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Abstract

There are 80 non-isomorphic Steiner triple systems of order 15. A standard
listing of these is given in [8]. We prove that systems #1 and #2 have no bi-
embedding together in an orientable surface. This is the first known example
of a pair of Steiner triple systems of order n, satisfying the admissibility
condition n ≡ 3 or 7 (mod 12), which admits no orientable bi-embedding.
We also show that the same pair has five non-isomorphic bi-embeddings in a
non-orientable surface.
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1 Introduction

The background to this paper lies in the result of Ringel and Youngs [9, 11]
that, for all n ≡ 0, 3, 4 or 7 (mod 12), there exists a triangulation of the
complete graph Kn in an orientable surface of appropriate genus. Here we
give a brief summary of those aspects required for the purpose of the present
paper; further details may be found in [1, 3, 5, 6] as well as in Ringel’s book
[9].

For n ≡ 3 or 7 (mod 12) results of Ringel and Youngs establish the ex-
istence of a triangulation of Kn, in an orientable surface, and having the
additional property that the faces may be properly 2-coloured. The triangu-
lar faces in each of the two colour classes of such a triangulation necessarily
form a Steiner triple system of order n (STS(n)); that is a set of triples from
a point set of cardinality n such that every pair of points (corresponding to
the edges of Kn) lies in a unique triple (the face, in the relevant colour class,
which contains that edge). In such a triangulation we will say that the two
STS(n)s, are embedded together in the surface.

Given a pair of STS(n)s, sayA andB, one may ask whether there exists an
embedding of A together with B. The answer to this question will sometimes
be no, for example if A and B have a triple in common. However, the question
may be refined to ask if A and an isomorphic copy of B can be embedded
together. With this question in mind, we define a bi-embedding of A and B
to be an embedding of A with an isomorphic copy of B.

It is not known whether every STS(n) with n ≡ 3 or 7 (mod 12) has a bi-
embedding with some other STS(n) in an orientable surface. An affirmative
answer would entail the existence of nO(n2) non-isomorphic face 2-colourable
triangulations of Kn in an orientable surface, since there are nn

2/6−o(n2) non-
isomorphic STS(n)s [10]. However, the best existing lower bounds for the
numbers of such triangulations all have the form 2O(n2) [3, 7]. The lowest
non-trivial specific value of n for which one might investigate the question is
n = 15.

There are 80 non-isomorphic STS(15)s and it is known that at least three
of these have bi-embeddings in an orientable surface. In each of these three
cases the bi-embedding is of a system with an isomorphic copy of itself. Using
the standard listing of the STS(15)s given in [8], the three systems involved
are #1 (which is the point-line design of the projective geometry PG(3,2)),
#76 and #80. The bi-embedding of system #80 was given by Ringel [9], that
of #1 was given in [1], and that of #76 together with current graphs which
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generate all three bi-embeddings was given in [2]. It seems to be a difficult
problem to determine whether or not all the remaining 77 STS(15)s admit a
bi-embedding in an orientable surface. However, a more tractable question
is whether particular pairs of STS(15)s may be bi-embedded together.

The rich structure of PG(3,2) facilitated computer analysis which resulted
in the construction of the unique (up to isomorphism) bi-embedding of sys-
tem #1 with itself in an orientable surface. None of the other STS(15)s
possesses a comparable degree of symmetry. However, system #2 may be
obtained from #1 by means of a Pasch-switch. A Pasch configuration also
known as a quadrilateral in a Steiner triple system is a set of four triples
whose union has cardinality six. Such a configuration is isomorphic to
{{a, b, c}, {a, y, z}, {x, b, z}, {x, y, c}}. A Pasch-switch is the operation of re-
placing this set of four triples by {{x, y, z}, {x, b, c}, {a, y, c}, {a, b, z}} which
covers the same pairs. System #1 has 105 Pasch configurations and it was
shown in [4] that switching any one of these results in a copy of system #2.
Using this fact, we show (Theorem 3.1) that there is no bi-embedding of sys-
tem #1 with system #2 in an orientable surface. This is the first example of
a pair of STS(n)s (with n ≡ 3 or 7 (mod 12)) which cannot be bi-embedded
in an orientable surface.

Ringel and Youngs’ work also dealt with triangulations of Kn in non-
orientable surfaces and one may ask questions, similar to those given above,
for bi-embeddings of STS(n)s in non-orientable surfaces. Here the necessary
conditions are n ≡ 1 or 3 (mod 6). In the course of the investigation we
prove that there are precisely five non-isomorphic bi-embeddings of system
#1 with system #2 in a non-orientable surface.

2 Method

In a bi-embedding of two STS(15)s there will be 15 vertices, 105 edges and
70 triangular faces. The genus of the surface may be determined from Euler’s
formula. In the orientable case the surface is S11, the sphere with 11 handles,
and in the non-orientable case it is S̄22, the sphere with 22 crosscaps. We
will refer to the colour classes for the faces as black and white.

A triangulation of Kn may be described by means of a rotation scheme.
This comprises a set of circularly ordered lists, one for each vertex of Kn. The
list corresponding to the vertex x, the rotation at x, gives the remaining n−1
vertices in the order in which they appear around x in the given embedding.

4



If the embedding is in an orientable surface then a consistent orientation, say
clockwise, may be selected for the entire rotation scheme. As an example,
Table 1 gives a rotation scheme for an embedding of K7 in a torus. In fact
this embedding is unique up to isomorphism. The vertices of K7 are taken
to be the points of Z7.

0: 1 3 2 6 4 5
1: 2 4 3 0 5 6
2: 3 5 4 1 6 0
3: 4 6 5 2 0 1
4: 5 0 6 3 1 2
5: 6 1 0 4 2 3
6: 0 2 1 5 3 4

Table 1. Rotation scheme for embedding K7.

Given a triangular embedding of Kn, by considering each pair of adjacent
triangular faces, 〈i, j, k〉 and 〈i, k, l〉, it is easy to see that the rotation scheme
must satisfy the following:

Rule R. If the rotation at i contains . . . jkl . . . then the rotation at k contains
either . . . lij . . . or . . . jil . . ..

The converse is also true (see for example [9], p76), namely a rotation
scheme on n points (with the rotation at each point x containing all the n−1
points apart from x) which satisfies Rule R represents a triangular embedding
of Kn in some surface. The surface may or may not be orientable. It will be
orientable if it is possible to orient the rotations at the vertices consistently,
i.e. to satisfy the following:

Rule R*. If the rotation at i contains . . . jkl . . . then the rotation at k
contains . . . lij . . ..

The necessity of Rule R* may be seen in a similar fashion to that of Rule
R. A proof of its sufficiency is given in [9].

We take the vertices of K15 to be the elements of Z15. Without loss of
generality, the rotation at 0 can be taken as:

0 : 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Since a face 2-colourable embedding is sought, it can be assumed that, for
i = 1, 2, . . . , 7, the triangles 〈0, 2i−1, 2i〉 are coloured black and the triangles
〈0, 2i, 2i + 1〉 (with “15” replaced by “1”) are coloured white. We look for
bi-embeddings where the white and black systems are isomorphic to systems
#1 and #2 respectively.

It was shown in [1] that there are precisely 480 differently labelled copies
of system #1 on the point set Z15 and containing the seven white triples
{0, 2i, 2i + 1}; it was also explained there how these 480 copies may be ob-
tained. In that paper we sought bi-embeddings of system #1 with itself.
There are also 480 differently labelled copies of system #1 on the point set
Z15 and containing the seven black triples {0, 2i − 1, 2i}, and these may be
obtained from the 480 white systems by applying the permutation (0)(14
13 12 . . . 1). In the case being considered in the current paper, we seek
bi-embeddings of system #1 with system #2. The strategy employed is to
take the 480 black systems just identified and to apply permutations and
Pasch-switches which yield all the differently labelled copies of system #2 on
the point set Z15 and which contain the seven black triples {0, 2i− 1, 2i}.

Given a realisation of system #2 there are precisely 15× (14× 12× 10×
. . . × 2) ways of mapping the blocks through a single point onto the seven
black triples {0, 2i−1, 2i}. However, system #2 has an automorphism group
of order 192 [8]. Consequently the number of differently labelled copies of
system #2 on the point set Z15 and containing the seven specified triples is
15.27.7!/192 = 105 × 480. All such systems may be obtained in one of two
ways from the 480 copies of system #1 containing the same black triples.

The first of these is by switching any Pasch configuration which does
not involve the seven specified triples. There are 7 × 6 = 42 Pasch config-
urations in system #1 which involve triples through a specified point, and
consequently there are 105−42 = 63 which do not. Thus we obtain 63×480
copies of system #2 containing the seven specified triples. We show below
that these are distinct, and we refer to them as Type I copies.

The second possibility is that a copy of system #2 containing the seven
specified triples results from a Pasch switch on a copy of system #1 which
does not contain all the specified triples. The Pasch configuration involved
in such a switch which lies in system #2 must contain two of the speci-
fied triples, say {0, 2i − 1, 2i} and {0, 2j − 1, 2j} (i 6= j) together with a
pair of other triples which may either be {{x, 2i − 1, 2j − 1}, {x, 2i, 2j}}
or {{x, 2i − 1, 2j}, {x, 2i, 2j − 1}}. The corresponding copy of system #1
will contain five of the specified triples together with either {{0, 2i− 1, 2j −
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1}, {0, 2i, 2j}, {x, 2i − 1, 2i}, {x, 2j − 1, 2j}} or {{0, 2i − 1, 2j}, {0, 2i, 2j −
1}, {x, 2i − 1, 2i}, {x, 2j − 1, 2j}}. If we apply the permutation (2i − 1 2j)
(alternatively (2i 2j−1)) to the former case or (2i−1 2j−1) (alternatively
(2i 2j)) to the latter case we obtain a copy of system #1 containing all seven
of the specified triples. The process is reversible; we may start with any of
the 480 copies of system #1 containing all seven of the specified triples, ap-
ply an appropriate permutation, carry out the corresponding Pasch-switch,
and obtain a copy of system #2 containing the seven specified triples. There
are 2 × 7 × 6 = 84 transformations to consider, leading to 84 × 480 copies
of system #2 containing the seven specified triples. We will refer to these
as Type II copies. We show below that these are distinct from the Type I
copies and that there are precisely 42×480 distinct Type II copies, each copy
being generated precisely twice by the procedure described above. Thus we
are able to construct all (63+42)×480 = 105×480 distinct copies of system
#2 containing the seven specified black triples.

Lemma 2.1 (a) The 63× 480 Type I copies are all distinct.

(b) The Type I copies are all distinct from the Type II copies.

(c) The Type II copies form 42× 480 distinct pairs of identical systems.

Proof. Parts (a) and (b) follow immediately from the fact that in a copy of
system #2, there is precisely one Pasch configuration which may be switched
to give a copy of system #1 [4]. To establish part (c), note firstly that
a copy of system #1 containing five of the specified triples together with
{0, 2i− 1, 2j− 1} and {0, 2i, 2j} may be obtained from a copy containing all
seven of the specified triples by means of either the permutation (2i− 1 2j)
or the permutation (2i 2j − 1). A similar duplication occurs in respect of
a copy of system #1 containing five of the specified triples together with
{0, 2i − 1, 2j} and {0, 2i, 2j − 1}. Thus there are at most 42 × 480 distinct
Type II systems. If two Type II systems are identical then they arise from
identical copies of system #1 as described and only two transpositions of the
forms described are capable of producing such a copy of system #1 from a
copy containing all seven of the specified triples.

Putting together a white system #1 and a black system #2, the assumed
rotation at 0 together with the lists of black and white triples determines a
potential rotation scheme. As a consequence, there are 480 × (105 × 480)
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potential bi-embeddings of system #1 with system #2. Each of these was
examined to check firstly that the potential rotation at each vertex indeed
comprises a single 14-cycle and, in such cases, secondly that the whole scheme
satisfies Rule R. The rotation schemes so identified were then further tested
against Rule R* to determine those which are orientable.

The procedure just described leads to the conclusion that there is no bi-
embedding of system #1 with system #2 in an orientable surface. However
non-orientable bi-embeddings were obtained. Isomorphisms between these
bi-embeddings may be determined in the manner given below. The same
approach can also be used to determine the automorphism groups. Since the
black and the white systems are themselves non-isomorphic, mappings which
reverse the colours cannot form isomorphisms between (or automorphisms of)
the bi-embeddings obtained.

Consider two rotation schemes, R1 and R2, defined on the points of Z15

and representing bi-embeddings of system #1 (white) and system #2 (black).
To determine those mappings (if any) φ : Z15 → Z15 which take R1 to R2

we only need consider 15 × 14 = 210 possibilities. For suppose two points
x and y are fixed in R1, then once their images φ(x) and φ(y) are chosen
in R2, the circularly ordered rotations at x in R1 and at φ(x) in R2 must
correspond. Since y corresponds to φ(y), the images of the remaining points
are determined up to a reversal of one of these rotations. However, only one
of the two orientations is possible because colour reversals are not allowed.
Thus there are 210 possible mappings which might provide an isomorphism
and, similarly, there are 210 possible mappings of an embedding which might
provide an automorphism.

3 Results

From the 480× (105×480) possibilities described above, 1050 bi-embeddings
of system #1 with system #2 were identified and these fall into just five
isomorphism classes. A representative of each class is given in Table 2. None
of these bi-embeddings can be oriented to satisfy Rule R* and so there is no
orientable bi-embedding of these systems. Each isomorphism class contains
210 bi-embeddings satisfying Rule R. Consequently all the bi-embeddings
have only the trivial automorphism. These computational results have been
verified by two independently written computer programs. We summarise
the results as follows.
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Theorem 3.1 Up to isomorphism, there are five non-orientable bi-
embeddings of system #1 with system #2. There is no orientable bi-
embedding of these systems.

Class #1 Representative
0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 7 10 11 6 13 9 12 8 4
2: 0 1 4 14 5 8 6 7 9 11 12 10 13 3
3: 4 0 2 13 11 8 7 12 10 6 9 5 1 14
4: 0 3 14 2 1 8 11 7 13 12 6 9 10 5
5: 6 0 4 10 8 2 14 12 7 1 3 9 11 13
6: 0 5 13 1 11 14 10 3 9 4 12 8 2 7
7: 8 0 6 2 9 14 11 4 13 10 1 5 12 3
8: 0 7 3 11 4 1 12 6 2 5 10 14 13 9
9: 10 0 8 13 1 12 14 7 2 11 5 3 6 4
10: 0 9 4 5 8 14 6 3 12 2 13 7 1 11
11: 12 0 10 1 6 14 7 4 8 3 13 5 9 2
12: 0 11 2 10 3 7 5 14 9 1 8 6 4 13
13: 14 0 12 4 7 10 2 3 11 5 6 1 9 8
14: 0 13 8 10 6 11 7 9 12 5 2 4 3 1

(Continued on the next page)
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Class #2 Representative
0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 8 12 10 7 6 11 9 13 4
2: 0 1 4 9 6 8 7 5 14 12 10 11 13 3
3: 4 0 2 13 10 6 8 11 12 7 9 5 1 14
4: 0 3 14 6 13 1 2 9 11 7 12 8 10 5
5: 6 0 4 10 9 3 1 8 11 14 2 7 13 12
6: 0 5 12 9 2 8 3 10 14 4 13 11 1 7
7: 8 0 6 1 10 14 11 4 12 3 9 13 5 2
8: 0 7 2 6 3 11 5 1 12 4 10 13 14 9
9: 10 0 8 14 12 6 2 4 11 1 13 7 3 5
10: 0 9 5 4 8 13 3 6 14 7 1 12 2 11
11: 12 0 10 2 13 6 1 9 4 7 14 5 8 3
12: 0 11 3 7 4 8 1 10 2 14 9 6 5 13
13: 14 0 12 5 7 9 1 4 6 11 2 3 10 8
14: 0 13 8 9 12 2 5 11 7 10 6 4 3 1

Class #3 Representative
0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 5 8 12 10 7 6 11 9 13 4
2: 0 1 4 14 5 7 8 6 9 12 10 11 13 3
3: 4 0 2 13 10 8 6 11 12 7 9 5 1 14
4: 0 3 14 2 1 13 6 9 11 7 12 8 10 5
5: 6 0 4 10 9 3 1 8 11 14 2 7 13 12
6: 0 5 12 14 10 13 4 9 2 8 3 11 1 7
7: 8 0 6 1 10 14 11 4 12 3 9 13 5 2
8: 0 7 2 6 3 10 4 12 1 5 11 13 14 9
9: 10 0 8 14 12 2 6 4 11 1 13 7 3 5
10: 0 9 5 4 8 3 13 6 14 7 1 12 2 11
11: 12 0 10 2 13 8 5 14 7 4 9 1 6 3
12: 0 11 3 7 4 8 1 10 2 9 14 6 5 13
13: 14 0 12 5 7 9 1 4 6 10 3 2 11 8
14: 0 13 8 9 12 6 10 7 11 5 2 4 3 1

(Continued on the next page)
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Class #4 Representative
0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 4 13 3 8 6 10 11 7 5 12 9
2: 0 1 9 11 12 10 13 4 6 7 5 8 14 3
3: 4 0 2 14 9 8 1 13 11 5 6 12 10 7
4: 0 3 7 9 10 8 11 6 2 13 1 14 12 5
5: 6 0 4 12 1 7 2 8 10 14 13 9 11 3
6: 0 5 3 12 8 1 10 13 9 14 11 4 2 7
7: 8 0 6 2 5 1 11 14 10 3 4 9 12 13
8: 0 7 13 11 4 10 5 2 14 12 6 1 3 9
9: 10 0 8 3 14 6 13 5 11 2 1 12 7 4
10: 0 9 4 8 5 14 7 3 12 2 13 6 1 11
11: 12 0 10 1 7 14 6 4 8 13 3 5 9 2
12: 0 11 2 10 3 6 8 14 4 5 1 9 7 13
13: 14 0 12 7 8 11 3 1 4 2 10 6 9 5
14: 0 13 5 10 7 11 6 9 3 2 8 12 4 1

Class #5 Representative
0: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1: 2 0 14 3 9 7 13 4 11 6 12 5 10 8
2: 0 1 8 9 14 4 7 10 12 6 5 11 13 3
3: 4 0 2 13 10 5 7 12 11 8 14 1 9 6
4: 0 3 6 10 14 2 7 11 1 13 8 12 9 5
5: 6 0 4 9 13 7 3 10 1 12 8 14 11 2
6: 0 5 2 12 1 11 9 3 4 10 8 13 14 7
7: 8 0 6 14 12 3 5 13 1 9 10 2 4 11
8: 0 7 11 3 14 5 12 4 13 6 10 1 2 9
9: 10 0 8 2 14 12 4 5 13 11 6 3 1 7
10: 0 9 7 2 12 13 3 5 1 8 6 4 14 11
11: 12 0 10 14 5 2 13 9 6 1 4 7 8 3
12: 0 11 3 7 14 9 4 8 5 1 6 2 10 13
13: 14 0 12 10 3 2 11 9 5 7 1 4 8 6
14: 0 13 6 7 12 9 2 4 10 11 5 8 3 1

Table 2. Isomorphism class representatives.
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