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Abstract

We prove that the number of non-isomorphic face 2-colourable triangulations
of the complete graph Kn in an orientable surface is at least 2n2/54−O(n) for n
congruent to 7 or 19 modulo 36, and is at least 22n2/81−O(n) for n congruent
to 19 or 55 modulo 108.
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1 Introduction

It is known [5] that a complete graph, Kn, triangulates some orientable sur-
face if and only if n ≡ 0, 3, 4 or 7 (mod 12). It triangulates some non-
orientable surface if and only if n ≡ 0 or 1 (mod 3), n ≥ 6 and n 6= 7. For
the embedding to be face 2-colourable it is necessary for the vertex degrees
to be even and, consequently, for n to be odd. As pointed out in [1], at least
one face 2-colourable orientable embedding does exist for each n ≡ 3 or 7
(mod 12); the case n ≡ 3 is dealt with in Ringel’s book [5] and the case
n ≡ 7 is dealt with by material in Youngs’ paper [8]. The proof techniques
employed by these authors use the theory of current and voltage graphs. Face
2-colourable embeddings are of particular interest because the sets of three
vertices which form the triangles in each of the two colour classes themselves
form two Steiner triple systems of order n, STS(n)s. We recall here that an
STS(n) may be formally defined as being an ordered pair (V,B), where V
is an n-element set (the points) and B is a family of 3-element subsets of V
(the blocks) such that every 2-element subset of V appears in precisely one
block.

In two earlier papers [1, 2], three of the present authors presented con-
structions of face 2-colourable triangular embeddings of Kn for various values
of n. These constructions focused much more closely on the design-theoretical
aspect of the problem than did the earlier work of Ringel and Youngs. Based
partly on these constructions and partly on the existing work of Ringel and
Youngs, two non-isomorphic triangular embeddings of Kn in an orientable
surface are given in [1] for each n ≡ 7 (mod 12) and n 6= 7, and two non-
isomorphic triangular embeddings of Kn in a non-orientable surface are given
for half (in arithmetic set-density terms) of the residue class n ≡ 1 (mod 6).
In each case one of the two embeddings is face 2-colourable and the other is
not.

It appears that remarkably few examples are known of non-isomorphic
triangular embeddings of Kn. The paper [4] (see also [6]) gives three non-
isomorphic orientable triangulations for n = 19, two of which are not face 2-
colourable. The third of these, together with a further seven non-isomorphic
orientable triangulations (all eight of which have a cyclic automorphism of
order 19 and are face 2-colourable) are given in [2]. For n = 31, [2] gives seven
non-isomorphic face 2-colourable orientable triangulations of the complete
graph, and it is there remarked that computational evidence suggests the
existence of many more. However, to the best of our knowledge no other

5



explicit examples have been given of non-isomorphic triangular embeddings
of Kn and there has been no lower bound established (other than the figures
given above) for the number of non-isomorphic triangular embeddings.

The primary purpose of this paper is to establish that for n ≡ 7 or 19 (mod
36), there are at least 2n2/54−O(n) non-isomorphic triangular embeddings of
Kn in an orientable surface, all of which are face 2-colourable. When n ≡ 19
or 55 (mod 108) this estimate can be increased to 22n2/81−O(n). We also
establish a similar estimate for non-orientable embeddings when n ≡ 1 or 7
(mod 18) (and an improved estimate in the cases when n ≡ 1 or 19 (mod
54)).

In the remainder of this paper, when we speak of isomorphisms and au-
tomorphisms we will restrict ourselves to colour-preserving mappings; this
makes statements of some of the results a little simpler and in counting the
number of non-isomorphic systems there is only a factor 2 involved in moving
between colour-preserving mappings and non-colour-preserving mappings. In
the course of the proof we will exhibit collections of such embeddings with
a range of (to us) extraordinary and unexpected properties. Henceforth we
will use the term 2to-embedding to refer to a face 2-colourable triangular em-
bedding in an orientable surface. The colour classes will be called “black”
and “white”. We refer the reader to [1, 2] for reviews of the basic facts
about graph embeddings, the connection with biembeddings of Steiner triple
systems, and for some of the historical background.

The recursive construction which appears in Theorems 1 and 2 of [1] in a
topological form and again in Theorems 2 and 3 of [2] in a design-theoretical
form takes a 2to-embedding of Kn and produces a 2to-embedding of K3n−2.
This construction plays a key role in the current paper. We therefore now
give an informal review of this construction and show how it can be further
extended in a fashion suitable for our current purposes.

The construction commences with a given 2to-embedding of Kn. We fix
a particular vertex z∗ of Kn and, from the embedding, we delete z∗, all open
edges incident with z∗ and all the open triangular faces incident with z∗. The
resulting surface S now has a hole whose boundary is an oriented Hamiltonian
cycle in G = Kn−z∗ ≃ Kn−1. We next take three disjoint copies of the surface
S, all with the same colouring and orientation; we denote these by S0, S1 and
S2, and use superscripts in a similar way to identify corresponding points on
the three surfaces. For each white triangular face (uvw) of S, we “bridge”
S0, S1 and S2 by gluing a torus to the triangles (uiviwi) for i = 0, 1, 2 in
the following manner. We take a 2to-embedding in a torus of the complete
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tripartite graph K3,3,3 with the three vertex parts {ui}, {vi} and {wi} and
with black faces (uiwivi), for i = 0, 1, 2 (see Figure 1). The orientation of
the torus must induce the opposite cyclic permutation of {ui, vi, wi} to that
induced by the surfaces Si; this is important for the integrity of the gluing
operation where black faces (uiwivi) on the torus are glued to the white faces
(uiviwi) on S0, S1 and S2 respectively.
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Figure 1: Toroidal embedding of K3,3,3.

After all the white triangles have been bridged we are left with a new
connected triangulated surface with a boundary. We denote this surface by
Ŝ. It has (3n− 3) vertices and the boundary comprises three disjoint cycles,
each of length (n−1). In order to complete the construction to obtain a 2to-
embedding of K3n−2 we must construct an auxiliary triangulated bordered
surface S̄ and paste it to Ŝ so that all three holes of Ŝ will be capped. To do
this, suppose that D = (u1u2 . . . un−1) is our oriented Hamiltonian cycle in
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G = Kn − z∗. Since n is odd, every other edge of D is incident with a white
triangle in S; let these edges be u2u3, u4u5, . . . , un−1u1.

The surface S̄ has, as vertices, the points ui
j for i = 0, 1, 2 and j =

1, 2, . . . , n − 1 together with one additional point which we here call ∞.
Suppose initially that n ≡ 3 (mod 12). We may then construct S̄ from the
oriented triangles listed below (Table 1). The reason for the classification of
the triangles into types 1 and 2 will become apparent shortly. Precisely how
S̄ is constructed is described in more detail in [1] where it is also proved that
the final graph that triangulates the final surface is indeed a complete graph
of order 3n − 2.

Type 1 oriented triangles (j = 1, 3, 5, . . . , n − 2)
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Type 2 oriented triangles (j = 1, 3, 5, . . . , n − 2)
Black
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j+2∞)

( Subscript arithmetic cycles modulo n − 1.)

Table 1.

The significance of the condition n ≡ 3 (mod 12) is that it ensures that
the resulting surface is a closed surface and not a pseudosurface. (A pseu-
dosurface is obtained from a collection of closed surfaces by making a finite
number of identifications, each of finitely many points, so that the resulting
topological space is connected.) Equivalently, it ensures that the point ∞
has a single cycle of 3n − 3 points surrounding it and not a union of shorter
cycles. As it appears above, the construction does not work in the case n ≡ 7
(mod 12); however we can modify the construction by taking a single value
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of j ∈ {1, 3, 5, . . . , n − 2} and applying a “twist” to the type 1 triangles as-
sociated with this value of j. To do this we replace them by those shown in
Table 2.
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Table 2.

Again, for an explanation of why this works, see [1]. It is also there
remarked that we may apply any number, say k, of such twists provided
that, if n ≡ 3 (mod 12) we select k ≡ 0 or 1 (mod 3), while if n ≡ 7 (mod
12) we select k ≡ 1 or 2 (mod 3).

We now make two new observations about the construction which enable
us to extend it. The proof of the original construction given in [1] continues
to hold good for the extended version with minor and obvious modifications.

Firstly, the toroidal embedding of K3,3,3 given in Figure 1 may be replaced
by one in which the cyclic order of the three superscripts is reversed. The
reversed embedding of K3,3,3 is isomorphic with the original but is labelled
differently (see Figure 2). For each original white triangular face (uvw) of
S we may carry out the bridging operation across S0, S1, S2 using either the
original K3,3,3 embedding or the reversed embedding. The choice of which of
the two K3,3,3 embeddings to use can be made independently for each white
triangle (uvw).
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Figure 2: Reversed toroidal embedding of K3,3,3.

Secondly, it is not necessary for S0, S1 and S2 to be three copies of the
same surface S. All that the construction requires is that the three surfaces
have the “same” white triangular faces and the “same” cycle of (n−1) points
around the border, all with the “same” orientations. To be more precise, by
the term “same” we mean that there is a mapping from the vertices of each
surface onto the vertices of each of the other surfaces which preserves the
white triangular faces, the border and the orientation. The sceptical reader
may feel dubious that we can satisfy this requirement without in fact having
three identically labelled copies of a single surface S. However, we shall see
that not only is it possible to arrange this by other means but it can often
be done in a very large number of ways. We continue to use the notation
x0, x1, x2 to denote corresponding points on the three surfaces.

Throughout the remainder of this paper we shall use the term “the con-
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struction” to refer to the most general form of our construction allowing the
possibility of:

(a) different surfaces S0, S1 and S2 (with the “same” white triangles, etc.),

(b) use of either of the two labelled toroidal embeddings of K3,3,3 indepen-
dently for each white triangle (uvw), and

(c) use of k twists in constructing the cap S̄ for any value of k satisfying
the admissibility condition modulo 3.

We shall have occasion to use the term “Pasch configuration” in connec-
tion with Steiner triple systems. A Pasch configuration is a set of four blocks
whose union has cardinality six, i.e. a set of four triangles isomorphic to
{{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}}.

2 The Main Results

Suppose that we have a particular 2to-embedding of K3n−2 obtained from the
construction. Our first goal is to show that we can identify the point ∞. We
then show that it is also possible to identify the entire cap S̄ and the three
surfaces S0, S1 and S2. In order to identify ∞ we specify a property which
is shared by all vertices other than ∞. To do this we consider the following
operation and its result.

Let {X, Y, Z} be a non-facial triangle on a face 2-coloured triangulated
surface. (We are not concerned about its orientation.) By severing this
triangle, we mean that the surface is cut along the edges XY, Y Z and ZX.
Our interest focuses on the arrangement of edges and coloured facial triangles
incident with the points X, Y and Z on either side of the cut. We will say
that the non-facial triangle {X, Y, Z} gives configuration C if, when severed,
it has on one side of the cut the following arrangement of edges and facial
triangles:

(a) including the edges XY, Y Z and ZX, precisely six edges emanate from
X, from Y and from Z,

(b) these edges define faces, in sequence, around each of the three vertices
which are coloured white, black, white, black, white respectively.
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The configuration C is illustrated in Figure 3.

X

Z Y

Figure 3: Configuration C.

We now say that a point X of the K3n−2 embedding has property P if
there exists a non-facial triangle {X, Y, Z} giving configuration C.

Lemma 1 If X 6= ∞, then X has property P.
Proof Since X 6= ∞, X = xi for i = 0, 1 or 2. Pick an original white
triangle (xuv), i.e. (xjujvj) is a white triangle on Sj for each j = 0, 1, or 2.
Then the triangle {xi, ui, vi} is non-facial in the K3n−2 embedding and, from
Figures 1 and 2, we see that xi has property P. (Note that this is the case
whether or not the K3,3,3 bridge applied to (xuv) is as shown in Figure 1 or
is its reverse as shown in Figure 2.) �

Lemma 2 The point ∞ does not have property P.
Proof Suppose that ∞ does have property P, so that there is a non-facial
triangle {∞, X, Y } giving configuration C. Suppose firstly that, using the
lettering given in the Introduction, X = ui

j for some j ∈ {1, 3, 5, . . . , n − 2}
and i = 0, 1 or 2. Then, following the sequence of facial triangles about
∞ given in Tables 1 and 2 above, we find that Y = uh

j+5 for some value of
h = 0, 1 or 2. But then following the sequence of facial triangles about Y we
find X = uh

j+4. Thus we obtain uj = uj+4, which is a contradiction because

12



n 6= 5. The second alternative is that X = ui
j for some j ∈ {2, 4, 6, . . . , n−1}

and i = 0, 1 or 2. In this case we obtain Y = uh
j−5 for some value of h = 0, 1

or 2. Then, by reversing the roles of X and Y , this alternative reduces to
the former case and again provides a contradiction. (For the reader who is
happier with rotation schemes, it may be helpful to examine the rotation
schemes about the points ∞, ai and bi given in Theorem 2 of [2] but note
that these need amendment as described in Theorem 3 of that paper for any
twists in the construction.) �

Having now identified the point ∞ in the given K3n−2 embedding we
can proceed to identify the entire cap S̄ and consequently the surface Ŝ.
To do this, start with an arbitrary white face containing ∞. Label the
other two vertices of this triangle 1 and 2. Using the orientation estab-
lished by this labelling, label the remaining vertices around ∞ with inte-
gers 3, 4, . . . , 3n − 3. Note that the white triangles incident with ∞ are
{∞, 1, 2}, {∞, 3, 4}, . . . , {∞, 3n−4, 3n−3}. For each j ∈ {1, 2, . . . , (n−1)/2}
we will refer to the seven points {∞, 2j − 1, 2j, 2j − 1 + (n − 1), 2j + (n −
1), 2j − 1 + 2(n − 1), 2j + 2(n − 1)} as the jth crevice. Apart from their
numbering, the crevices are defined independently of the choice of starting
vertex (i.e. the vertex numbered 1) and the orientation of the rotation about
∞.

As a consequence of the construction, the points of each crevice define
seven white facial triangles forming an STS(7). For each of the three of these
white triangles which are incident with ∞, the points of the crevice define
a neighbouring black triangle not containing ∞. The points of the crevice
further define a unique fourth black triangle forming a Pasch configuration
with the other three. In effect the crevices generate the type 1 triangles given
in Table 1 (or the alternative triangles given in Table 2).

If we now remove all eleven of these (open) triangles for each crevice,
together with all (open) black triangles incident with ∞, all (open) edges
forming the common boundary to any two of these triangles, and the point
∞ itself, then we will have removed the cap (i.e. S̄) and we obtain the surface
Ŝ. It follows that the surface with which we are now left is a bordered surface,
the border comprising three disjoint oriented cycles each of length n−1. We
now wish to recover the three original surfaces S0, S1 and S2; to do this we
define levels. We say that the points X, Y, ( 6= ∞) are on the same level if
they lie on the same (n − 1)-cycle. There are therefore three levels, each
consisting of (n − 1) points. We may label these levels A, B and C. The
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points at level A necessarily are the points {xi
j : j ∈ {1, 2, . . . , n − 1}} for

one value of i ∈ {0, 1, 2}; and likewise for B and C.
Again, from the construction, two points xi, yi at the same level which are

not adjacent on the (n − 1)-cycle boundary will define a black triangle, say
(xiyizi), where zi also lies on the same level. The two points will also define a
white triangle, say (yixiwh), h 6= i. The surface Si may now be reconstructed
from these black triangles (xiyizi) and the derived white triangles (yixiwi).
Note that triangles with an edge forming part of the boundary are covered by
this process since the other two edges will not lie on the boundary. Thus we
may recover the three original surfaces S0, S1 and S2 (although their labelling
as 0, 1 and 2 is indeterminate).

We will now pay attention to the levels of the points encountered in
traversing the (3n − 3)-cycle around the point ∞ in any given K3n−2 em-
bedding obtained from the construction. The construction ensures that we
obtain a (circular, ordered) list of the following form.

points 1 2 3 4 5 6 . . . 3n − 4 3n − 3
levels a0 a1 a1 a2 a2 a3 . . . a(3n−5)/2 a0

where the letters ai identify the levels of the points to which they correspond,
i.e. each ai is one of 0, 1 or 2. Moreover, ai 6= ai+1 (subscript arithmetic
modulo (3n − 3)/2).

We may firstly compress this list of levels to a circular list of (3n − 3)/2
symbols by omitting every other entry. We may then derive a circular list of
(3n − 3)/2 0’s and 1’s from this list of levels by recording for each adjacent
pair of levels (ai, ai+1) a “0” if ai+1 ≡ ai − 1 (mod 3) or a “1” if ai+1 ≡
ai + 1 (mod 3). It follows from the construction method that this list will
be periodic with a period (n − 1)/2 (each crevice is encountered three times
in the (3n − 3)-cycle). We now take (n − 1)/2 consecutive terms from this
list of 0’s and 1’s. We will call this (circular) list of (n − 1)/2 0’s and 1’s a
twist list; it records the pattern of twists in a K3n−2 embedding as described
in the Introduction. Not all strings of (n − 1)/2 0’s and 1’s can arise from
the construction. In fact, if k is the number of 1’s in such a list then, as
previously mentioned, for n ≡ 3 (mod 12) we require k ≡ 0 or 1 (mod 3),
while for n ≡ 7 (mod 12) we require k ≡ 1 or 2 (mod 3).

Two twist lists will be called equivalent if one can be obtained from the
other by a combination of
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(a) rotation (i.e. starting the list at a different position in the cycle),

(b) reversal (i.e. writing the list in the reverse order), and

(c) negation (i.e. permuting the 0 and 1 entries).

Rotation corresponds to choosing a different point to serve as the initial
vertex numbered 1, reversal corresponds to reversing the direction of rota-
tion, and negation corresponds to a renumbering of the levels which reverses
the cyclic ordering (0,1,2). However, an equivalence class of twist lists is
an invariant of any K3n−2 embedding produced by the construction: the
equivalence class is independent of the labelling of points and the choice of
orientation.

Suppose now that we choose three fixed initial surfaces S0, S1 and S2

and perform two versions of the construction using a fixed distribution of the
two alternative types of K3,3,3 bridges but different distributions of twists.
If the two resulting K3n−2 embeddings have non-equivalent twist lists then
there can be no colour-preserving isomorphism between them. From this
observation alone, and using three copies of the same initial 2to-embedding
of Kn to form our three surfaces S0, S1 and S2, it is possible to deduce the
existence of exponentially many non-isomorphic 2to-embeddings of K3n−2.
However, we can do much better than this.

For n ≥ 19 we now examine those K3n−2 embeddings which arise, by
varying the selection of K3,3,3 bridges, from three fixed initial surfaces S0, S1

and S2 and a fixed distribution of twists with a (representative) twist list

T0 = (1, 1, 1, 0, 1, 0, 0, 0, 0, a, b, c, . . . , z)

where all of the entries a, b, c, . . . , z are zeros (so that T0 contains at least
four consecutive zeros). Note that such a list has four 1’s in total and is
therefore a valid twist list both for n ≡ 3 and for n ≡ 7 (mod 12). Note
also that such a twist list does not map to itself under any combination of
the three operations (a), (b), (c) described above, a fact which is important
for the subsequent argument. Consequently, if we consider the cycle around
∞, then by choosing an appropriate starting point and direction and an
appropriate numbering of the levels, we may assume that the cycle has the
form

points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .
levels 0 1 1 2 2 0 0 2 2 0 0 2 2 1 1 0 0 . . .

15



The pattern of levels . . . , 2, 2, 1, 1, 0, 0, . . . continues to complete n−1 entries
in the table and then the entire pattern of rising and falling levels is repeated
twice more to form a (3n − 3)-cycle. The pattern of rising and falling levels
determines that there are only three choices for the vertex to be numbered
“1” (one at each level). Having chosen the vertex “1”, there is only one choice
of direction (i.e. which vertex to number “2”) and, if we take vertex 1 to
define level 0, one choice of subsequent level numbering. It follows that the
only possible colour-preserving mappings between a pair of such embeddings
are of the form ui

j → ui+k
j where k is independent of both i and j, and

superscript arithmetic is modulo 3; we will express this property by saying
that the mapping cyclically permutes levels.

Theorem 1 Suppose that for n ≡ 3 or 7 (mod 12) and n ≥ 19 we take three
fixed orientable surfaces S0, S1 and S2, and that we choose a fixed labelling
of the 3n − 3 points to generate the twist list T0. If we then apply the con-
struction twice, using two different selections of the K3,3,3 bridges, then the
two resulting 2to-embeddings of K3n−2 are non-isomorphic.
Proof From the remarks above, we see that the twist list T0 only permits
isomorphisms which cyclically permute levels. If there were an isomorphism
between the two embeddings then, because the K3,3,3 bridges and the cap
S̄ are invariant under a cyclic permutation of levels, the two embeddings
would have identical white triangles, which they do not because we have
used different selections of the K3,3,3 bridges. Consequently the resulting
K3n−2 embeddings are non-isomorphic. �

There are (n − 1)(n − 3)/6 white triangles on each of the surfaces S0, S1

and S2. Using the construction, we may therefore generate 2(n−1)(n−3)/6 non-
isomorphic 2to-embeddings of K3n−2. Since there is a 2to-embedding of Kn

for every n ≡ 3 or 7 (mod 12), we may use this to produce the initial surfaces
S0, S1 and S2. Consequently we have the following.

Corollary 1 For every n ≡ 3 or 7 (mod 12) with n ≥ 19 there are at least
2(n−1)(n−3)/6 non-isomorphic 2to-embeddings of K3n−2.

In fact the result also holds for n = 15. The argument is similar but uses the
twist list T1 = (1, 1, 0, 1, 0, 0, 0). It is also clear that the only automorphisms
of these embeddings are those which cyclically permute the three levels, i.e.
the embeddings have C3 as their (full) automorphism group. �
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In terms of the order of growth we may state the result in the following
form.

Corollary 2 For n ≡ 7 or 19 (mod 36) there are at least 2n2/54−O(n) non-
isomorphic 2to-embeddings of Kn. �

We now make an observation about the black triangles of the embed-
dings generated as described in the above Theorem and the first Corollary.
Given any two such embeddings, the black triangles which they contain are
identical and have the same orientations. To see this we note that the black
triangles come from three sources. Those lying on the surfaces S0, S1 and S2

are unaltered during the construction and therefore are common to both em-
beddings. Those lying on the K3,3,3 bridges are the same whether or not the
bridges are reversed (see Figures 1 and 2). Those lying on the surface S̄ are
common to both embeddings. It follows that the 2(n−1)(n−3)/6 non-isomorphic
2to-embeddings of K3n−2 each contain identical black triangles with the same
orientations. In particular, the STS(3n − 2) defined by the black triangles
is identical for each of the 2(n−1)(n−3)/6 non-isomorphic embeddings. We find
these observations startling. Furthermore, we can put them to good use.

We now take these 2(n−1)(n−3)/6 non-isomorphic embeddings of K3n−2 and
reverse the colours. From each, we then delete the point ∞ together with
all (open) edges and all (open) triangular faces incident with ∞. This pro-
duces a plentiful supply of non-isomorphic surfaces Si on which to base a
reapplication of the construction to produce 2to-embeddings of K9n−8. All
of these surfaces Si have the “same” white triangles and the “same” Hamil-
tonian cycle of points forming the border, all with the “same” orientation.
We can select three different surfaces from this collection to form S0, S1, S2

(in some order) in
(

N
3

)

ways, where N = 2(n−1)(n−3)/6. We will again use a
fixed selection of twists giving rise to the twist list T0. The K3,3,3 bridges
may be selected in 2(3n−3)(3n−5)/6 different ways. Any two of the resulting 2to-
embeddings of K9n−8 (obtained by varying the surfaces S0, S1 and S2, and
the K3,3,3 bridges, but with a fixed selection of twists) will be non-isomorphic.
To see this, note firstly that embeddings based on two different selections of
the surfaces S0, S1 and S2 cannot be isomorphic. For those based on a com-
mon selection, T0 only permits isomorphisms which cyclically permute levels.
Because the three surfaces S0, S1 and S2 are not isomorphic, the only possible
isomorphism is then the identity mapping. However the use of different selec-
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tions of the K3,3,3 bridges precludes this possibility. We also observe that all
of the resulting 2to- embeddings of K9n−8 are automorphism-free (i.e. have
only the trivial automorphism). Again this follows from the structure of T0,
which only permits automorphisms which cyclically permute levels, together
with the fact that S0, S1 and S2 are selected to be non-isomorphic. We may
summarise these results in the statement of the following Theorem.

Theorem 2 Suppose n ≥ 15 and n ≡ 3 or 7 (mod 12). Put N = 2(n−1)(n−3)/6.
Then there are at least

(

N
3

)

2(3n−3)(3n−5)/6 non-isomorphic 2to-embeddings of
K9n−8, all of which are automorphism-free.

�

In terms of the order of growth we may state the result in the following
form.

Corollary 3 For n ≡ 19 or 55 (mod 108) there are at least 22n2/81−O(n)

non-isomorphic 2to-embeddings of Kn. �

3 The Non-Orientable Case

An inspection of the proofs given above shows that, in essence, they apply
also to the non-orientable case. We now briefly discuss this aspect. We
form S0, S1 and S2 from three face 2-colourable embeddings (having the
“same” white triangles and the “same” cycle of points around z∗) of Kn in
a non-orientable surface. The white triangles are bridged using the toroidal
embeddings given in Figures 1 and 2. The construction is completed, to form
a face 2-coloured triangular embedding of K3n−2 in a non-orientable surface,
by forming a cap S̄ having k twists in the manner previously described. The
number k must satisfy the congruence k ≡ 1 or 2 (mod 3) if n ≡ 1 (mod 6),
or k ≡ 0 or 1 (mod 3) if n ≡ 3 (mod 6).

In any embedding generated by this construction we may, as previously,
identify firstly the point ∞, then the cap S̄, the surface Ŝ, and finally the
original surfaces S0, S1 and S2 (although their labelling as 0, 1 and 2 remains
indeterminate). A twist list can be defined as before and we can then ex-
amine those K3n−2 embeddings which arise from three fixed (non-orientable)
surfaces S0, S1 and S2, and a fixed distribution of twists giving rise to the
twist list T0. The analogue of Theorem 1 is Theorem 3 below.
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Theorem 3 Suppose that for n ≡ 1 or 3 (mod 6) and n ≥ 19 we take
three fixed non-orientable surfaces S0, S1 and S2, and that we choose a fixed
labelling of the 3n−3 points to generate the twist list T0. If we then apply the
construction twice, using two different selections of the K3,3,3 bridges, then
the two resulting face 2-colourable triangular non-orientable embeddings of
K3n−2 are non-isomorphic. �

Since there is a face 2-colourable triangular embedding of Kn in a non-
orientable surface for every n ≡ 1 or 3 (mod 6) with n 6= 7, we may use this
to produce the initial surfaces S0, S1 and S2. This enables us to state the
following.

Corollary 4 For every n ≡ 1 or 3 (mod 6) with n ≥ 19, there are at least
2(n−1)(n−3)/6 non-isomorphic face 2-colourable triangular embeddings of K3n−2

in a non-orientable surface. �

As before it is the case that the automorphism group of each of these
embeddings is C3. Once again we can make a colour reversal and then reapply
the construction to form a face 2-colourable triangular embedding of K9n−8

in a non-orientable surface. Similar arguments to those given previously lead
to the following Theorem.

Theorem 4 Suppose n ≥ 19 and n ≡ 1 or 3 (mod 6). Put N = 2(n−1)(n−3)/6.
Then there are at least

(

N
3

)

2(3n−3)(3n−5)/6 non-isomorphic face 2-colourable
triangular embeddings of K9n−8 in a non-orientable surface. �

Again, these embeddings are all automorphism-free.
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4 Concluding Remarks

It is clear that a refinement of some of the arguments given above, such
as consideration of different twist lists, would lead to an improvement in the
O(n) term in the orders of growth. In the opposite direction a weaker version
of Corollary 2 may be obtained without recourse to Theorem 1. To see this,
note that the recursive construction produces, from a given 2to-embedding of
Kn with a fixed vertex set V = V (Kn), at least 2(n−1)(n−3)/6 distinct labelled
2to-embeddings of K3n−2. Each isomorphism class of these embeddings can
contain at most (3n − 2)! embeddings. The number of non-isomorphic em-
beddings is therefore at least 2(n−1)(n−3)/6 /(3n − 2)! . Writing m for 3n − 2
and estimating the factorial term gives 2m2/54−O(m log m). However, Theorem
1 continues to be important because it identifies a representative of each
isomorphism class as well as providing a better estimate for the order of
growth.

It seems highly likely that for all n ≡ 3 or 7 (mod 12) there will be at
least 2an2

non-isomorphic 2to-embeddings of Kn for some value of a. Per-
haps the most interesting question is whether this is the true order. We can
obtain an upper estimate by using the known upper bound for the number
of labelled Steiner triple systems of order n, namely (e−1/2n)n2/6 (see [7]).
Each labelled 2to-embedding of Kn gives rise to a pair of labelled STS(n)s,
“white” and “black”. There are 2n(n−1)/6 possible choices for the orienta-
tions of the white triangles (i.e. the blocks of the white system). Any
one such choice will determine the orientation of the corresponding black
triangles. Thus the number of labelled 2to-embeddings of Kn is at most
(e−1/2n)n2/6.(e−1/2n)n2/6.2n(n−1)/6 < nn2/3. Consequently, the number of non-
isomorphic 2to-embeddings of Kn is less than nn2/3. Unfortunately there
seems to be no simple way of using this type of argument to establish a lower
bound because an arbitrary pair of labelled STS(n)s will not, in general, be
biembeddable as the black and white systems of a 2to-embedding of Kn no
matter what orientations are chosen for the blocks (for example, the systems
may have a common triple). Indeed, it is far from clear whether or not every
STS(n) is biembeddable (i.e. forms the black system of a 2to-embedding).
If the rate of growth of the number of non-isomorphic 2to-embeddings of Kn

were of the order 2an2

then this would imply that almost all STS(n)s are
not biembeddable. At various times, various combinations of the present
authors have felt that 2an2

may be the correct order of growth, that nan2

may be correct, or that the truth lies in some intermediate order.
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Note

The referee has drawn to our attention a recent paper by V. P. Korzhik and
H. J. Voss [3] containing different results on non-isomorphic embeddings of
complete graphs.
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