Construction Techniques for Anti-Pasch Steiner Triple Systems

A.C.H. Ling, C.J. Colbourn, M.J. Grannell
and T.S. Griggs

This is a preprint of an article published in the Journal of the London Mathematical Society (2), 61, 2000, p641-657, ©2000 (copyright owner as specified in the journal).
Corresponding author: M.J. Grannell, 17 Royal Avenue, Leyland, Lancashire, PR25 1BQ, UK.

Running head: Anti-Pasch STS

AMS Classification: 05B07.
Construction Techniques for Anti-Pasch Steiner Triple Systems

A.C.H. LING
Department of Combinatorics and Optimization, University of Waterloo, Water-
loo, Ontario, N2L 3G1, Canada.

C.J. COLBOURN
Department of Computer Science, Votey Building, University of Vermont, Burling-
ton, VT05405, USA.

M.J. GRANNELL
Department of Pure Mathematics, The Open University, Walton Hall, Milton
Keynes, MK7 6AA, UK.

T.S. GRIGGS
Department of Pure Mathematics, The Open University, Walton Hall, Milton
Keynes, MK7 6AA, UK.

Abstract. Four methods for constructing anti-Pasch Steiner triple systems are de-
veloped. The first generalises a construction of Stinson and Wei to obtain a general
singular direct product construction. The second generalises the Bose construc-
tion. The third employs a construction due to Lu. The fourth employs Wilson-type
inflation techniques using Latin squares having no subsquares of order two. As a
consequence of these constructions we are able to produce anti-Pasch systems of
order v for $v \equiv 1$ or 7 (mod 18), for $v \equiv 49$ (mod 72), and for many other values of v.

Keywords: block design, Steiner triple system, Pasch configuration, quadrilateral.
1 Introduction

A Steiner triple system $S = (V, B)$ of order v, briefly STS(v), is a collection B of triples (3-element subsets) on a set V, $|V| = v$, such that each unordered pair of elements of V is contained in exactly one triple from B. It is well known that an STS(v) exists if and only if $v \equiv 1, 3 \pmod{6}$; such orders are admissible.

A (k, ℓ)-configuration in an STS(V, B) is a subset of ℓ triples of B whose union is a k-element subset of V. The Pasch configuration or quadrilateral, P, is the $(6, 4)$-configuration on elements (say) a, b, c, e, d, f with the triples $\{a, b, c\}, \{a, d, e\}, \{f, b, d\}$ and $\{f, c, e\}$. An STS is anti-Pasch (or quadrilateral-free) if it does not contain P. For instance, the unique STS of order 9 is anti-Pasch and of the eighty STS(15), just one (No. 80 in [10]) is anti-Pasch.

The problem of characterising those v for which there exists an anti-Pasch STS of order v appears to be difficult. For every $v \equiv 3 \pmod{6}$, an anti-Pasch STS(v) is known to exist [2, 6]. There is no anti-Pasch STS of order 7 or 13. It has been conjectured that an anti-Pasch STS(v) exists for all other $v \equiv 1 \pmod{6}$. Although this remains far from settled, some progress has been made [2, 5, 6, 12]. It is the purpose of this paper to narrow substantially the spectrum of possible exceptions. We shall denote an anti-Pasch (quadrilateral-free) STS(v) by QFSTS(v).

A group divisible design (GDD) is a triple $(X, \mathcal{G}, \mathcal{B})$ which satisfies the following properties:

(1) \mathcal{G} is a partition of a set X (of points) into subsets called groups;

(2) \mathcal{B} is a set of subsets of X (called blocks) such that a group and a block contain at most one common point;

(3) every pair of points from distinct groups occurs in a unique block.

The group-type (type) of the GDD is the multiset $\{|G| : G \in \mathcal{G}\}$. We usually use an “exponential” notation to describe group-type: a group-type $1^i2^j3^k \ldots$ denotes i occurrences of 1, j occurrences of 2, k occurrences of 3, etc.

If K is a set of positive integers, each of which is not less than 2, then we say that a GDD $(X, \mathcal{G}, \mathcal{B})$ is a K-GDD if $|B| \in K$ for every block B in \mathcal{B}. When $K = \{k\}$, we simply write k for K. A K-GDD is said to be uniform if all groups have the same size, that is, if it is of type g^n. A transversal design TD(k, n) is a k-GDD of type n^k.

4
2 Stinson and Wei’s Construction

In this section, we extend the second recursive construction of Stinson and Wei [12]. This is a singular direct product construction. It employs Latin squares with certain properties. A subsquare of a Latin square is a square subarray that is itself a Latin square. A Latin square is an N_2-Latin square if it contains no subsquare of order 2. An N_2-Latin square of order n exists for all $n \geq 3$ and $n \neq 4$ [7, 8, 11].

We need N_2-Latin squares with additional properties, similar to (but weaker than) the “special” Latin squares in [12]. We shall call such squares Kotzig squares in recognition of Kotzig’s work in this area. A Kotzig square of order $n = 2w$ is an N_2-Latin square L of order $2w$ with rows, columns and symbols indexed by \{0, 1, \ldots, n − 1\}, and enjoying three properties:

1. \{L(2i, s), L(2i + 1, s)\} \neq \{2j, 2j + 1\} for 0 \leq i, j < w;
2. \{L(s, 2i), L(s, 2i + 1)\} \neq \{2j, 2j + 1\} for 0 \leq i, j < w;
3. L(2i, 2j) \neq L(2i + 1, 2j + 1), L(2i, 2j + 1) \neq L(2i + 1, 2j) for 0 \leq i, j < w.

Stinson and Wei used similar N_2-Latin squares to prove:

Theorem 2.1 [12] If there exists a QFSTS(u) and $u \equiv 1 \pmod{4}$, and $u − 1$ has an odd divisor exceeding three, then there exists a QFSTS$(3(u − 1) + 1)$.

We extend Theorem 2.1 to relax the condition that $u \equiv 1 \pmod{4}$, and the condition on divisors.

Lemma 2.2 There exists a Kotzig square of order $2w$ whenever $w \geq 4$, except possibly for $w = 5, 8, 10$ and 16.

Proof: The proof relies on three general constructions.

(a) Firstly we prove that a Kotzig square of order $2w$ exists whenever w is odd and $w \geq 7$. To do this form a $2w \times 2w$ array L by setting

\[
L(i, j) = \begin{cases}
2i - 4j \mod w & \text{if } 0 \leq i, j \leq w - 1 \\
(2i + 4j \mod w) + w & \text{if } 0 \leq i \leq w - 1, w \leq j \leq 2w - 1 \\
(2i + 4j \mod w) + w & \text{if } w \leq i \leq 2w - 1, 0 \leq j \leq w - 1 \\
2i - 4j + 3 \mod w & \text{if } w \leq i, j \leq 2w - 1
\end{cases}
\]

It is helpful to regard L as being formed from four $w \times w$ subsquares, two of which are identical:

\[
L = \begin{array}{ccc}
A & B + w \\
B + w & C
\end{array}
\]
where \(A(i, j) = 2i - 4j \mod w, \) \(B(i, j) = 2i + 4j \mod w \) and \(C(i, j) = 2i - 4j + 3 \mod w, \) all for \(0 \leq i, j \leq w - 1, \) and \(B + w \) denotes the result of adding \(w \) to the entries of \(B. \) Plainly \(L \) is a Latin square of side \(2w. \)

Within each of the four subsquares, consecutive entries in a given column differ by \(2, \) consecutive entries in a given row differ by \(4, \) and diagonally adjacent entries differ by \(2 \) or \(6. \) Since \(w \geq 7, \) properties (1), (2) and (3) are therefore satisfied within each subsquare. Furthermore, each of these subsquares is equivalent to a cyclic Latin square of odd side and so is an \(N_2 \)-Latin square. To confirm the Kotzig properties for the full \(2w \times 2w \) array \(L, \) it is necessary to examine entries along the common boundaries of the subsquares.

Property (1) would be violated only if, for some \(j, \) we have \(\{L(w - 1, j), L(w, j)\} = \{w - 1, w\}. \) If \(0 \leq j \leq w - 1 \) this requires \(L(w - 1, j) = w - 1 \) and \(L(w, j) = w, \) and hence \(2(w - 1) - 4j \equiv w - 1 \pmod{w} \) and \(4j \equiv 0 \pmod{w}. \) But this gives \(1 \equiv 0 \pmod{w}, \) a contradiction. If \(w \leq j \leq 2w - 1 \) we similarly obtain \(1 \equiv 0. \) In the same way, any violation of property (2) requires either \(5 \equiv 0 \) or \(1 \equiv 0 \pmod{w}. \) To verify property (3), only the four central entries in \(L \) need to be considered. But \(L(w - 1, w - 1) = 2, L(w - 1, w) = 2w - 2, L(w, w - 1) = 2w - 4 \) and \(L(w, w) = 3, \) and so these four entries are distinct.

Finally to verify that \(L \) has no subsquares of order 2, note that any such subsquare would involve entries from all four of the \(w \times w \) constituent subsquares forming \(L. \) That is, there would be four values \(i, j, i', j' \) satisfying \(0 \leq i, j \leq w - 1 \) and \(w \leq i', j' \leq 2w - 1 \) for which \(L(i, j) = L(i', j') = L(i, j'), \) and \(L(i', j) = L(i', j). \) But these give \(2i - 4j \equiv 2i' - 4j' + 3 \) and \(2i + 4j' \equiv 2i' + 4j \pmod{w}, \) which are inconsistent.

(b) Next we prove that a Kotzig square of order \(4w \) exists whenever \(w \) is odd, \(w \geq 7, w \neq 9. \) In order to do this, consider first the \(2w \times 2w \) array \(K \) defined by

\[
K = \begin{bmatrix}
B + w & A \\
C & B + w
\end{bmatrix}
\]

where \(A, B, C \) are as in part (a). It is easily shown, in a similar fashion to the proof for \(L, \) that \(K \) is a Kotzig square of side \(2w \) provided that \(w \) is odd, \(w \geq 7 \) and \(w \neq 9. \) The condition \(w \neq 9 \) arises from consideration of the four central entries in \(K. \) Now define a \(4w \times 4w \) array \(M \) by

\[
M = \begin{bmatrix}
L & L + 2w \\
K + 2w & L
\end{bmatrix}
\]

That \(M \) has properties (1), (2) and (3) is immediate since \(K \) and \(L \) are both Kotzig squares of even order. It is also clear that \(M \) is a Latin square. In order to
investigate possible subsquares of order 2, write \(M \) as

\[
M = \begin{array}{cccc}
A & B + w & A + 2w & B + 3w \\
B + w & C & B + 3w & C + 2w \\
B + 3w & A + 2w & A & B + w \\
C + 2w & B + 3w & B + w & C
\end{array}
\]

and consider the effect of projecting each \(w \times w \) subsquare \(X + kw \) to the entry \(k \), i.e. projecting \(M \) to

\[
N = \begin{pmatrix}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
3 & 2 & 0 & 1 \\
2 & 3 & 1 & 0
\end{pmatrix}
\]

Any subsquare of order 2 in \(M \) must project onto a subsquare of order 2 in \(N \). But \(N \) only contains four such subsquares and each of these corresponds to one of the four \(2w \times 2w \) subsquares of \(M \), namely \(L, L + 2w, K + 2w \) and \(L \), each of which is free of subsquares of order 2.

(c) The third construction takes a Kotzig square \(K \) of order \(2w \) and an \(N_2 \)-Latin square \(N \) of order \(n \) on the integers \(0, 1, \ldots, n - 1 \), and produces a Kotzig square of order \(2wn \). To do this replace each entry \(k \) in \(N \) by the square \(K + 2wk \). The resulting array is a Latin square. Properties (1), (2) and (3), and the \(N_2 \) property are easily verified.

(d) To complete the proof of the Lemma, we next exhibit Kotzig squares of orders 8 and 12.

A Kotzig square of order 8 is:

\[
\begin{matrix}
0 & 2 & 1 & 3 & 4 & 6 & 5 & 7 \\
5 & 7 & 4 & 6 & 2 & 0 & 3 & 1 \\
1 & 3 & 5 & 7 & 0 & 4 & 6 & 2 \\
4 & 6 & 0 & 2 & 3 & 7 & 1 & 5 \\
2 & 4 & 3 & 5 & 7 & 1 & 0 & 6 \\
7 & 1 & 6 & 0 & 5 & 3 & 2 & 4 \\
3 & 5 & 7 & 1 & 6 & 2 & 4 & 0 \\
6 & 0 & 2 & 4 & 1 & 5 & 7 & 3
\end{matrix}
\]

A Kotzig square of order 12 is:
Now suppose \(w \geq 4\) and \(w \neq 5, 8, 10, 16\). We may write \(2w = 2^kd\), where \(d\) is odd and \(k \geq 1\). If \(k \geq 3\) then \(2w = 8(2^{k-3}d)\) and construction (c) above produces a Kotzig square of order \(2w\) from the Kotzig square of order 8 and an \(N_2\)-Latin square of order \(2^{k-3}d\). If \(k = 2\) then \(2w = 4d\) where \(d = 3\) or \(d \geq 7\) and construction (b) produces the required square except when \(d = 3\) or 9. However, \(k = 2, d = 3\) corresponds to the Kotzig square of order 12 and \(k = 2, d = 9\) corresponds to \(2w = 36\). A Kotzig square of order 36 may be formed from the Kotzig square of order 12 and an \(N_2\)-Latin square of order 3. Finally, if \(k = 1\) then construction (a) gives a Kotzig square of order \(2w\).

Theorem 2.3 If there exists a QFSTS\((u)\), \(u \neq 3, 21, 33\), then there exists a QFSTS\((3(u - 1) + 1)\).

Proof: Let \(u - 1 = 2w\). Because \(u \neq 3, 21, 33\) and there exists a QFSTS\((u)\), we must have \(w \geq 4\) and \(w \neq 5, 8, 10, 16\). Let \(X, Y\) and \(Z\) be disjoint sets of cardinality \(2w\), and let \(\infty \notin X \cup Y \cup Z\). Denote the elements of \(X, Y\) and \(Z\) by \(X = \{x_i : 0 \leq i < 2w\}\), \(Y = \{y_i : 0 \leq i < 2w\}\) and \(Z = \{z_i : 0 \leq i < 2w\}\) for \(0 \leq i < w\), and \(m = x, y, z\) as appropriate.

Let \(L\) be a Kotzig square of order \(2w\). Then define a set of blocks \(D = \{(x_i, y_j, z_{L(i,j)}) : 0 \leq i < 2w, 0 \leq j < 2w\}\).

Now \(\{\infty\} \cup X \cup Y \cup Z, A \cup B \cup C \cup D\) is a STS\((3(u - 1) + 1)\). We prove that it is quadrilateral-free.

Let \(Q\) denote the four blocks in a hypothetical quadrilateral. There are the following possible distributions of the four blocks to consider:
(i) \(Q \subset A, Q \subset B \) and \(Q \subset C \). There are no quadrilaterals contained in \(A, B \)
or \(C \), since the STS\((u)\)s are quadrilateral-free.

(ii) \(Q \subset D \). Such a quadrilateral must look like

\[
\{x_1, y_1, z_k\}, \{x_1, y_2, z_g\}, \{x_1, y_j, z_k\}, \{x_1, y_h, z_g\}.
\]

Then \(L(i, j) = L(f, h) = k \) and \(L(f, j) = L(i, h) = g \), so \(L \) has a subsquare of order two, a contradiction.

(iii) \(|Q \cap D| = 3\). If, for example, \(|Q \cap A| = 1\) then the quadrilateral has the form

\[
\{x_i, x_j, x_k\}, \{x_i, y_l, z_m\}, \{x_j, y_l, W\}, \{x_k, W, z_m\}.
\]

From the third block \(W = z_f \), while from the fourth \(W = y_g \), a contradiction. Thus \(|Q \cap D| = 3\) is not possible.

(iv) \(|Q \cap A| = 1, |Q \cap B| = 1 \) and \(|Q \cap D| = 2\). Then \(Q \) has the form

\[
\{\infty, x_i, x_j\}, \{\infty, y_g, y_h\}, \{x_i, y_g, z_k\} \text{ and } \{x_j, y_h, z_k\}
\]

so that \(\{i, j\} = \{2a, 2a + 1\} \) and \(\{g, h\} = \{2b, 2b + 1\} \). But \(L(i, g) = L(j, h) \), contradicting property (3).

(v) \(|Q \cap A| = 1, |Q \cap C| = 1 \) and \(|Q \cap D| = 2\). Then \(Q \) has the form

\[
\{\infty, x_i, x_j\}, \{\infty, z_g, z_h\}, \{x_i, y_k, z_g\} \text{ and } \{x_j, y_k, z_h\}
\]

so that \(\{i, j\} = \{2a, 2a + 1\} \) and \(\{g, h\} = \{2b, 2b + 1\} \). Then \(\{L(i, k), L(j, k)\} = \{2b, 2b + 1\} \), contradicting property (1).

(vi) \(|Q \cap B| = 1, |Q \cap C| = 1 \) and \(|Q \cap D| = 2\). Then \(Q \) has the form

\[
\{\infty, y_i, y_j\}, \{\infty, z_g, z_h\}, \{x_k, y_i, z_g\} \text{ and } \{x_k, y_j, z_h\}
\]

so that \(\{i, j\} = \{2a, 2a + 1\} \) and \(\{g, h\} = \{2b, 2b + 1\} \). Then \(\{L(k, i), L(k, j)\} = \{2b, 2b + 1\} \), contradicting property (2).

No other possible distributions of \(Q \) need to be considered. Hence, the STS\((3(u−1) + 1)\) is quadrilateral-free.

Our next construction generalises this.
Theorem 2.4 If there exist a QFSTS(v) and a QFSTS(u), and u > 3, u ≠ 21, 33, then there exists a QFSTS(v(u − 1) + 1).

Proof: Take a QFSTS(v) = (V, B) and let $I_{u−1} = \{0, 1, \ldots, u−2\}$. We construct a QFSTS(v(u − 1) + 1) on the set $\{\infty\} \cup (V \times I_{u−1})$. For each $a \in V$, put a QFSTS(u) on $V_a = \{\infty\} \cup \{a\} \times I_{u−1}$. Without loss of generality, we can stipulate that this STS contains the blocks $\{\infty, a_{2i}, a_{2i+1}\}$ for $0 \leq i < (u−1)/2$. For each block $\{a, b, c\} \in B$, fix the order of the elements and put the TD(3, u − 1) which arises from a Kotzig square of order $u−1$ on $\{a, b, c\} \times I_{u−1}$. We claim that this produces a QFSTS(v(u − 1) + 1). It is easy to see that we obtain an STS(v(u − 1) + 1), so we concentrate on proving it is anti-Pasch.

First of all, if there is a Pasch configuration in the STS which involves the point ∞, then for some $a, b \in V$ two of the blocks must come from V_a, V_b. If $a = b$ then these and the other two blocks come from the same QFSTS(u), a contradiction. So $a \neq b$ and the other two blocks come from the TD associated with the block in B which contains the pair $\{a, b\}$. As in the proof of the previous result this supposition produces a contradiction.

It follows that any possible Pasch configuration contains at most one block from any of the V_a’s. If it contained one such block, then it would necessarily have the form

$$\{a_i, a_j, a_k\}, \{a_i, b_i, c_m\}, \{a_j, b_l, D\}, \{a_k, D, c_m\}.$$

From the third block we have $D = c_f$ and from the fourth $D = b_g$, a contradiction.

Thus any Pasch configuration must have all four blocks from the TDs. It therefore has the form

$$\{a_i, b_j, c_k\}, \{a_i, y_m, z_n\}, \{x_l, b_j, z_n\}, \{x_l, y_m, c_k\},$$

where the blocks obtained from these by deleting the subscripts lie in B. Since there is no quadrilateral in B, at least two (and consequently all four) of these resulting blocks are identical; indeed $x = a, y = b$ and $z = c$. But then the supposed quadrilateral comprises

$$\{a_i, b_j, c_k\}, \{a_i, b_m, c_n\}, \{a_i, b_j, c_n\}, \{a_l, b_m, c_k\},$$

and consideration of the suffices establishes that the underlying Latin square has a subsquare of order 2, a final contradiction. \qed
3 Bose-type Constructions

Theorem 3.1 If there exists a QFSTS \((6n+1)\) and \(3, 7 \nmid (2s+1)\), then there exists a QFSTS \((6n(2s+1) + 1)\).

Proof: Take \(2s+1\) copies of the QFSTS \((6n+1)\), one on each of the point sets \(V_i\) where

\[
V_i = \{\infty, (0, i_0), (0, i_1), (0, i_2), (1, i_0), (1, i_1), (1, i_2), \ldots \}
\]
\[
\ldots, (2n - 1, i_0), (2n - 1, i_1), (2n - 1, i_2)\},
\]

\[0 \leq i \leq 2s.\] The corresponding sets of blocks \(C_i\) are chosen so that the triples containing \(\infty\) are

\[
\{\infty, (0, i_0), (0, i_1)\}, \{\infty, (0, i_2), (1, i_0)\}, \{\infty, (1, i_1), (1, i_2)\},
\]
\[
\{\infty, (2, i_0), (2, i_1)\}, \ldots, \{\infty, (2n - 1, i_1), (2n - 1, i_2)\}.
\]

Next take an Abelian group \((G, \circ)\) of order \(2s+1\) represented on \(G = \{0, 1, \ldots, 2s\}\) with identity \(I\) and define \(x \ast y\) for \(x, y \in G\) to be the unique \(z \in G\) for which \(z \circ z = x \circ y\). Note that \(x, y, x \ast y\) are either all equal or all distinct.

Let \(N\) be an \(N_2\)-Latin square of order \(2n\) represented on \(\{0, 1, \ldots, 2n - 1\}\); such squares exist for all \(n \geq 3\) \([7, 8, 11]\), a condition which is required for the existence of a QFSTS\((6n+1)\).

Let \(L\) be the set of triples of the form \(\{(a, i_\alpha), (b, j_\beta), (c, (i \ast j)_{\alpha+1})\}\) where \(a, b, c \in \{0, 1, \ldots, 2n - 1\}, 0 \leq i < j \leq 2s\), subscript arithmetic is modulo 3 and \(c = N(a, b)\).

Put \(V = \bigcup_{i=0}^{2s} V_i\) and \(B = \bigcup_{i=0}^{2s} C_i \cup L\).

We claim that \((V, B)\) is a QFSTS\((6n(2s+1) + 1)\). To verify this, note firstly that

\[
|C_i| = n(6n + 1) \quad \text{and} \quad |L| = 4n^2 \cdot 3 \cdot s(2s + 1).
\]

Hence \(|B| = n(2s + 1)[6n(2s + 1) + 1]\), the number of blocks required to form an STS \((6n(2s + 1) + 1)\). Moreover, any pair of points from \(V\) which contains \(\infty\) lies in a block in one of the \(C_i\)'s as does any pair of the form \(\{(a, i_\alpha), (b, i_\beta)\}\). All remaining pairs are of the form \(\{(a, i_\alpha), (b, j_\beta)\}\) with \(i < j\). We now identify the third element \((c, k_\gamma)\) of the triple from \(L\) which contains this pair.

(i) If \(\beta = \alpha\), then \(\gamma = \alpha + 1\), \(k = i \ast j\) and \(c = N(a, b)\).
In cases (b) and (c) we may take three blocks from

It follows that there can be no quadrilateral of the form described in (a).

\{a, i_\alpha, (b, j_\beta), (c, k_\gamma)\}, \{(a, i_\alpha, (b, j_\beta), (c, k_\gamma)\} and \{(a', i'_\alpha), (b, j_\beta), (b', j'_y)\},

and the fourth block forming a possible quadrilateral as \{(a', i'_\alpha), (c, k_\gamma), (c', k'_s)\}.

(ii) If \(\beta = \alpha + 1\), then \(\gamma = \alpha\) and \(k\) is chosen so that \(i \ast k = j\). If \(k > i\) then \(c\) is chosen so that \(b = N(a, c)\); if \(k < i\) then \(c\) is chosen so that \(b = N(c, a)\).

(iii) If \(\beta = \alpha + 2\), then \(\gamma = \alpha + 2\) and \(k\) is chosen so that \(j \ast k = i\). If \(k > j\) then \(c\) is chosen so that \(a = N(b, c)\); if \(k < j\) then \(c\) is chosen so that \(a = N(c, b)\).

It remains to prove that \(B\) is quadrilateral-free. Since none of the \(C_i\)'s contains a quadrilateral, any possible quadrilateral in \(B\) must comprise either:

(a) a triple from \(C_i\), another from \(C_j\), \(i \neq j\), plus two from \(L\), or

(b) a triple from \(C_i\), plus three from \(L\), or

(c) four triples from \(L\).

We examine each of these cases in turn.

Case (a)

Suppose there is a quadrilateral comprising

\[\{(\infty, (a, i_\alpha), (b, j_\beta)), (\infty, (c, j_\gamma), (d, j_\delta))\},\]

\[\{(a, i_\alpha, (c, j_\gamma), (e, k_\epsilon)), (b, i_\beta, (d, j_\delta), (e, k_\epsilon))\}\]

where \(i \neq j\), \(\alpha \neq \beta\), \(\gamma \neq \delta\).

(i) If \(\gamma = \alpha\) then \(\epsilon = \alpha + 1\) and \(k = i \ast j\). Then if \(\beta = \alpha + 1\) we have \(\delta = \alpha + 2\) and \(j = i \ast k\), which gives \(k = i \ast (i \ast k)\) or \((k \circ i^{-1})^3 = I\), an impossibility since \(3 j(2s + 1)\). Similarly, if \(\beta = \alpha + 2\), we have \(\delta = \alpha + 1\) and \(i = j \ast k\), giving \(k = (j \ast k) \ast j\) and hence again a contradiction.

(ii) If \(\gamma = \alpha + 1\) then \(\epsilon = \alpha\) and \(j = i \ast k\). Then if \(\beta = \alpha + 1\) we have \(\delta = \alpha\) and \(i = j \ast k\). Similarly if \(\beta = \alpha + 2\) then \(\delta = \alpha + 2\) and \(k = i \ast j\). Both possibilities again lead to a contradiction.

(iii) If \(\gamma = \alpha + 2\) then \(\epsilon = \alpha + 2\) and \(i = j \ast k\). Then if \(\beta = \alpha + 1\) we have \(\delta = \alpha + 1\) and \(k = i \ast j\). Similarly if \(\beta = \alpha + 2\) then \(\delta = \alpha\) and \(j = i \ast k\). Again, both possibilities give a contradiction.

It follows that there can be no quadrilateral of the form described in (a).

In cases (b) and (c) we may take three blocks from \(L\) as

\[\{(a, i_\alpha), (b, j_\beta), (c, k_\gamma)\},\] \[\{(a, i_\alpha), (b', j'_y), (c', k'_s)\}\] and \[\{(a', i'_\alpha), (b, j_\beta), (b', j'_y)\},\] and the fourth block forming a possible quadrilateral as \[\{(a', i'_\alpha), (c, k_\gamma), (c', k'_s)\}\].
Without loss of generality we may assume \(\gamma' = \gamma \) then from the first two blocks we can deduce \(j_\beta = j_\beta' \), which contradicts the fact that the third block lies in \(\mathcal{L} \). Hence we may assume \(\gamma' \neq \gamma \) and, consequently, \(\beta' \neq \beta \).

(i) If \(\beta = \alpha \) then \(\gamma = \alpha + 1 \). But then if \(\beta' = \alpha + 1 \) we have \(\gamma' = \alpha \) and \(j' = i * k \); also \(\alpha' = \alpha \) and \(j' = j * k \), so \(j * k = i * k \), a contradiction. On the other hand if \(\beta' = \alpha + 2 \) we have \(\gamma' = \alpha + 2 \) and \(i = j' * k \); also \(\alpha' = \alpha + 2 \) and \(j = j' * k \), so \(i = j \), a contradiction.

(ii) If \(\beta = \alpha + 1 \) then \(\gamma = \alpha \) and \(j = i * k \). Then if \(\beta' = \alpha \) we have \(\alpha' = \alpha \) and \(j = j' * k \), so \(i * k = j' * k \), a contradiction. On the other hand if \(\beta' = \alpha + 2 \) we have \(\gamma' = \alpha + 2 \) and \(i = j' * k \); also \(\alpha' = \alpha + 1 \) and \(j' = j * k \). It then follows that \(j = ((j * k) * k) * k \) giving \((j \circ k^{-1})^7 = I\), a contradiction since \(7 \not| (2s + 1) \).

(iii) If \(\beta = \alpha + 2 \) then \(\gamma = \alpha + 2 \) and \(i = j * k \). Then if \(\beta' = \alpha \) we have \(\alpha' = \alpha + 2 \) and \(j' = j * k \), so \(i = j' \), a contradiction. On the other hand if \(\beta' = \alpha + 1 \) we have \(\gamma' = \alpha \) and \(j' = i * k \); also \(\alpha' = \alpha + 1 \) and \(j = j' * k \). It then follows that \(i = ((i * k) * k) * k \), giving \((i \circ k^{-1})^7 = I\), again a contradiction.

It follows that there can be no quadrilateral of the form described in (b).

Case (c)
Here \(i', k \) and \(k' \) are distinct. Consider the triples formed from the second components, namely \(\{i_\alpha, j_\beta, k_\gamma\}, \{i_\alpha, j'_\beta, k'_\gamma\}, \{i'_\alpha, j_\beta, j'_\beta\}, \{i'_\alpha, k_\gamma, k'_\gamma\} \). Suppose that two of these triples are identical. Without loss of generality we may assume that the first and second are equal. But \(j \neq j' \) and \(k \neq k' \) from the third and fourth triples and so we must have \(j_\beta = k'_\gamma \) and \(j'_\beta = k_\gamma \). But then from the first and fourth triples \(i'_\alpha = i_\alpha \) and so all four triples are identical. Again, without loss of generality we may then assume \(\beta = \alpha, \gamma = \alpha + 1, i < j \) and \(k = i * j \). The supposed quadrilateral then has the form:

\[
\begin{align*}
\{&(a, i_\alpha), (b, j_\alpha), (c, k_{\alpha + 1})\}, &\{&(a, i_\alpha), (c', j_\alpha), (b', k_{\alpha + 1})\}, \\
\{&(a', i_\alpha), (b, j_\alpha), (b', k_{\alpha + 1})\}, &\{&(a', i_\alpha), (c', j_\alpha), (c, k_{\alpha + 1})\},
\end{align*}
\]

where \(c = N(a, b) = N(a', c') \) and \(b' = N(a, c') = N(a', b) \). But this is impossible because \(N \) is an \(N_2 \)-Latin square.

It follows that the triples formed from the second components must be distinct. Without loss of generality we may assume \(\alpha = \beta \) and \(\gamma = \alpha + 1 \) so that \(k = i * j \).
If $\beta' = \alpha$ then $\gamma' = \alpha + 1$ and $\alpha' = \alpha + 1$ so that the fourth block gives $\gamma = \alpha + 2$, a contradiction. Similarly if $\beta' = \alpha + 2$ then $\gamma' = \alpha + 2$ and $\alpha' = \alpha + 2$ so that the fourth block gives $\gamma = \alpha$, a contradiction. Thus we must have $\beta' = \alpha + 1$ which gives $\gamma' = \alpha = \alpha'$. Examination of the four triples reveals $k = i \ast j$, $j' = i \ast k'$, $j' = i' \ast j$, $k = i' \ast k'$. Thus $i \circ j = i' \circ k'$ and $i \circ k' = i' \circ j$, from which we can deduce $(k' \circ j)^2 = I$, and so $k' = j$. But then $j' = k$ and $i' = i$. But then the four triples are not distinct, a contradiction. Thus there can be no quadrilateral of the form described in (c).

\[\Box\]

Theorem 3.2 If there exist a QFSTS(6n + 1), $n \geq 4$, $n \neq 5, 8, 10, 16$, and a QFSTS(6s+3), the latter having a parallel class, then there exists a QFSTS(6n(2s+1) + 1).

Proof: Take 2s+1 copies of the QFSTS (6n+1), one on each of the point sets V_i where

$$V_i = \{\infty, (0, i_0), (0, i_1), (0, i_2), (1, i_0), (1, i_1), (1, i_2), \ldots$$

$$\ldots, (2n - 1, i_0), (2n - 1, i_1), (2n - 1, i_2)\},$$

$0 \leq i \leq 2s$. The corresponding sets of blocks C_i are chosen so that the triples containing ∞ are

$$\{\infty, (0, i_0), (1, i_0)\}, \{\infty, (0, i_1), (1, i_1)\}, \{\infty, (0, i_2), (1, i_2)\},$$

$$\{\infty, (2, i_0), (3, i_0)\}, \{\infty, (2, i_1), (3, i_1)\}, \{\infty, (2, i_2), (3, i_2)\},$$

$$\vdots$$

$$\{\infty, (2n-2, i_0), (2n-1, i_0)\}, \{\infty, (2n-2, i_1), (2n-1, i_1)\}, \{\infty, (2n-2, i_2), (2n-1, i_2)\}.$$

Take the QFSTS(6s+3) on the points $\{i_6 : 0 \leq i \leq 2s, \quad \alpha = 0, 1 \text{ or } 2\}$ with the parallel class $P = \{(i_0, i_1, i_2) : 0 \leq i \leq 2s\}$. Let B_s denote the set of blocks forming this system.

Let L be a Kotzig square of side $2n$ represented on $\{0, 1, \ldots, 2n - 1\}$, and take L to be the set of triples of the form $\{(a, i_\alpha), (b, j_\beta), (c, k_\gamma)\}$ where $\{i_\alpha, j_\beta, k_\gamma\} \in B_s \setminus P, i < j < k$, $a, b, c \in \{0, 1, \ldots, 2n - 1\}$ and $c = L(a, b)$.

Put $V = \bigcup_{i=0}^{2s} V_i$ and $D = \bigcup_{i=0}^{2s} C_i \cup L$.

We claim that (V, D) is a QFSTS(6n(2s+1) + 1). To verify this, note firstly that

$|C_i| = n(6n + 1)$ and $|L| = 4n^2 \cdot 3s(2s + 1)$.
Hence \(|\mathcal{D}| = n(2s + 1)[6n(2s + 1) + 1]\), the number of blocks required to form an STS \((6n(2s + 1) + 1)\). Moreover, any pair of points from \(V\) which contains \(\infty\) lies in a block in one of the \(C_i\)'s as does any pair of the form \(\{(a, i_\alpha), (b, j_\beta)\}\). All remaining pairs are of the form \(\{(a, i_\alpha), (b, j_\beta)\}\) with \(i < j\). We now identify the third element \((c, k_\gamma)\) of the triple from \(\mathcal{L}\) which contains this pair. Firstly take \(k_\gamma\) such that \(\{(i_\alpha, j_\beta, k_\gamma)\} \in \mathcal{B}_s \setminus \mathcal{P}\). Note \(k \neq i, j\).

(i) If \(i < j < k\), put \(c = L(a, b)\).

(ii) If \(i < k < j\), take \(c\) so that \(b = L(a, c)\).

(iii) If \(k < i < j\), take \(c\) so that \(b = L(c, a)\).

It remains to prove that \(\mathcal{D}\) is quadrilateral-free. Since none of the \(C_i\)'s contains a quadrilateral, any possible quadrilateral in \(\mathcal{D}\) must comprise either:

(a) a triple from \(C_i\), another from \(C_j\), \(i < j\), plus two from \(\mathcal{L}\), or

(b) a triple from \(C_i\), plus three from \(\mathcal{L}\), or

(c) four triples from \(\mathcal{L}\).

We examine each of these cases in turn.

Case (a)

The quadrilateral must comprise

\[\{\infty, (2a, i_\alpha), (2a + 1, i_\alpha)\}, \quad \{\infty, (2b, j_\beta), (2b + 1, j_\beta)\}\]

together with either

\[\{(2a, i_\alpha), (2b, j_\beta), (c, k_\gamma)\}, \quad \{(2a + 1, i_\alpha), (2b + 1, j_\beta), (c, k_\gamma)\}\]

or

\[\{(2a, i_\alpha), (2b + 1, j_\beta), (c, k_\gamma)\}, \quad \{(2a + 1, i_\alpha), (2b, j_\beta), (c, k_\gamma)\}\].

In the former case one of the following must apply: \(c = L(2a, 2b) = L(2a + 1, 2b + 1)\), or \(2b = L(2a, c)\) and \(2b + 1 = L(2a + 1, c)\), or \(2b = L(c, 2a)\) and \(2b + 1 = L(c, 2a + 1)\).

In the latter case we have one of:

\(c = L(2a, 2b + 1) = L(2a + 1, 2b)\), or \(2b + 1 = L(2a, c)\) and \(2b = L(2a + 1, c)\), or \(2b + 1 = L(c, 2a)\) and \(2b = L(c, 2a + 1)\).

But all of these possibilities are in contradiction with the fact that \(L\) is a Kotzig square.
Case (b)
The quadrilateral has the form
\[
\{(a, i_\alpha), (b, i_\beta), (c, i_\gamma)\}, \quad \{(a, i_\alpha), (x, j_\delta), (y, k_\epsilon)\}, \\
\{(b, i_\beta), (x, j_\delta), (z, l_\phi)\}, \quad \{(c, i_\gamma), (y, k_\epsilon), (z, l_\phi)\},
\]
where \(i_\alpha, j_\delta, k_\epsilon\) are distinct, \(i_\beta, j_\delta, l_\phi\) are distinct and \(i_\gamma, k_\epsilon, l_\phi\) are distinct. Now if \(i_\alpha = i_\beta\) then from the second and third blocks we obtain \(k_\epsilon = l_\phi\), a contradiction. Thus \(i_\alpha \neq i_\beta\) and similarly \(i_\alpha \neq i_\gamma, i_\beta \neq i_\gamma\). Hence \(\{i_\alpha, i_\beta, i_\gamma\} = \{i_0, i_1, i_2\}\) and the blocks formed from the second components of the four blocks in the quadrilateral would therefore form a quadrilateral in \(B_s\), a contradiction.

Case (c)
The quadrilateral has the form
\[
\{(a, i_\alpha), (b, j_\beta), (c, k_\gamma)\}, \quad \{(a, i_\alpha), (x, l_\delta), (y, m_\epsilon)\}, \\
\{(b, j_\beta), (x, l_\delta), (z, n_\phi)\}, \quad \{(c, k_\gamma), (y, m_\epsilon), (z, n_\phi)\}.
\]
Without loss of generality we may assume \(i < j < k\) and from the third and fourth blocks we see \(l \neq j, m \neq k\).

If \(m_\epsilon = j_\beta\) then the second and fourth blocks give \(l_\delta = k_\gamma\) and \(n_\phi = i_\alpha\) and we then have \(c = L(a, b) = L(z, y), \quad x = L(a, y) = L(z, b)\). But this contradicts the fact that \(L\) is an \(N_2\)-square.

If \(m_\epsilon \neq j_\beta\) then \(l_\delta \neq k_\gamma\) and \(n_\phi \neq i_\alpha\). Consequently \(i_\alpha, j_\beta, k_\gamma, l_\delta, m_\epsilon, n_\phi\) are all distinct. Thus the blocks formed from the second components of the four blocks in the quadrilateral would form a quadrilateral in \(B_s\), a contradiction.

In connection with the above Theorem we observe that there exists a QFSTS(6s+3) with a parallel class for all \(s \geq 0\). This may be established from the constructions in [6] as follows. Firstly, the generalisation of the Bose construction given in [6] always produces a parallel class (the “Type A” blocks with \(\{a, b, c\} \in P\)). Secondly, if we construct an STS(\(uv\)) from an STS(\(u\)) and an STS(\(v\) (\(= (V, B)\)) by the standard product construction and if the STS(\(u\)) has a parallel class, say \(P\), then the resulting STS(\(uv\)) also has a parallel class comprising all blocks of the form \(\{(a, x), (b, x), (c, x)\}\), where \(\{a, b, c\} \in P\) and \(x \in V\). Following through the proof of the final theorem in [6], it is then easy to see that the systems constructed always contain a parallel class. Consequently we may state the following.
Corollary 3.3 If there exists a QFSTS$(6n + 1)$, $n \geq 4$, $n \neq 5, 8, 10, 16$, then for any odd integer m there exists a QFSTS$(6mn + 1)$.

4 Lu’s Construction

We employ a construction of Lu [9] to obtain the following result which has previously, and independently, been established by Chen Demeng [4].

Theorem 4.1 If there exists a QFSTS$(m + 2)$ and a QFSTS$(n + 2)$, then there exists a QFSTS$(mn + 2)$.

Proof: Let $(Z_m \cup \{a, b\}, \mathcal{A})$ be a QFSTS$(m + 2)$ with $\{a, b, 0\} \in \mathcal{A}$, and let $(Z_n \cup \{a, b\}, \mathcal{B})$ be a QFSTS$(n + 2)$. To avoid trivialities we may assume that $m, n > 1$. Let $N_{ab} = \{\{x_i, x_j\} : x_i, x_j \in Z_m \backslash \{0\}, \ell \in \{a, b\}$ and $\ell, x_i, x_j \in \mathcal{A}\}$. N_{ab} is a set of pairs on $Z_m \backslash \{0\}$ with every element appearing in two pairs. Each pair can then be ordered so that each element is the first element of one pair, and the second element of another; call this set of ordered pairs Q_{ab}. Define a permutation π on $Z_m \backslash \{0\}$ by setting $\pi(i) = j$ whenever $(i, j) \in Q_{ab}$. Subsequently, it is crucial that since $(a, b, 0), (a, i, \pi(i))$ and $(b, \pi(i), \pi^2(i))$ appear in \mathcal{A} (or the three blocks obtained by interchanging a and b appear in \mathcal{A}), no block of the form $\{0, i, \pi^2(i)\}$ can appear in \mathcal{A} since it is anti-Pasch.

We construct an STS$(mn + 2)$ on the point set $(Z_m \times Z_n) \cup \{a, b\}$ with triples of the following forms where $x_1, x_2, x_3 \in Z_m$ and $y_1, y_2, y_3 \in Z_n$.

(i) $\{(0, y_1), (0, y_2), (0, y_3)\}$ whenever $\{y_1, y_2, y_3\} \in \mathcal{B}$, and $\{\ell, (0, y_2), (0, y_3)\}$ whenever $\{\ell, y_2, y_3\} \in \mathcal{B}$ and $\ell \in \{a, b\}$, and $\{a, b, (0, y_3)\}$ when $\{a, b, y_3\} \in \mathcal{B}$;

(ii) $\{(x_1, y_1), (x_1, y_2), (x_2, y_3)\}$ where $(x_1, x_2) \in Q_{ab}$ and $y_1 + y_2 \equiv 2y_3 \pmod{n}$.

(iii) $\{\ell, (x_1, y_1), (x_2, y_2)\}$ where $\ell \in \{a, b\}$ and $\{\ell, x_1, x_2\} \in \mathcal{A}$.

(iv) $\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$ where $\{x_1, x_2, x_3\} \in \mathcal{A}, x_1 < x_2 < x_3$ and $y_1 + y_2 + y_3 \equiv 0 \pmod{n}$.

First of all, we prove that the construction gives an STS$(mn + 2)$. The number of type (i) blocks is $(n+2)(n+1)/6$. The number of type (ii) blocks is $(m-1)n(n-1)/2$. The number of type (iii) blocks is $(m-1)n$. The number of type (iv) blocks is $[((m+2)(m+1)/6)-m]n^2$. So the total number of blocks is $(mn+2)(mn+1)/6$ as expected. Therefore, it suffices to show that every pair of points is contained in a triple. All possibilities are exhausted as follows:
that there exists a Pasch configuration, P say, in the STS(mn) of the cases.

(1) Pairs $\{a, b\}$, $\{a, (0, y_1)\}$, $\{b, (0, y_2)\}$ and $\{(0, y_1), (0, y_2)\}$ are contained in some type (i) triple.

(2) When $x \in Z_m \setminus \{0\}$, $\{(x, y_1), (x, y_2)\}$ is contained in some type (ii) triple, since x is the first element of some pair in Q_{ab} and, n being odd, the equation $y_1 + y_2 \equiv 2y_3 \pmod{n}$ has a unique solution for y_3.

(3) Pairs $\{a, (x, y)\}$ and $\{b, (x, y)\}$ for $x \in Z_m \setminus \{0\}$ are contained in some type (iii) triple.

(4) If $\{x, x'\} \in N_{ab}$, then $\{(x, y_1), (x', y_2)\}$ for $x \neq x'$ is contained in a type (ii) triple when $y_1 \neq y_2$, or a type (iii) triple when $y_1 = y_2$. If $\{x, x'\} \notin N_{ab}$, then $\{(x, y_1), (x', y_2)\}$ for $x \neq x'$ is contained in some type (iv) triple.

Next, we show that the STS($mn + 2$) is anti-Pasch. Assume to the contrary that there exists a Pasch configuration, P say, in the STS($mn + 2$). We treat all of the cases.

(a) Suppose P contains the block $\{a, b, (0, y)\}$. Firstly let us assume that the other block of P containing a is $\{a, (0, y_1), (0, y_2)\}$. Then, without loss of generality, we may also assume that P contains $\{b, (0, y_1), (0, y_3)\}$. The remaining block must then be $\{(0, y), (0, y_2), (0, y_3)\}$. But this gives a contradiction because it implies that B contains the blocks $\{a, b, y\}$, $\{a, y_1, y_2\}$, $\{b, y_1, y_3\}$ and $\{y, y_2, y_3\}$ which form a Pasch configuration. So, alternatively, let us assume that the other blocks of P containing a and b are $\{a, (i, r), (\pi(i), r)\}$ and $\{b, (\pi(i), r), (\pi^2(i), r)\}$. Then the fourth block must be $\{(0, y), (i, r), (\pi^2(i), r)\}$ and once again we obtain a contradiction since A would then contain blocks forming a Pasch configuration. It follows that P cannot contain the block $\{a, b, (0, y)\}$.

(b) Suppose P contains a block of the form $\{a, (0, y_1), (0, y_2)\}$. Firstly let us assume it also contains a block $\{a, (0, y_3), (0, y_4)\}$. Then, without loss of generality, the remaining blocks are $\{(0, y_1), (0, y_3), X\}$ and $\{(0, y_2), (0, y_4), X\}$ where either $X = b$ or $X = (0, y_5)$. But in either case B would have to contain a Pasch configuration, giving a contradiction. So, alternatively, let us assume that P contains a block $\{a, (i, r), (\pi(i), r)\}$. Then, without loss of generality, the remaining blocks are $\{(0, y_1), (i, r), (x, y)\}$ and $\{(0, y_2), (\pi(i), r), (x, y)\}$. This implies that both $\{0, i, x\}$ and $\{0, \pi(i), x\}$ are blocks in A, a contradiction. Hence P contains no block of the form $\{a, (0, y_1), (0, y_2)\}$ and, similarly, no block of the form $\{b, (0, y_1), (0, y_2)\}$.
(c) Suppose P contains a block of the form $\{(0, y_1), (0, y_2), (0, y_3)\}$. Then the other blocks must be of the form $\{(0, y_1), (r_1, s_1), (r_2, s_2)\}$, $\{(0, y_2), (r_1, s_1), (r_3, s_3)\}$ and $\{(0, y_3), (r_2, s_2), (r_3, s_3)\}$. We obtain a contradiction by restricting to the first coordinates.

[Together (a), (b) and (c) establish that P contains no type (i) blocks.]

(d) Suppose P contains a block of the form $\{a, (i, r), (\pi(i), r)\}$. Then P must also contain a block $\{a, (j, s), (\pi(j), s)\}$. Because A contains no Pasch configurations, it is not possible to have both $\pi^2(i) = j$ and $\pi^2(j) = i$. By relabelling i and j (if necessary) we can assume $\pi^2(j) \neq i$.

Suppose firstly that the two remaining blocks are $\{(i, r), (j, s), X\}$ and $\{(\pi(i), r), (\pi(j), s), X\}$. If $i = j$ then $X = (\pi(i), y) = (\pi^2(i), y)$, a contradiction. If $i \neq j$ then $X = (x, y)$ where $\{i, j, x\}$, $\{\pi(i), \pi(j), x\} \in A$ and consequently A has a Pasch configuration formed from these latter two blocks and from $\{a, i, \pi(i)\}$ and $\{a, j, \pi(j)\}$.

Suppose, on the other hand, that the two remaining blocks are $\{(i, r), (\pi(j), s), X\}$ and $\{(\pi(i), r), (j, s), X\}$. If $i = j$ then $r \neq s$, so $X = (i, y)$ and we have $y + r \equiv 2s$ and $y + s \equiv 2r \pmod{n}$. Since $n \equiv \pm1 \pmod{6}$ these give $r = s$, a contradiction. If $j = \pi^2(i)$ and $r = s$ then the fourth block gives $X = b$ and the third block gives $\pi^4(i) = i$, which is impossible because A contains no Pasch configurations. If $j = \pi^2(i)$ and $r \neq s$ then the fourth block gives $X = (\pi(i), y)$ and the third block gives $\{i, \pi^3(i), \pi(i)\} \in A$, contradicting $\{a, i, \pi(i)\} \in A$. Finally, if $i \neq j \neq \pi^2(i)$ then $X = (x, y)$ where $\{i, \pi(j), x\}, \{\pi(i), j, x\} \in A$ which would form a Pasch configuration in A with $\{a, i, \pi(i)\}$ and $\{a, j, \pi(j)\}$.

It follows that P cannot contain a block $\{a, (i, r), (\pi(i), r)\}$ or, similarly, a block $\{b, (i, r), (\pi(i), r)\}$. Hence P contains no type (iii) blocks.

(e) Suppose P contains a block of the form $\{(i, r), (i, 2s - r), (\pi(i), s)\}$. Assume firstly that P also contains a block $\{(i, r), (i, 2t - r), (\pi(i), t)\}$. We consider the possible coordinates of the sixth point in the Pasch configuration. If $(i, 2s - r)$ and $(i, 2t - r)$ are joined then the first coordinate of this sixth point must be $\pi(i)$. But no block has all three points with first coordinate $\pi(i)$. If $(i, 2s - r)$ is joined to $(\pi(i), t)$, then the sixth point must be $(i, 2t - 2s + r)$. Similarly, the remaining pair of points force the sixth point to be of the form $(i, 2s - 2t + r)$. We must therefore have $2t - 2s + r \equiv 2s - 2t + r \pmod{n}$ and, again because $n \equiv \pm1 \pmod{6}$, then $t = s$ which is a contradiction.

So, alternatively, assume that P also contains a block of the form $\{(i, r), (j, u), (k, -r - u)\}$. A block is needed containing $(i, 2s - r)$ and $(j, u)
and hence the first coordinate of the sixth point must be \(k \). The first coordinates in the last block must then be \(k, k \) and \(\pi(i) \). But \(k \neq i \) as we have a block \(\{(i, r), (j, u), (k, -r - u)\} \), a contradiction.

Hence, \(P \) contains no type (ii) blocks.

(f) It is now clear that any Pasch configuration \(P \) can only contain blocks of type (iv), so suppose \(P \) contains \(\{(i, r), (j, s), (k, -s - r)\} \). If it also contains \(\{(i, r), (j_1, s_1), (k_1, -s_1 - r)\} \) where \(\{j_1, k_1\} \neq \{j, k\} \) then the remaining two blocks will project to a Pasch configuration in the STS\((m + 2)\). If, however, \(P \) also contains \(\{(i, r), (j, t), (k, -r - t)\} \) with \(t \neq s \) then the remaining blocks must be \(\{(j, s), (k, -r - t), (i, y)\} \) and \(\{(j, t), (k, -s - r), (i, y)\} \) where \(y + s - r - t \equiv y + t - s - r \equiv 0 \pmod{n} \), giving \(s = t \), a contradiction.

\[\square \]

5 GDD Constructions

A TD\((3, n)\) without any-sub TD\((3, 2)\) is equivalent to an \(N_2 \)-Latin square of order \(n \). We call such a TD\((3, n)\) an \(N_2\)-TD\((3, n)\).

Theorem 5.1 If there exists a QFSTS\((2v + 1)\) and a QFSTS\((2n + 1)\), and \(n > 4 \), then there exists a QFSTS\((2vn + 1)\).

Proof: The construction employed is originally due to Wilson [13]. Delete a point from the QFSTS\((2v + 1)\) to form a 3-GDD of type \(2^v \). Replace each remaining point \(x \) by \(n \) points \(x_1, x_2, \ldots, x_n \) and then use an \(N_2\)-TD\((3, n)\) to produce a 3-GDD of type \((2n)^v \). Add one new point \(\infty \) and, on each group together with \(\infty \), place a copy of the QFSTS\((2n + 1)\) so that when \(\{\infty, a_i, b_j\} \) is a triple, then \(a \neq b \). Call the triples of the 3-GDD of type \((2n)^v \) vertical, and the triples of the STS\((2n + 1)\)s horizontal. Points and blocks from the same copy of the STS\((2n + 1)\) will be said to be on the same level. The resulting set of triples forms an STS\((2vn + 1)\), which we prove is anti-Pasch. Suppose to the contrary that a Pasch configuration \(P \) is present.

Suppose firstly that \(P \) contains \(\infty \). Then \(P \) contains at least two horizontal blocks. Since the STS\((2n + 1)\) used is anti-Pasch these two horizontal blocks cannot be from the same level. Hence \(P \) must contain two horizontal and two vertical blocks. But then the STS\((2v + 1)\) would have to contain a Pasch configuration. It follows that \(P \) cannot contain \(\infty \).

Suppose next that \(P \) contains two horizontal blocks which do not contain \(\infty \). These must intersect in a common point and consequently they and the remaining
two blocks must be from the same level. But then the STS\((2n + 1)\) would have to contain a Pasch configuration. Hence \(P\) contains at most one horizontal block.

Suppose now that \(P\) contains precisely one horizontal block. Without loss of generality this block has the form \(\{a_i, a_j, b_k\}\) (where \(b\) may or may not equal \(a\)) and there are vertical blocks \(\{a_i, c_l, d_m\}\) and \(\{a_j, c_l, e_p\}\). But then \(d_m\) and \(e_p\) come from the same level and so the fourth block must be horizontal, a contradiction.

Finally suppose that \(P\) contains four vertical triples. If all six points come from different levels then the STS\((2\nu + 1)\) would contain a Pasch configuration. This would also be the case if just two of the six points came from the same level (with the remaining four from different levels). If two points come from one level and a further two from another level then the third pair must also share a common level, which is impossible since the STS\((2v + 1)\) used was anti-Pasch and the TD used was an \(N_2\)-TD.

We have one more recursive construction using GDDs.

Theorem 5.2 If there exist a QFSTS\((2v + 1)\), a QFSTS\((4n + 1)\) and a QFSTS\((2n(v - 1) + 1)\), and if \(n, v > 4\) then there exists a QFSTS\((2n(3v - 1) + 1)\).

Proof: We shall require a particular 3-GDD of type \((2n)^v\) which is constructed as in the proof of the previous Theorem. Note from the preceding proof that the blocks of this GDD cannot form a Pasch configuration.

For the main construction take an \(N_2\)-TD\((3, v)\), and delete a point to obtain a \(\{3, v\}\)-GDD (say \(G\)) of type \(2^v(v - 1)^1\). Replace each point \(x\) of \(G\) by \(2n\) points \(x_1, x_2, \ldots, x_{2n}\) (we shall refer to \(x\) as the projection of \(x_i\)). Then using an \(N_2\)-TD\((3, 2n)\) for the original \(G\)-blocks of size three and using our 3-GDD of type \((2n)^v\) for each of the two original \(G\)-blocks of size \(v\), we may construct a 3-GDD of type \((4n)^v(2n(v - 1))^1\). Add one new point \(\infty\) and, on each group together with \(\infty\), place a copy of the QFSTS\((4n + 1)\) or a copy of the QFSTS\((2n(v - 1) + 1)\), as appropriate, so that when \(\{\infty, a_i, b_j\}\) is a triple then \(a \neq b\). Call the triples of the 3-GDD of type \((4n)^v(2n(v - 1))^1\) vertical, and triples of the QFSTS\((4n + 1)\)s and the QFSTS\((2n(v - 1) + 1)\) horizontal. Points and blocks from the same copy of the QFSTS\((4n + 1)\) will be said to be on the same level; those from the copy of the QFSTS\((2n(v - 1) + 1)\) will be said to be on the bottom level. The resulting set of triples forms an STS\((2n(3v - 1) + 1)\) which we prove is anti-Pasch. Suppose that this is not the case and that a Pasch configuration \(P\) is present.

Suppose firstly that \(P\) contains \(\infty\). Then \(P\) contains at least two horizontal blocks. Since the STS\((4n + 1)\) and the STS\((2n(v - 1) + 1)\) used are anti-Pasch, these two horizontal blocks cannot be from the same level. Hence \(P\) must contain
two horizontal and two vertical blocks. If one vertical block comes from the 3-GDD of type \((2n)^v\) then so does the other and they project back into different G-blocks of size \(v\); consequently they are disjoint and cannot contribute to a Pasch configuration. Thus both vertical blocks must come from the \(N_2\)-TD(3,2n). If neither horizontal block comes from the bottom level then, by projecting back to the TD(3,\(v\)), we find a Pasch configuration amongst the blocks of this design, contradicting the fact that it is an \(N_2\)-TD. If one of the horizontal blocks comes from the bottom level then again by projecting back to the \(N_2\)-TD(3,\(v\)) we find that the projection of the sixth point (i.e. the point which does not lie in a horizontal block) must lie in two different groups of the TD(3,\(v\)), which is impossible. It follows that \(P\) cannot contain \(\infty\).

Suppose next that \(P\) contains two horizontal blocks which do not contain \(\infty\). These must intersect in a common point and consequently they and the remaining two blocks must be from the same level. But then the STS(\(4n + 1\)) or the STS(\(2n(v - 1) + 1\)) would have to contain a Pasch configuration. Hence \(P\) contains at most one horizontal block.

Suppose now that \(P\) contains precisely one horizontal block. Assume firstly that this block is from a copy of the QFSTS(\(4n + 1\)) so that, without loss of generality, it has the form \(\{a_i, a_j, b_k\}\) (where \(b\) may or may not equal \(a\)) and there are vertical blocks \(\{a_i, c_l, d_m\}\) and \(\{a_j, c_l, e_p\}\). But then \(d_m\) and \(e_p\) come from the same level and so the fourth block must be horizontal, a contradiction. Next assume that the single horizontal block is from the bottom level. If this block has the form \(\{a_i, a_j, b_k\}\) (where \(b\) may or may not equal \(a\)) then, as above, we have a contradiction. If the horizontal block has the form \(\{a_i, b_j, c_k\}\) (\(a, b, c\) all distinct) then the projections of two of the remaining three points of \(P\) must lie in the same group of \(v\) points of \(G\) and be distinct; this is not compatible with these two points of \(P\) lying in a block containing one of \(a_i, b_j\) or \(c_k\).

Finally suppose that \(P\) contains four vertical triples. If none of the six points of \(P\) come from the bottom level then the four triples of \(P\) come from the 3-GDD of type \((2n)^v\) and they must come from the same copy of this GDD because the two copies of this design are pointwise disjoint. Thus the blocks of this GDD would contain a Pasch configuration. But, as noted above, this is not the case. If precisely one of the six points comes from the bottom level then consideration of the two vertical blocks through this point, and the fact that there are no horizontal blocks, gives no location for the remaining sixth point. If precisely two of the six points come from the bottom level then either the remaining four points come from just two levels (with two of the four points at each level) and the two points from each level have the same projection, or the remaining four points come from four different levels and the two points from the bottom level have different projections. In the former case we would have a Pasch configuration in the \(N_2\)-TD(3,2n) and in
the latter case one in the N_2-TD(3,ν). Lastly, we note that we cannot have three or more points of P from the bottom level as this would imply the existence of a horizontal block.

6 Conclusion

Using the constructions above we can produce QFSTS(ν) for a wide range of admissible ν. Such systems are already known to exist for all $ν ≡ 3 \pmod{6}$ and so interest naturally focuses on $ν ≡ 1 \pmod{6}$. We show firstly below how one may cover the residue classes $ν ≡ 1$ or $7 \pmod{18}$, $ν \neq 7$. By further subdivision of the remaining residue class, $ν ≡ 13 \pmod{18}$, it is possible to make further progress. However, the existing constructions for QFSTS(ν)s do not appear to be capable of establishing the conjectured result that such systems exist for all $ν ≡ 1$ or $3 \pmod{6}$ apart from $ν = 7$ or 13. We go on to show that the existence of QFSTS(ν) in the special cases $ν = 6p + 1$, $p ≡ 5 \pmod{6}$, a prime, and $ν = 12p + 1$, $p ≡ 1 \pmod{6}$, a prime, would suffice to complete a proof of the conjecture. In the course of this section we shall make use of some specific QFSTS(ν)s for $ν < 100$; these may be found in [3] and the references cited therein.

Theorem 6.1 If $ν ≡ 1$ or $7 \pmod{18}$ and $ν \neq 7$ then there exists a QFSTS(ν).

Proof:

(a) $ν ≡ 7 \pmod{18}$. Suppose $ν = 18s + 7$ and $s ≥ 1$. Since there exists a QFSTS(6s + 3), an application of Theorem 2.3 gives a QFSTS(18s + 7) except in the cases $s = 3$ and $s = 5$. But these correspond to a QFSTS(61) and a QFSTS(97) which are known.

(b) $ν ≡ 1 \pmod{18}$. Reapplying Theorem 2.3 gives a QFSTS(54s + 19) for $s ≥ 1$. Since there exists a QFSTS(19), we may assert the existence of QFSTS(54s + 19) for $s ≥ 0$. Next, taking a QFSTS(37) and using Theorem 5.1 with $n = 18$ and $ν = 3s + 1$ we obtain a QFSTS(108s + 37) for $s ≥ 0$. Taking a QFSTS(55), we may apply Theorem 3.2 with $n = 9$ to obtain a QFSTS(108s + 55) for $s ≥ 0$. Again taking a QFSTS(19) and using Theorem 3.1 with $n = 3$ and $s = 3t + 2$ ($t ≥ 0$), we obtain a QFSTS(108s + 91) except in the case when $7| (6t + 5)$, i.e. when $t = 7u + 5$ (corresponding to a QFSTS(756u + 631)). To deal with this exception we may use Theorem 3.2 with $n = 21$; this requires a QFSTS(127) which may be obtained from Theorem 2.3 using a QFSTS(43). We obtain from Theorem 3.2 a QFSTS(252s + 127) ($s ≥ 0$) which covers the case of QFSTS(756u + 631).
At this point it is opportune to summarise the residue classes modulo 108 which are covered by the previous paragraph. These are 19, 37, 55, 73 and 91. To deal with the remaining case, \(v \equiv 1 \pmod{108} \), we use induction. Firstly take a QFSTS(37) and apply Theorem 2.3 to obtain a QFSTS(109). Next assume that QFSTS\((v)\)s exist for all \(v \equiv 1 \pmod{18} \) satisfying \(19 \leq v \leq v_0 \). (We have established this for \(v_0 = 109 \).) Now choose \(v' \equiv 1 \pmod{18} \) satisfying \(19 \leq v' \leq 3v_0 \). If \(v' \equiv 19, 37, 55, 73 \) or 91 (mod 108), we already have a QFSTS\((v')\), so suppose \(v' = 108s + 1 \). Put \(u = (v' + 2)/3 = 36s + 1 \). Then \(u \leq v_0 \) and \(u \equiv 1 \pmod{18} \) and so, by assumption, there exists a QFSTS\((u)\). Theorem 2.3 then gives a QFSTS\((3u - 2)\), i.e. a QFSTS\((v')\). It now follows by induction that a QFSTS\((v)\) exists for all \(v \equiv 1 \pmod{18} \), \(v \geq 19 \). □

Theorem 6.2 If \(v \equiv 49 \pmod{72} \) then there exists a QFSTS\((v)\).

Proof: Firstly suppose \(v \equiv 49 \pmod{144} \). Take a QFSTS\((49)\) and a QFSTS\((6s + 3)\) and apply Theorem 5.1. This gives a QFSTS\((144s + 49)\) for \(s \geq 0 \). Secondly suppose \(v \equiv 121 \pmod{144} \). Take a QFSTS\((25)\) and apply Corollary 3.3 with \(n = 4 \) and \(m = 6s + 5 \). This gives a QFSTS\((144s + 121)\) for \(s \geq 0 \). □

Theorem 6.3 If \(v \equiv 31 \pmod{36} \) and \(v \) is not of the form \(v = 6p + 1 \), where \(p \) is a prime, then there exists a QFSTS\((v)\).

Proof: If \(v \equiv 31 \pmod{36} \) then we may write \(v - 1 = 6p_1p_2\ldots p_k \), where each \(p_i \) is an odd prime, at least 5, and an odd number of these primes satisfy \(p_i \equiv 5 \pmod{6} \). From the assumption in the statement of the Theorem, \(k \geq 2 \), and we may also assume that \(p_k \equiv 5 \pmod{6} \). But then \(3p_k \equiv 3 \pmod{6} \) and \(2p_1p_2\ldots p_{k-1} + 1 \equiv 3 \pmod{6} \). Applying Theorem 2.4, we obtain a QFSTS\((v)\). □

Theorem 6.4 If \(v \equiv 13 \pmod{72} \) and \(v - 1 \) has a factor of the form \(6t + 5 \) then there exists a QFSTS\((v)\).

Proof: If \(v \equiv 13 \pmod{72} \) then we may write \(v - 1 = 12p_1p_2\ldots p_k \), where, since \(v \neq 13 \), each \(p_i \) is an odd prime, at least 5, and an even number of these primes satisfy \(p_i \equiv 5 \pmod{6} \). From the assumption in the statement of the Theorem, \(k \geq 2 \) and one of the primes is congruent to 5 (mod 6), say \(p_k \equiv 5 \pmod{6} \). But then \(3p_k \equiv 3 \pmod{6} \) and \(4p_1p_2\ldots p_{k-1} + 1 \equiv 3 \pmod{6} \). Provided \(4p_1p_2\ldots p_{k-1} + 1 \neq 21 \), Theorem 2.4 may be applied to obtain a QFSTS\((v)\). If
4p_1 p_2 \ldots p_{k-1} + 1 = 21$, then $k = 2$ and $p_1 = 5$; if $p_2 \neq 5$, then we simply exchange p_1 and p_2 and apply Theorem 2.4. The remaining case, $k = 2, p_1 = p_2 = 5$, corresponds to a QFSTS(301). This latter design may be obtained from a QFSTS(21) and a QFSTS(31) using Theorem 5.1.

Our next observation is something between a conjecture and a theorem. We state it as a proposition.

Proposition 6.5 If it could be shown that there exists a QFSTS(v) for all $v = 6p + 1$ where $p \equiv 5 \pmod{6}$ is a prime, and for all $v = 12p + 1$ where $p \equiv 1 \pmod{6}$ is a prime, then it would follow that there exist a QFSTS(v) if and only if $v \equiv 1$ or $3 \pmod{6}$ and $v \neq 7$ or 13.

Proof: After the preceding Theorems, it remains only to deal with the cases $v \equiv 13, 31$ and 67 (mod 72). In the latter two cases $v \equiv 31 \pmod{36}$ and a QFSTS(v) exists either as a consequence of the assumption in the statement of the Proposition or as a consequence of Theorem 6.3.

To deal with the case $v \equiv 13 \pmod{72}, v \neq 13$, we note that Theorem 6.4 produces a QFSTS(v) unless $v - 1$ has no factor of the form $6t + 5$. But then $v - 1 = 12p_1 p_2 \ldots p_k$ where each p_i is an odd prime, at least 7, and all of these primes are congruent to 1 (mod 6). If $k = 1$ then the assumption in the statement of the Proposition gives a QFSTS(v). If $k \geq 2$ then take a QFSTS($12p_1 + 1$) and apply Corollary 3.3 with $n = 2p_1$ and $m = p_2 p_3 \ldots p_k$. This produces a QFSTS($12p_1 p_2 \ldots p_k + 1$), i.e. a QFSTS(v).

In the Proposition above we have, essentially, investigated the factorisation of $v - 1$. It is possible to obtain similar (but more complicated) criteria which would ensure the existence of QFSTS(v) by investigating either the factorisation of v itself or of $v - 2$. In the case of factorising v one uses the product construction [6] and in the case of factorising $v - 2$ one uses Theorem 4.1. It is also possible to combine these criteria with the ones given in our Proposition and with other constructions for QFSTS(v) given in [2] and [5]. We may thereby narrow the range of values of v, needed as the basis of an inductive argument, from the $6p + 1$ and $12p + 1$ of the Proposition. However, this range still (apparently) remains infinite.

Acknowledgement. Research of the first two authors was supported by grants from NSERC of Canada.
References

