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The Hamiltonian of a quantum-mechamcal system contams a time-dependent parameter X. The
system is prepared in a highly excited eigenstate of the instantaneous Hamiltonian at =0, and we
compute the amplitudes {» (t)]z//(t)) to be in the elgenstates |n) of the instantaneous Hamiltonian
B(X (1)) at later times. It is found that for generlc systems, with no symmetries yielding additional
quantum numbers, the occupation probability spreads diffusively away from the initial state. This
diffusion is an irreversible process, and can be related to a model for dissipation. The diffusion con-
stant D is investigated numerically in a random matrix model as a function of X, the rate of change
of the parameter. Good agreement with theoretical predictions is found in two limiting regimes.
When X is large, D is proportlonal to X ?, corresponding to the Ohmic dissipation predicted by the
Kubo formula. When X is small, Landau-Zener transitions are the mechanism for diffusion, and D

is proportional to X3,

I. INTRODUCTION

A quantum-mechanical system has a Hamiltonian
Ax) depending on a parameter X. The parameter X is
time dependent, and varies at a rate X. Initially, the state
|} is a highly excited eigenstate of the instantaneous
Hamiltonian at t=0, i.e.,

[¥(0))=|n(0)} , .y
where
BXO)n())Y=E (X ())|n(2)) . (1.2)

We consider the evolution of the state |4(¢)), expressed
in a basis of the eigenstates of the 1nstantaneous Hamll-
tonian

[9()) =S a,(D)|m (2)) . (1.3)

The motivation for this choice of basis is that if the state
evolves adiabatically, then the |a,,(¢)| do not change.

In a broad class of systems (which will be discussed
later), the occupation probability spreads diffusively: if
we characterize the time evolution by the second moment
of the probability distribution

A, ()= 2 la,, ()}2(m —n)*, : (1.4)

it is found that A, (¢), averaged over many states, exhibits
a diffusive growth ie.,

{A(2))=2Rt . (1.5)

This paper will describe the results of numerical experi-
ments where this diffusive behavior is observed, and
where the dependence of the diffusion constant R on X is

investigated.
A. consequence of this diffusive behavior is that the
coarse-grained occupation probability satisfies a diffusion
- 41

equation. This quantity, denoted by f(E)
as follows:

f(E)———z Kyln)|?8,(E —E,),

, can be defined

(1.6)

where §.(x) is a distribution function centered on x=0,

" with a width € which is large compared to the typical

separation of energy levels, but small compared to other
energy scales characterizing the system, and p(E) is the

* smoothed density of states

plE)=S 8 (E—E,) . 1.7

The probability density f (E) satisfies a diffusion equation
of the form ’

opf) , » 8 |dE .| _ a o |
DLty = | el |= DpaE (1.8)

The drift term proportional to X on the left-hand side of .
(1.8) takes account of the variation of f(E,t) due to the
change in the energy levels with the parameter X. In this
expression dE /dX is the local average rate of variation of
an energy level with respect to X, which could be defined
by analogy with (1.6):

dE

¥ra deS(E E,).

(1.9)

This diffusion equation is consistent with (1.5) if the
diffusion constants D and R are related by

D=R/p*. (1.10)

The diffusive spread of occupation probability is an ir-
reversible process: we do not recover the original state
[1#(0)) by reversing the sign of X and returning to the
original Hamiltonian. The diffusion of occupation proba-
bility is of physical interest because it is closely related to
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a model for the microscopic mechanism of dissipation,
another irreversible process, which will be discussed in
Sec. II.

Theoretical predictions! of the size of the diffusion con-
stant and its dependence on X are described in Sec. III.
Much of this theory uses random matrix models for the
statistical properties of the spectrum of the system. The

use of these models is described in a reprint volume edit-__

ed by Porter,? and is justified for most complex quantum
systems which do not have extra constants of motion
leading to additional quantum numbers.? The numerical
work in this paper models systems which have time re-
versal invariance, for which the appropriate random ma-
trix model is the Gaussian orthogonal ensemble (GOE).
If there are constants of motion in addition to the energy,
the predictions based on random matrix theory do not
apply, and the occupation probability may not spread
diffusively.

The numerical experiments were carried out using a
parameter-dependent version of the GOE random matrix
model. These numerical experiments are described in
Sec. IV, and the results are found to be in good agree-
ment with the theoretical predictions.

Even if the system is one for which random matrix
theory gives a good description of the spectrum and the
matrix elements, there may be other factors which limit
the applicability of the results. Section V gives a further
discussion of the types of system for which diffusion of
the occupation probability will occur.

II. MODEL FOR DISSIPATION

The microscopic mechanism for dissipation is the
transfer of energy from an observed degree of freedom to
a large number of microscopic degrees of freedom.
Often, it is assumed that the microscopic degrees of free-
dom can be modeled by a bath of harmonic oscillators,
with a continuous spectrum of frequencies.* In this pa-
per we consider a different situation: the oscillators are
identical to each other, but they have complex dynamics,
so that their quantum-mechanical dynamics can be de-
scribed by random matrix theory and exhibits the
diffusive behavior described in the Introduction. The pa-
rameter X which appears in the Hamiltonian is the ob-
served degree of freedom, which couples to the oscillators
independently. Usually, the microscopic oscillators
would be a gas of weakly interacting fermions confined by
a potential well, which can be deformed by varying the
parameter X.

An example of a physical problem for which this
would be a suitable model is the absorption of low-
frequency electromagnetic radiation by small conducting
particles. If the particles are irregularly shaped, the spec-
trum of the electrons (treated as a system of independent
quasiparticles) is described by random matrix theory, and
the electric field of the radiation plays the role of the
time-dependent classical parameter X.

We characterize the dissipative process by calculating
the irreversible component of the rate of change of the
energy of the bath of oscillators as we vary the parameter
X: by conservation of energy this is the rate at which the
energy of the observed degree of freedom is dissipated.
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Typlcally, the observed degree of freedom experiences a
dissipative force which is proportional to its velocity:
this is. often called viscous or Ohmic damping. In this
case the power dissipated is proportional to the square of
the velocity

dE
dr

It will be shown that this form arises naturally for sys-
tems which show the diffusive behavior described above.

Our aim is therefore to calculate the rate of change of
the energy of the system of oscillators. The expectation
value of the energy of the system is initially

=uX)X?. 2.1

=S Kyoln)PE,= [ " dE f(E,p(E)E . (2.2)

When the system is perturbed by varying X, both the oc-
cupation probability f (E,t) and the energy levels change.
The time derivative of the expectation value of the energy
is therefore [substituting (1.8) into (2.2) and integrating
by parts]

2 2 [ agpn L.

The first term on the right-hand side is proportional to X,
and represents a reversible change in the energy of the
system. The second term represents the irreversible dissi-
pation of energy. If the occupation probability f de-
creases very rapidly at the Fermi energy, (2.3) simplifies
to - .

=x[" dE f (2.3)

- dET e Ep dE
Bk a0 oy,

(2.4)

where pp=p(Ep), etc. From this result we see that the
rate of dissipation is equal to the diffusion constant multi-
plied by the density of states, where both quantities are
evaluated at the Fermi energy.

The mechanism of dissipation is therefore the diffusion
of particles with energies at or just below the Fermi ener-
gy into states with energies above the Fermi energy. It
might be thought that the Pauli principle would inhibit
this diffusion, resulting in a reduced rate of dissipation.
It is simple to show that this is not the case: see Appen-
dix A for a discussion of this point.

III. THEORETICAL PREDICTIONS

The theoretical predictions for the diffusion constant
depend on some properties of the matrix elements of the
force operator 0H /30X in a basis of -eigenstates
[n),Im),... of the Hamiltonian A. If B has no sym-
metries or conserved quantities, these matrix elements
are quasirandom, and we can discuss their statistical
properties in terms of local averages within the matrix;
for instance, the second moment of the off-diagonal ma-
trix elements can be defined as
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2 E
az(E,AE)=< oH >

X |, | [E,~E,~2E

L, +E,)~E =

om | [ -
=3 | |22 | | s E—LE,+E,)

nm X ‘ 2

X8,(AE —(E, —E,,)) , 3.1)

where 8(x) is a distribution function of width €, which is
large compared to the mean level spacing but small com-
pared to the other energy scales of the system. In Appen-

dix B it is shown that the matrix elements are locally in-_

dependently Gaussian distributed, the mean value of the
off-diagonal matrix elements is zero, and their variance
o2 is a smooth function of E and AE. The diagonal ma-
trix elements need not have a mean value of zero. Their
variance is related to the variance of the nearby off-
diagonal matrix elements oXE,0):

(1] ]I, .

] T
). ¢ E,~E
Em =F
=Bo™(E,0) 3.2

where S=2 if the transformation which diagonalizes His
orthogonal (GOE case), and B=1 if it is unitary [Gauss-
ian unitary ensemble (GUE) case]. The only statistic
which plays a direct role in the theory for the diffusion
constant D(E) is o(E,0), (i.e., the variance of the near-
to-diagonal matrix elements) which will be abbreviated to
o.

The diffusion constant is predicted to be a- universal
function of p,a,ﬁ,X for systems within a given universali-
ty class of the spectral statistics (Gaussian orthogonal,
unitary, or symplectic ensembles)

D ——fB(p ohX)= fﬂ (3.3)

p

where fj is a universal functlon depending only on the
class of spectral statistics, labeled by the constant [3 ap-
pearlng in (3.2). The dimensionless parameter k=p 20X
is a measure of the degree of adiabaticity (slowness) of the
variation in the Hamiltonian. The asympotic form of the
function fg(k) can be calculated in both the limits of
small and large k, and these cases will be discussed sepa-
rately.

When k is small, the adiabatic theorem’® is applicable,
and the occupation probabilities remain constant except
at values of X where two eigenvalues become very nearly
degenerate, when occupation probablhty can be
transferred by a Landau-Zener transition.® The points at
which energy levels become very nearly degenerate (i.e.,

approach a separation AE which is much less than the

FIG. 1. For some values of X, pairs of energy levels become
very nearly degenerate; these events are called avoided cross-
ings. At these avoided crossings the adiabatic theorem breaks
down, enabling diffusion of the probability density. The avoid-
ed crossing is characterized by the gap size AE and the
difference A4 between the asymptotlc slopes of the curves (dotted
lines).

mean level spacing 1/p) are called avoided crossmgs, and
they have the geometry of a hyperbolic section, as illus-
trated in Fig. 1. Each avoided crossing is characterized
by an energy gap AE and the difference A between the
asymptotic slopes of the curves E, (X). If the wave func-
tion is initially in the nth level, the probability of making
a nonadiabatic transition to the (n +1)th level is®

P,=exp(—AE*/m A#X) . (3.4)

If the occupation probabilities for the two states are ini-
tially P, and P, ,, then after the avoided crossing'

Pr;=Pn(1_Pt)+Pn+1Pt

+2[P,P, . P,(1—P,)]%in(¢) , (3.5)

and similarly for P, ,;, where ¢ is a phase which cannot
be deduced from the parameters of the avoided crossings
alone. The rate of diffusion of the occupation probability
can be calculated analytically in the limit x<<1, by
averaging (3.4) over the distribution of AE and 4, assum-
ing that ¢ is a random variable, so that the quantum in-
terference term in (3.5) can be ignored. This has been
done for the GOE and GUE cases; the results are’

f2(K)=2
and
Si(k)

Because the transfer of occupation probability occurs in
steps where there is a near degeneracy of eigenvalues,

~545D(2)6>?, GOE (3.6)

GUE .

=11c?, (3.7)

~ these results are only meaningful if many Landau-Zener

transitions contribute to the diffusion, so that we may
take a statistical average. The condition for this to be
valid is that the predicted spread of the occupation prob-
ability is large compared to the mean separation of ener-
gy levels. The different power laws characterizing the k
dependence in (3.6) and (3.7) are a reflection of the fact
that the GUE has stronger level repulsion than the GOE,

so that there are fewer near degeneracies between energy
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levels. The power law is related to the behavior of the
level spacing distribution? P(S) for small S: If P(S)xS”
for small S, then f (k) <k**2/2 for small x.! The GOE,
GUE, and Gaussian symplectic ensemble (GSE) all have
this property, with v=1, 2, and 4, respectively.

When «>>1, the adiabatic theorem is not applicable,
and Landau-Zener transitions are no longer the mecha-
nism of diffusion. Instead, transitions are not restricted
to nearest-neighboring states and may occur between
pairs of states which differ in energy by AE <paﬁ}f The
time scale for these transitions is 7=~p#, so that the
diffusion constant is D=~AE?/r, i.e., D <k*/p°#. The
multiplying constant can be deduced by comparison’
with the rate of dissipation calculated using the Kubo-
Greenwood formula,”® which is derived assuming that
the adiabaticity parameter « >>1. The result is

fK)

independent of the universality class of the spectral statis-
tics. The fact that the multiplying constant is the same in
(3.7) and (3.8) appears to be a coincidence.

’lTK,

IV. NUMERICAL EXPERIMENTS

The theoretical predictions about the diffusion con-
stant for time-reversal invariant systems were tested
against numerical experiments on a random matrix mod-
el. The random matrix ensemble appropriate for describ-
ing the spectral statistics of these systems is the Gaussian
orthogonal ensemble described by Porter.? Without loss
of generality, we can define the GOE as follows: the ma-
trix elements H;; of a symmetric matrix of dimension N
are 1ndependent Gaussian random varlables w1th mean
zero and variance ' T

var(H;)=1+8;; . o - : (4.1
The density of states in this model is given by Wigner’s
semicircle law? in the limit of large N,

p(E)=—‘/TrE<1—E2/4N)V2 .

A parameter dependence must be built into the model;
this can be achieved by obtaining the matrix elements by
smoothing a white-noise functions W;; with an appropri-
ate function f,
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which has one continuous derivative, and gives the ma-
trix elements a continuous first derivative. The matrix
QH;; /3X is'also a representative of a Gaussian orthogonal
ensemble The following choice of the constants @ and b
in (4.5) makes the variance of the off-diagonal matrix ele-
ments of A and 38 /3X equal to unity:

a=2%3¥4 p=Vv3.

It follows from the defining properties of the Gaussian
orthogonal ensembles? that the matrix elements of
98 /3X in the basis formed by the eigenvectors of A are
also representative of a GOE with the same variance.
The parameter o is therefore equal to unity for this mod-
el.

Numerical experiments of the type described in the In-
troduction were performed using this model. The

(4.6)

e e ~ﬂ—(3w8)-“Schrodmger equation was integrated using a fourth-order

_ Runge-Kutta method, and the coefficients a,, were found
by projecting the wave function at regular time intervals
onto eigenvectors of the instantaneous Hamiltonian, ob-
tained by a standard diagonalization package. The
spread of the wave function was characterized by evaluat-
ing the second moment of the occupation probability,
(1.4). Especially in the limit of small adiabaticity parame-
ter k, the results had to be quite heavily averaged to show
the diffusive behavior clearly; they were averaged over
different realizations of the random matrix Hamiltonian
and over different choices of the initial state
|$(0))=|n(0)). The initial eigenstate was always
chosen to be near the center of the spectrum, and the
simulation was stopped before the wave function had
spread into the tails of the spectrum, so that the density
of states could be assumed to be a constant, equal to its
value at E=0 [i.e., p=V'N /m, cf. Eq. (4.2)]. For the
" model described above, we have #=o0 =1, so that Egs.

@y

(1.10) and (3.3) become
4.7

'fljh;eidiiﬁ"ﬁsrigcﬁ constants R were estimated for two sizes of
- random matrices (N=21 and 45) for a range of values of

X. For the N=21 system, the evolutions of all initial
states between n=8 and 12 were followed, and the values
of A,(z) averaged over these initial states and over ten
different realizations of the random matrix. For the

.. N=45 gystem the results were averaged over initial states

Hyx=[" dX’fX-XWyx), = @
so that the matrix elements are a smoothly varying func-
tion of X. The white-noise funcuon has unit 1nten51ty and
no correlations,

(Wy(X)W (X)) =88,;8(X — X')(1+6 ).

a0jy (4.4)

The matrix elements were obtained by a simple numerical

integration of (4.3), in which the white-noise function W

was simulated by an array of uncorrelated random num-
bers. The function f(X) was chosen to be causal (zero
for X <0) to facilitate this. The function chosen was

XZ —bX X>0

F®=1o, x=0

@3

- comparisons with the theory.
_mates for the diffusion constant is approximately £10%.

={4.5)

__from n=15 to_30, and over five realizations of the ran-

dom matrix. Figure 2 is a typical plot of A, (¢) for a sin-
gle initial state, and the average (A(z)) over 75 initial

_states, showing that the evolution is diffusive. Table I

shows the diffusion constants obtained by fitting a
straight line to the averaged data, together with relevant
The error in these esti-

Finally, Fig. 3 is a log-log plot of the scaling function
f(x), showing good agreement with the asymptotic be-
havior predicted in Sec. III for small and large «.

~ V. DISCUSSION

" The results described above give strong evidence for
~the validity of the theoretical predictions discussed in



41 DIFFUSION AND DISSIPATION IN COMPLEX QUANTUM SYSTEMS 4649
] + N=21
501 x N=45
40 *oxox -
30- % x
A x
201 x X 2
10 « s
0 . . . o
0 50 100 150
t
FIG. 2. The time dependence of the second moment A(#) of
the occupation probability, for a single state n=23 (X) and '8_5 L -3 _'E a 5 : 3

averaged over 75 states (+), for the GOE model with N=45

and X¥=0.05. The straight line is a fit to the averaged data, used

to estimate the diffusion constant.

Sec. III. In this section we will discuss some limitations
on the validity of the theory which apply in some cases
where the parameters of the Hamlltoman only explore a
finite region. =

In the k<1 reglme, ‘where Landau-Zener transitions
are the mechanism of diffusion of the occupation proba-
bility, the diffusion can be severely inhibited if there is
never a sufficiently narrow gap between two successive
energy levels: if the smallest gap AE between two energy
levels satisfies AE?>>#%0X, then (3.4) implies that the
rate of diffusion across this gap will be very small. In the
model used for the numerical experiment described
above, the coordinate X increases indefinitely, and no
matter how small X is there will eventually be an avoided

crossing with a sufficiently small gap for significant’

transfer of occupation probability to occur. The size of
the smallest gap may, however, be an important con-
sideration if the coordinate X explores a finite region; for
instance, if X (¢) has a finite amplitude of oscillation, then
there will be a finite closest approach between each pair

_lnk

FIG. 3. Graph of In[ f,(x)] vs Ink, showing the crossover be-
tween the two asymptotic regimes of the diffusion constant de-
scribed by (3.6) and (3.8), corresponding to the two solid lines
with slopes 1.5 (small ) and 2 (large ).

of levels, and the diffusion will be inhibited for sufficiently
small values of X.

If the Hamitonian has several parameters, represented
by a vector X(t), rather than a single parameter X (),
then the evolution of the occupation probability can show
true diffusive behavior for arbltrarﬂy small X, depending
on the dimensionality of the region explored by X(z). If
the vector X(¢) fills a d-dimensional region in the param-
eter space of the Hamitonian, then the point X(#) will
pass arbitrarily close to points where pairs of energy lev-
els become degenerate if the codimension of these degen-
erate points is less than or equal to d. A simple argu-
ment® shows that the codimension of degeneracies in a
system with time-reversal invariance and no additional
symmetries (such as the GOE) is 2, and for systems
without time-reversal invariance (such as the GUE) the
codimension is 3. (The codimension of a degeneracy is

TABLE I. Estimates of the diffusion constant R =pD for the random matrix model, for various
values of the speed parameter X and dimension N. The diffusion constants were estimated by calculat-
ing (A(#)) up to a maximum time #,,,. Also tabulated are the adiabaticity parameter x and the scaling
function f,, which is compared with theoretical values for the small x and large « asymptotic limits

falie<<1) and f,{x>>1) calculated from (3‘6) and (3.8), respectively.

Fale>>1)

N X Imax R=p?D K f - falk<<1)

21 0.005 3000.0 0.00115 0.0106 0.001 68 0.00179

21 0.01 1000.0 0.003 44 0.0213 0.00502 0.005 02

21 0.02 250.0 0.009 10 0.0426 0.0133 0.0142

21 0.05 80.0 0.0458 0.106 0.0668  0.0562

21 0.1 30.0. 0.141 0.213 .0.205 - 0.159 0.142
21 0.2 12.5 0.476 0.426 0.694 0.569
21 0.4 4.0 1.42 0.851 2.08 2.28
45 0.05 . 150.0 0.124 0.228 0.265 0.176 0.163
45 0.1 40.0 0.391 0.456 0.835 0.653
45 0.2 12.0 1.35 0.912 2.88 2.61
45 0.4 3.0 4.64 1.82 991 10.45
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the number of parameters of the Hamiltonian which
must be varied in order to force two levels to become de-
generate.) If X(z) passes arbitrarily close to degenerate
points, then the corresponding avoided crossings can
have an arbitrarily small gap, and diffusion occurs for ar-
bitrarily small velocities X if the dimensionality d >2 in
the GOE case, or d 2 3 in the GUE case.

Another special case has been discussed by Gefen and
Thouless,’ who considered a time-dependent magnetic
flux threaded though a one-dimensional conducting loop,
in the limit where the flux varies very slowly, so that
Landau-Zener transitions are the mechanism for the
transfer of probability. They show that there is a locali-
zation of the occupation probability in the energy space
which is analogous to the spatial localization of the wave
function in the one-dimensional Anderson model, result-
ing in the system being unable to absorb more than a
given amount of energy. The argument leading to this re-

sult depends crucially on the fact that the Hamiltonian is -

periodic in time, so that localization of the eigenfunctions
of the evolution operator for one period of the motion
(the Floquet operator) implies that there is no diffusion of
the occupation probability on long-time scales. Further
work is in progress to determine whether the eigenfunc-
tions of the Floquet operator are also localized in the adi-

abatic representation for more general time- perlodlc Sys-

tems. - O _ -
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En()=(¥y(O|Ay()|¥y(1) =

2|._.

4
All the terms vanish except those with P =P’, because of
the orthogonality of the single-particle states (A4). Using
the fact that each term in the Hamiltonian only acts on
one particle, the remaining terms can be simplified

EN(”__‘ > Z <1/’,(XP(:>)]ﬁpm(t i (xpy))

P i=1

= 3 (IO

i=1

A6

i.e., the expectation value of the energy of the N-particle
system is the sum of the expectation values of the ener-
gies of the N independently evolving single-particle
states, so that the Pauli exclusion principle does not re-
sult in any inhibition of the diffusion of the distribution
function. The exclusion principle does of course inhibit
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22(“1)”” E (P (xp) )X p(a)) -
7P

i=1

APPENDIX A

In this appendix it will be shown that the Pauli ex-
clusion principle does not inhibit the one-body mecha-
nism form dissipation described in Sec. II. This material
is included because, even though it is an elementary cal-
culation, the result is apparently not well known.

Without loss of generality we take the initial state of
the N fermion system to be a Slater determinant of ortho-
normal single fermion states

va“pN>

E(_IW/’ Xp) W xp(z)) -

(X13X0, .-

“Pxpmy)

-

(A1)

where the P (i) are the N! possible permutations of the in-
tegers i =1,..., N, and 5 is the parity of the permuta-
tion. The Hamiltonian Hy(¢) is 2 sum of N equivalent
terms, each of which acts only on one particle,

Ay()= z 2, . (A2)

i=1

The evolution operator is a product of the single-particle
evolution operators

N(t- H 0,(1), O(t)=exp

i t ? 1
-;{fodtﬁj(t)], (A3)
and after time ¢t the single-particle states 1; are
transformed into a new orthogonal set ¥},
950, =0, (1), (x;)), {i(0|Piix) ) =8, .

Using the above i'esults the expectation value of the ener-
gy of the N-particle system can be calculated,

(A4)

')bN(xP(N))

X8 191 W5(xpa) * *  P(xpaw)?) -

{
two-body scattering at low temperatures, which justifies
using an independent quasiparticle approximation in
many-body systems. 1o

(AS5)

APPENDIX B

This appendix describes some statistical properties of

2] e

where |1 ),|m ) are eigenstates of the Hamiltonian A (X).
The arguments are similar to those used to motivate the
definitions of the GOE and GUE random matrix ensem-
bles,? but here are concerned with the statistical proper-
ties of a given large matrix, rather than with defining an

the mamx elements




41

ensemble with given invariance properties.

We assume that the matrix elements of A and 34 /aX
are available in some discrete basis set whose typical ele-
ments will be denoted by primed indices, e.g., |i'),]j’).

The matrix elements (3H /0X),,, are given by a unitary
transformation of the matrix elements in the lz L)

basis,

oH

ax ax

>(] |m )

where U,,={nl|i') are the coefficients of a unitary ma-
trix. If the Hamiltonian is time-reversal invariant, the
matrix elements of B and 38 /3X can be made real, so’
that the matrix O,;,=<{nli’) defining the transformation
to the eigenbasis of H is orthogonal. If the Hamiltonian
A has no symmetries or conserved quantities, the matrix
elements U,; or O,; of the transformation which diago-
nalizes A is expected to be very complicated, and to have
statistical properties which are almost indistinguishable
from those of a randomly chosen unitary or orthogonal
transformatlon, satisfying certain constraints. _If the basis
1" 1), ..., is a natural basis for a (e.g., the
eigenstates of some other Hamiltonian closely related to
H), then the coefficients O, are small when |n —i| is

—E<n|t <

=3 Uy (B2)
i

H
S U;:m
;
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large. The constraint that the O,; define an orthogonal

transformation is
E OIH Ol m

whlch is a sum rule involving many matrix elements.
Provided we consider only statistical properties involving
a small number of matrix elements we can ignore this

J

(B3)

Snm H

2 t !
8l | \_[, |3H 3H
<[ax] > <O'"' aX]..Ome"k axX k,o"”>
nm ij
WI ’ B
__ | oH oH
=lax |, |ax k<0ni0mj0nk0m1>
_[em | [am]
ax |, |ax |,
_[am ]| fam |
X |, |3x
=(1+8nm) \-fmfmj (B;H'} ]+8nm ’fni [
ij

aH
aX

3H
oX

17 "\,
ij i

so that the variance of the diagonal matrix elements is

twice that of the off-diagonal ones, as claimed in Sec. III.
If the matrix which diagonalizes H is unitary, with ele-

ments U,;, rather than orthogonal, then (B4) must be re-

placed by

[<On10 )<0nk0m1>+<0ntonk><

)
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constraint and regard the O, as independent random
variables. These variables have a mean value of zero, and
their variance is given by

(OijOkI ) =0ud,fi,

where the brackets denote a local average over matrix
elements, in the sense described in Sec. III, and
Fiyy=Fu=Fi,j)is small for |i —j| large, and satisfies

> fii=1
J

(B4)

(BS)

in order for this model to be consistent with (B3).

Now we can use this random matrix model for the O,;
to calculate the statistical properties of the matrix ele-
ments (0H /0X),,,. In the following computations, sum-
mation over repeated, indices is implied. The mean value
of these matrix elements is

o | \_/ lem]| .
.<[8X nm >_<Oni X ffo'nj>
oH
[BX <Omomj>
oH :
- X '.anm 8iaij-fni

am
oX

—Snmfm [BH ]“—Snm< [ )> . (B6)

* The mean value of the off-diagonal matrix elements is

therefore zero, and the mean value of the diagonal matrix
elements is the same as a local average of the diagonal
elements of (3H /8X); with a weighting function f. The
second moment of these matrix elements is

Oml)+<om'0ml)<0mj0nk>]

(8, 81 8ki S nif nic T0ix8 1 f i fimj + 00m Bt e f nif my ]
Kl

r 12
aH
.|
(B7)
-
(U;USY=8,8,fy
Kkl kOj1J ij (BY)

(U,;Uy =0,
and one of the three terms in (B7) vanishes, 5o that in this
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case the variance of the diagonal matrix elements is equal
to that of the off-diagonal elements,
2 "\2 "\2
2 (122 [V+s,.([2Z| Y. ®9
; axX |.
nm ij it

). ¢ oxX
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Finally, we note that the probablhty distribution of the
matrix elements (n|dA /3X|m ) is Gaussian; this follows
from the fact that they are a sum [given by Eq. (B2)] of a
large number of terms which are assumed to be indepen-
dent.
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