diffusion equation,

J

© « ] ¢
D=%f dn'n’zR(n’)=%f_deAE(PAE)2 AXE2

=1p°X* [* drC*(r)

in agreement with (3.8). The distribution P(#n) is there-
fore essentially a Gaussian, with variance given by (3.9).
In the tails of the distribution, the approximation used in
deriving (A11) from (A3) breaks down, and the rate of de-
cay of P(n) is controlled by the decay of the rate con-
stants R(n'): the tails of P(n) therefore decay as |n|™*

APPENDIX B

In this appendix we consider a classical system with a
slowly varying Hamiltonian and relate the results to one
of the cases discussed in Sec. ITI. The classical adiabatic
theorem is different for systems with integrable and
chaotic motion: we consider only the latter case, because
we assumed that the spectrum of the quantum system is
of the GOE type, which is found in chaotic systems (with
time-reversal symmetry) but not in integrable ones [6].

For an ergodic classical system the adiabatic quasi-
invariant is the phase-space volume u(E) of the energy
shell at energy E. Ott [22] considered the changes in the
adiabatic invariant, and found that over time scales that
are long compared to the correlation time of the classical
motion, they increase diffusively, with variance

(ary=a f Ta k2" dr'C(E(),1)

where E(t) is the energy at time ¢, computed using the

(B1)

relation u(E)=const and C(E,t) is the classical correla-
tion function of dH /3X:
(e |BH o (2E
CE,1)= [da | Z5(a)— (8X>
oH oH
< | Lo (E) sz-ran. @2

Here 1 is the weight of the energy shell

UE)= [da8(E—H(a)) (B3)

and in the formulas above a represents a point in phase
space and «, is the point reached by evolving Hamilton’s
equations for time ¢, starting at a.

If the motion of the system is chaotic, the function
0H /3X(a,) can be modeled by a random function, so
that in the limit  — o the changes in y are Gaussian dis-

tributed. The distribution of the energies of trajectories
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9P(n)

o =J " dn'R(n[Pn+n)—

P(n)]

L 3%P(n) _ . &P
o8N _p
an? an?

~4 [ dn'Rn')n ., (AlD

where we have used
R(n')=R, 4 =R(—n').
The diffusion constant is

f:o drexp(iAET/#)C*(T)
fj dAE exp(iAET/#)
=rhip®X? [ * dr CX(r8(r)=mtip’X*C*(0)=ntp’s?X?

(A12)

I
which initially started on the same energy shell is there-

fore also a Gaussian, because Ay and AE are related by
Ap=QAE . (B4)

We can identify this distribution of energies with the dis-
tribution P(n) for making quantum transitions through ¥
states. In the semiclassical limit we therefore expect that
the distribution P(n) is a Gaussian, with variance

A=pX Au?) /07 .

It can be shown that this result is consistent with the
purely quantum-mechanical results (3.8) and (3.9). To
make this connection, we need a relationship between the
typical size of the matrix elements, o, which appears in
(3.8), and the classical correlation function appearing in
(B2). It has been shown [10] that o E,AE), defined by
(2.1), and the correlation function (B2) are related as fol-
lows:

(B5)

oE,AE)= I’ dt C(E,)expliAEt /#) .

2whpn
(B6)
Substituting this result for o =0 (E,0) into (B1) and (BS)
gives
A=2 3 2 2n/0
Thp o f o
which agrees with the quantum-mechanical expression
(3.9).

Now we consider the values of the dimensionless pa-
rameter ¥ and « corresponding to the semiclassical limit
and verify that these do correspond to the regime dis-
cussed in Sec. III [case (ii)] if we take the limit #—0, with
all classical quantmes held fixed. The density of states,
and the typical size of matrix elements of dH /3X, scale
in the following way for a system with d degrees of free-
dom:

p=0(ﬁ—d),

The first of these results follows from the Weyl rule [6]
for the semiclassical density of states, the second from
(B6). Given these results, we find that

X=0(ﬁ—(d+l)/2), K:O(ﬁ—('sd-n/z)’

dt X*=2r"p’c X} , (B7)

o=0(#4"172y (BS)

(BY)
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and In(y)/In(x) > 1/3, so that the semiclassical limit does
indeed correspond to the case in Sec. III [case (ii)].

APPENDIX C

The Gaussian-banded random unitary matrices used
for the numerical simulations discussed in Sec. V A were
generated by taking a product of M block-diagonal ma-

trices of dimension N,
M

U= n, (C1
= o
with each of the #; of the form
1, ()

z,cos? —z,sind
= ] o (C2)

! z;sind  z,cosd

(0 1,

Here I,,T, are identity matrices, with the dimension of
the matrix I, chosen randomly with uniform probability
density between O and N—2, and z{, z, are complex
numbers of modulus unity with arguments uniformly dis-
tributed random numbers between 0 and 27. The transi-
tion probability P,=sin’} was taken to be
P,=exp(—x?), where x is a random variable uniformly -
distributed between 0 and x.,, >>1. When M is large,

the product matrix U is Gaussian-banded [i.e.,

(lU;|?) <exp(—|i —j|>/2A)], with variance A given by

A=MPB,/N, (€3)

where P,, the mean value of the transition probability P,,
is given by V;/meax for our choice of the probability
distribution of P,.

We remark that this method of constructing a random
unitary matrix models the evolution operator obtained
for a system which undergoes a sequence of Landau-
Zener transitions between neighboring levels.
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