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Abstract

The minimum number of incomplete blocks required to cover, exactly λ
times, all t-element subsets from a set V of cardinality v (v > t) is denoted
by g(λ, t; v). The value of g(2, 2; v) is known for v = 3, 4, . . . , 11. It was
previously known that 13 ≤ g(2, 2; 12) ≤ 16. We prove that g(2, 2; 12) ≥ 14.
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1 Introduction

A pairwise balanced design of index λ and order v (PBD(v;λ)) is a pair
(V,B), where V is a set of cardinality v (the points) and B is a family of
subsets of V (the blocks) with the property that every pair of elements of
V occurs in exactly λ blocks of B. We are concerned with the case λ = 2
and the PBD is then referred to as an (exact) bicovering of V .

This paper focuses on the minimisation of |B| for given v in the case
λ = 2, with the additional constraint that each B ∈ B satisfies |B| < v,
i.e. B contains only incomplete blocks. This constraint excludes the trivial
answer |B| = 2. Following Woodall [6], the notation g(λ, t; v) is generally
used to denote the minimum number of incomplete blocks required to cover,
exactly λ times, all t-element subsets from a set V with |V | = v > t.
Woodall writes µ instead of t and, for this reason, the problem is sometimes
referred to as the λ-µ problem. For the case λ = t = 2 the existing state
of knowledge is complete for v = 3, 4, . . . , 11 and is summarised in Table 1,
the results being taken from [5].

v 3 4 5 6 7 8 9 10 11
g(2, 2; v) 6 4 6 7 7 9 11 11 11

Table 1.

It is known [3] that g(2, 2; v) ≥ v. Equality occurs if and only if there ex-
ists a symmetric balanced incomplete block design (BIBD) with parameters
(v, v, k, k, 2), and this design then provides a minimal bicovering. More-
over, except for v = 7 where there is an alternative minimal bicovering,
all minimal bicoverings of cardinality v are of this form. (See [1] for an
explanatory discussion of symmetric BIBDs.)

For v = 12 it is only known that 13 ≤ g(2, 2; 12) ≤ 16. The upper bound
follows from the existence of a symmetric BIBD(16,16,6,6,2) by deleting
points, and the lower bound follows from the non-existence of a symmetric
BIBD(12,12,k, k,2). In this paper we prove that g(2, 2; 12) 6= 13. In obtain-
ing this result, we also obtain some information about the structure of any
possible bicoverings which correspond to g(2, 2; 12) = 14 or 15.

In proving our results, we make use of the concept of a Steiner triple
system of order v (STS(v)). This comprises a pair (V,B), where V is a
set of cardinality v (the points) and B is a set of subsets of V (the blocks
or triples) with the property that every 2-element subset of V occurs in
exactly one triple. Such a system is said to be resolvable if the triples can
be grouped into resolution or parallel classes, the triples of each parallel
class collectively covering all v points precisely once. There is, up to iso-
morphism, a unique STS(9). This is resolvable into four parallel classes Pi,
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for i = 1, 2, 3, 4 as shown below.

V = {1, 2, 3, 4, 5, 6, 7, 8, 9},
P1 = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
P2 = {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}},
P3 = {{1, 5, 9}, {2, 6, 7}, {3, 4, 8}},
P4 = {{1, 6, 8}, {2, 4, 9}, {3, 5, 7}}.

Figure 1: the STS(9).

Use will also be made of results from [2] which concern the values of
g(k)(v), the minimum number of blocks required to cover, exactly once, each
pair of elements from a set V of cardinality v, subject to the restriction that
the maximum block size is precisely k (k < v). A complete tabulation of
the values of g(k)(v) for v ≤ 13 is given in [2], together with an enumeration
of all corresponding non-isomorphic solutions to this problem.

2 Proof that g(2, 2; 12) ≥ 14

Throughout this section we denote g(2, 2; 12) simply by g. We make exten-
sive use of two further parameters associated with a minimal exact bicov-
ering, namely the length l of the longest block and the cardinality d of the
largest intersection of distinct blocks. We establish that g ≥ 14 by proving
that g = 13 entails l ≥ 6, followed by d 6= 2, d ≤ 4, d 6= 4 and, finally, d 6= 3.
We take our set of 12 points to be {1, 2, . . . , 12} but we write 10, 11 and 12
as t, e and w respectively. We often omit brackets and commas, for example
writing the triple {1, 2, 3} as 123. A block written as B = {1, 2, 3, 4, . . .} or
as B = 1234 . . . indicates that the points 1, 2, 3 and 4 definitely lie in B,
and that B may or may not contain additional points. A block containing
precisely n points will be referred to as an n-block.

Lemma 2.1 If 13 ≤ g ≤ 15 then l ≥ 6.
Proof. Suppose l ≤ 5. Denote the number of blocks of length i in the
bicovering by ni. Counting pairs of elements gives

n2 + 3n3 + 6n4 + 10n5 = 132.

Counting blocks gives

n2 + n3 + n4 + n5 = g.

Hence

9n2 + 7n3 + 4n4 = 10g − 132. (1)
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If g = 13 then (1) has no solutions. If g = 14, the only solution is n2 =
0, n3 = 0, n4 = 2, giving also n5 = 12. But then there is a point x occurring
only in blocks of size five and such an x cannot occur in 22 {x, y} pairs. If
g = 15, the possible solutions are:

(A) n2 = 2, n3 = 0, n4 = 0, n5 = 13 and

(B) n2 = 0, n3 = 2, n4 = 1, n5 = 12.

But in each of these two cases there is a point x occurring only in blocks
of size five, again giving a contradiction.

Lemma 2.2 If l ≥ 6 and d = 2 then g ≥ 16.
Proof. Suppose l ≥ 6 and d = 2. Consider a block B = 123456 . . . of the
bicovering having at least six points. The pairs from {1, 2, 3, 4, 5, 6} must
then occur a second time in distinct blocks. Hence g ≥

(
6
2

)
+ 1 = 16.

Lemma 2.3 If d ≥ 5 then g ≥ 16.
Proof. Suppose d ≥ 5. Then there exist blocks of the bicovering, B1 =
12345 . . . and B2 = 12345 . . ., both of cardinality at least five.

(A) Suppose there are two distinct points, say e, w, such that e, w 6∈ B1 ∪
B2. The ten pairs 1e, 1e, 2e, 2e, . . . , 5e, 5e must lie in ten distinct
blocks and likewise the ten pairs 1w, 1w, 2w, 2w, . . . , 5w, 5w. It is
possible that two of the latter collection lie in a common block with
two of the former. Even so, we have g ≥ 2 + 10 + (10− 2) = 20.

(B) Suppose there is a unique point, say w, such that w 6∈ B1 ∪ B2. If
|B1∩B2| ≥ 7 we may assume B1 = 1234567 . . . and B2 = 1234567 . . .,
and consideration of the pairs 1w, 1w, 2w, 2w, . . . , 7w, 7w gives g ≥ 2+
14 = 16. In the case |B1∩B2| = 6 we may assume B1 = 123456789 . . .
and B2 = 123456 . . .. Consideration of the pairs 1w, 1w, 2w, 2w, . . . ,
6w, 6w and 17, 27, 37, 47, 57, 67 gives g ≥ 2+12+(6−2) = 18. Finally
in case (B), if |B1 ∩ B2| = 5 we may assume B1 = 12345678 . . . and
B2 = 12345 . . .. Consideration of the pairs 1w, 1w, 2w, 2w, . . . , 5w, 5w;
16, 26, 36, 46, 56 and 17, 27, 37, 47, 57 gives g ≥ 2+10+(5−2)+(5−3) =
17.

(C) Suppose B1 ∪ B2 = 12 . . . w. In this case, |B1 ∩ B2| = 11 is not pos-
sible given that the blocks are incomplete. If |B1 ∩B2| = 10 then we
may take B1 = 12 . . . te and B2 = 12 . . . tw; consideration of the pairs
1e, 2e, . . . , te and 1w, 2w, . . . , tw gives g ≥ 2 + 10 + (10− 2) = 20. If
|B1 ∩ B2| = 9 then we may take B1 = 12 . . . 9te and B2 = 12 . . . 9w;
consideration of the pairs 1t, 2t, . . . , 9t and 1e, 2e, . . . , 9e gives g ≥ 2+
9+(9−1) = 19. If |B1∩B2| = 8 then we may take B1 = 12 . . . 89t . . .
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and B2 = 12 . . . 8 . . .; consideration of the pairs 19, 29, . . . , 89 and
1t, 2t, . . . , 8t gives g ≥ 2 + 8 + (8 − 1) = 17. If |B1 ∩ B2| = 7
then we may take B1 = 12 . . . 789t . . . and B2 = 12 . . . 7 . . .; con-
sideration of the pairs 18, 28, . . . , 78; 19, 29, . . . , 79 and 1t, 2t, . . . , 7t
gives g ≥ 2 + 7 + (7 − 1) + (7 − 2) = 20. If |B1 ∩ B2| = 6 then
we may take B1 = 12 . . . 6789 . . . and B2 = 12 . . . 6 . . .; considera-
tion of the pairs 17, 27, . . . , 67; 18, 28, . . . , 68 and 19, 29, . . . , 69 gives
g ≥ 2 + 6 + (6 − 1) + (6 − 2) = 17. If |B1 ∩ B2| = 5 then we
may take B1 = 123456789 . . . and B2 = 12345 . . .; consideration
of the pairs 16, 26, 36, 46, 56; 17, 27, 37, 47, 57; 18, 28, 38, 48, 58 and
19, 29, 39, 49, 59 gives g ≥ 2 + 5 + (5− 1) + (5− 2) + (5− 3) = 16.

Lemma 2.4 If d = 4 then g ≥ 14.
Proof. Suppose d = 4. Then there exist blocks of the bicovering, B1 =
1234 . . . and B2 = 1234 . . ., both of cardinality at least four.

(A) Suppose there are two distinct points, say e, w, such that e, w 6∈
B1 ∪ B2. Consideration of the pairs 1e, 1e, 2e, 2e, 3e, 3e, 4e, 4e and
1w, 1w, 2w, 2w, 3w, 3w, 4w, 4w gives g ≥ 2 + 8 + (8− 2) = 16.

(B) Suppose there is a unique point, say w, such that w 6∈ B1 ∪B2. Then
we may assume that B1 = 12345678 . . . and B2 = 1234 . . .. Con-
sider the pairs 1w, 1w, 2w, 2w, 3w, 3w, 4w, 4w. These must lie in eight
blocks distinct from one another and from B1 and B2. Denote these
eight blocks by C1, C2, . . . , C8. Now consider the pairs 15, 25, 35, 45.
At most two of these can lie in C1, C2, . . . , C8. So the remaining
blocks, say D1, D2, . . ., contain at least two occurrences of the point
5. Similarly, D1, D2, . . . contain at least two occurrences of each of the
points 6, 7 and 8. Now consider packing the points 5, 6, 7 and 8 into
D1, D2, . . .. Without loss of generality, there are three possibilities:

(1) 5, 6, 7, 8 ∈ D1, or
(2) 5, 6, 7 ∈ D1 but 8 6∈ D1, or
(3) each of D1, D2, . . . contains at most a pair from {5, 6, 7, 8}.

In case (B1) there must be blocks D2, D3, D4 and D5 containing re-
spectively the points 5, 6, 7 and 8. Hence, in case (B1), g ≥ 2+8+5 =
15. In case (B2) there must be blocks D2, D3 and D4 containing re-
spectively the points 5, 6 and 7. Hence, in case (B2), g ≥ 2+8+4 = 14.
In case (B3) there must be blocks D1, D2, D3 and D4 each containing
at most a pair from {5, 6, 7, 8} so that every one of these four points
appears twice. Hence, in case (B3), g ≥ 2 + 8 + 4 = 14.

(C) Suppose B1 ∪B2 = 12 . . . w. We split this case into subcases depend-
ing on the value of |B1|. Clearly we may assume |B1| ≥ 8.
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(1) |B1| = 11. We take B1 = 12 . . . e. Consider the intersections of
the remaining blocks of the bicovering with B1. These yield an
exact single covering of the pairs from B1. Because d = 4 and
|B1∩B2| = 4, this single covering has largest block length four. It
was shown in [2] that g(4)(11) = 13 and so such a single covering
has at least 13 blocks. Reinstating B1, we have g ≥ 13 + 1 = 14.

(2) |B1| = 10. We take B1 = 12 . . . t and then B2 = 1234ew. Re-
peating the argument of (C1) we see that g ≥ 14 unless the
exact single covering of {1, 2, . . . , t} is the unique single covering
of ten points by twelve blocks having maximum size four given
in [2]. This single covering is formed by adding a point to each
of the blocks of a parallel class of an STS(9). To examine this
possibility we may therefore, without loss of generality, take the
blocks of the bicovering to be:

B1 = 12 . . . t
B2 = 1234ew 158 . . . 16t . . . 179 . . .

5674 . . . 269 . . . 278 . . . 25t . . .
89t4 . . . 37t . . . 359 . . . 368 . . .

where undeclared entries are from {e, w}. If there are any further
blocks then g ≥ 14 and we are finished with this subcase. So
suppose that there are no further blocks and consider the point
e. This occurs in B2 and must occur also in one of 5674 . . .
and 89t4 . . . in order to cover two 4e pairs. So we may assume
a block B3 = 5674e . . .. Now consider pairs of the form xe for
x ∈ {1, 2, . . . , t}\{4}. There are 18 such pairs to be covered.
However, in order to cover each of 8e, 9e, te twice, we must adjoin
e to 6 triples of the single covering. But then e occurs in 24 xe
pairs for x ∈ {1, 2, . . . , t}\{4}, a contradiction. Thus, if |B1| =
10, we must have g ≥ 14.

(3) |B1| = 9. Repeating the argument of (C2) and noting from [2]
that g(4)(9) = 12, we have g ≥ 14 unless the 13 blocks of the
bicovering are derived from the unique exact single covering of
{1, 2, . . . , 9} in twelve blocks having maximum block size four
given in [2] (see also [4]). In this case the 13 blocks of the bicov-
ering may be taken as:

B1 = 12 . . . 9
B2 = 1234tew 258 . . . 269 . . . 27 . . .

1567 . . . 368 . . . 379 . . . 35 . . .
189 . . . 478 . . . 459 . . . 46 . . .

where undeclared entries are from {t, e, w}. Now consider the
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point t. This must appear in one of 1567 . . . and 189 . . . in order
to cover two 1t pairs.
Suppose there is a block 1567t . . . and consider pairs of the form
xt for x ∈ {2, 3, 4, 5, 6, 7, 8, 9}. There are 16 such pairs to be
covered. However, in order to cover each of 8t and 9t twice, we
must adjoin t to four triples of the single covering. But then t
occurs in 18 xt pairs for x ∈ {2, 3, 4, 5, 6, 7, 8, 9}, a contradiction.
So now suppose there is a block 189t . . .. Then tmust be adjoined
to two more triples of the single covering. But then, however we
add t to pairs of the single covering, it is impossible to achieve
16 xt pairs for x ∈ {2, 3, 4, 5, 6, 7, 8, 9}, again a contradiction.
Thus, if |B1| = 9, we must have g ≥ 14.

(4) |B1| = 8. We take B1 = 12345678 and B2 = 12349tew. Without
loss of generality, there are three possibilities:

(a) there exists a block B3 = 5678 . . ., or
(b) there exists a block B3 = 567 . . . and 8 6∈ B3, or
(c) all blocks apart from B1 and B2 contain at most two of 5, 6, 7

and 8, and at most two of 9, t, e and w.

In case (C4a) consider the pairs 15, 25, 35, 45; 16, 26, 36, 46; 17,
27, 37, 47 and 18, 28, 38, 48. The block B3 cannot contain any of
these pairs because, if it did, then |B3 ∩ B1| ≥ 5 > d. But then
we must have g ≥ 3 + 16 = 19.
In case (C4b) suppose first that 1, 2, 3, 4 6∈ B3 and consider the
pairs 15, 25, 35, 45; 16, 26, 36, 46 and 17, 27, 37, 47. None of these
pairs can appear in a common block (apart from B1) and so we
have distinct blocks

B1 = 12345678
B2 = 12349tew
B3 = 567 . . . (1, 2, 3, 4, 8 6∈ B3)
15 . . . 25 . . . 35 . . . 45 . . .
16 . . . 26 . . . 36 . . . 46 . . .
17 . . . 27 . . . 37 . . . 47 . . .

Now consider pairs x8 for x ∈ {1, 2, 3, 4, 5, 6, 7}. There are
14 such pairs to be covered but the blocks listed can cover
at most: seven such pairs from B1, plus two such pairs from
15 . . . , 25 . . . , 35 . . . , 45 . . ., plus two such pairs from 16 . . . , 26 . . . ,
36 . . . , 46 . . . and plus two such pairs from 17 . . . , 27 . . . , 37 . . . ,
47 . . .. This leaves at least one more such pair to be covered.
Thus g ≥ 3 + 12 + 1 = 16.
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If, on the other hand, say 1 ∈ B3, then we have 2, 3, 4 6∈ B3.
We cannot have all four of {9, t, e, w} in B3 since this would give
|B3 ∩ B2| = 5 > d, so suppose 9 6∈ B3. We must therefore have
distinct blocks

B1 = 12345678
B2 = 12349tew
B3 = 1567 . . . (2, 3, 4, 8, 9 6∈ B3)
25 . . . 35 . . . 45 . . .
26 . . . 36 . . . 46 . . .
27 . . . 37 . . . 47 . . .

Now consider pairs x9 for x ∈ {1, 2, 3, 4, 5, 6, 7}. There are
14 such pairs to be covered. But the blocks listed can cover
at most: four such pairs from B2, plus two such pairs from
25 . . . , 26 . . . , 27 . . ., plus two such pairs from 35 . . . , 36 . . . , 37 . . .
and plus two such pairs from 45 . . . , 46 . . . , 47 . . .. This leaves
at least four more such pairs to be covered. Since every pair
from {1, 2, 3, 4, 5, 6, 7} already appears twice in the twelve blocks
listed, there must be at least four more distinct blocks to cover
the four missing x9 pairs for x ∈ {1, 2, 3, 4, 5, 6, 7}. Thus g ≥
12 + 4 = 16.
In case (C4c) there must be six blocks distinct from B1 and B2

with the structure:

56 . . . , 57 . . . , 58 . . . , 67 . . . , 68 . . . , 78 . . .

Now consider the pairs 15, 25, 35 and 45. No two of these pairs
can appear together in a single block (apart from B1) and so
there must be a block additional to those given above which
contains the point 5. Similarly, there are three further distinct
blocks containing respectively the points 6, 7 and 8. This ac-
counts for a minimum of twelve blocks.
Suppose that g ≤ 14. Then there are at most two blocks extra to
the twelve already identified and such blocks cannot contain any
pair from {5, 6, 7, 8}. Thus, without loss of generality, we may
assume that the only blocks containing the points 5 or 6 are those
already identified, namely B1, 56 . . . , 57 . . . , 58 . . . , 67 . . . , 68 . . . ,
5 . . . and 6 . . .. But the point 5 must occur twice with each of
9, t, e, w and so the blocks 56 . . . , 57 . . . , 58 . . . and 5 . . . must each
contain a pair from {9, t, e, w}. Similarly the blocks 56 . . . , 67 . . . ,
68 . . . and 6 . . . must each contain a pair from {9, t, e, w}. But
there are only six distinct pairs from {9, t, e, w} and so at least
one pair must be repeated in the seven distinct blocks 56 . . . ,
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57 . . . , 58 . . . , 67 . . . , 68 . . . , 5 . . . and 6 . . .. But this pair also ap-
pears once in B2 and hence three times altogether, a contradic-
tion. It follows that, in case (C4c), g ≥ 15.

Lemma 2.5 If d = 3 then g ≥ 14.
Proof. Suppose that the longest block B1 = 12 . . . l intersects the other
blocks in m2 pairs and m3 triples. Then m2 +m3 ≤ g− 1 and m2 + 3m3 =(
l
2

)
. We examine the implication of these relationships for different possible

values of l.

(A) l = 11 gives m2 + 3m3 = 55 and the minimum value of m2 + m3 is
then 1 + 18 = 19, giving g ≥ 20.

(B) l = 10 gives m2 + 3m3 = 45 and the minimum value of m2 + m3 is
then 0 + 15 = 15, giving g ≥ 16.

(C) l = 9 gives m2 +3m3 = 36. Solutions of this immediately give g ≥ 15,
apart from the case m2 = 0,m3 = 12. This remaining possibility
corresponds to the twelve triples of an STS(9) on the nine points of
the longest block. The associated bicovering has at least 13 distinct
blocks which we may take as:

B1 = 12 . . . 9
123 . . . 147 . . . 159 . . . 168 . . .
456 . . . 258 . . . 267 . . . 249 . . .
789 . . . 369 . . . 348 . . . 357 . . .

where undeclared entries are from {t, e, w}. Suppose that this is a
complete list of the blocks of the bicovering and consider the pair
1t. Without loss of generality, we may assume that this appears
as 123t . . . and 147t . . .. To cover the pair 2t twice there are then
three alternatives, namely 267t . . . or 249t . . . or 258t . . .. For the
first of these three alternatives, it is only then possible to adjoin
t to 456 . . . , 369 . . . and 348 . . ., and thus the pair 5t can only be
covered once, a contradiction. A similar argument applies to the
second alternative. In the case of the third alternative we have blocks
123t . . . , 147t . . . , 258t . . . and, by a similar argument reapplied to the
pairs 3t, we can assume that we also have the block 369t . . .. There
are 18 xt pairs to cover for x ∈ {1, 2, . . . , 9} and so t must appear
in six blocks. It follows that we must therefore also have the blocks
456t . . . and 789t . . ., i.e. t appears in blocks corresponding to two of
the four parallel classes of the STS(9). But then the same argument
can be applied to e and w. Consequently, at least one of the pairs
te, tw and ew must appear with all three triples of at least one parallel
class, a contradiction. Thus g ≥ 14.
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(D) l = 8 gives m2 +3m3 = 28. Solutions of this immediately give g ≥ 15,
apart from two cases, namely

(1) m2 = 1,m3 = 9, and
(2) m2 = 4,m3 = 8.

Consider first case (D1) and assume that the unique pair is 12. Then
the point 1 must occur in triples with the points 3, 4, 5, 6, 7 and 8, and
likewise the point 2. Without loss of generality, six of the nine triples
must be 134, 156, 178, 245, 267 and 283. But then the missing pairs
are 35, 36, 37, 46, 47, 48, 57, 58 and 68, and these cannot be partitioned
into three triples. We therefore turn our attention to case (D2). It
was shown in [2] that g(3)(8) = 12 and that the unique corresponding
design may be obtained by taking the twelve triples of an STS(9) and
deleting a point. We may therefore take 13 blocks of the bicovering
to be:

B1 = 12 . . . 8
123 . . . 147 . . . 15 . . . 168 . . .
456 . . . 258 . . . 267 . . . 24 . . .
78 . . . 36 . . . 348 . . . 357 . . .

where undeclared entries are from {9, t, e, w}. Suppose that this is a
complete list of the blocks of the bicovering. The point 9 occurs in 16
x9 pairs for x ∈ {1, 2, . . . , 8}. If 9 occurs with a2 pairs and a3 triples
from {1, 2, . . . , 8}, we therefore have 2a2 + 3a3 = 16, giving a2 = 2
and a3 = 4 as the only feasible solution. A similar argument applies
to the points t, e and w. Thus each of the points 9, t, e and w must be
adjoined to two of the pairs and four of the triples from {1, 2, . . . , 8}
given above. Without loss of generality, we may assume that we have
789 . . . and 369 . . ..

Suppose that the point 9 also appears with the triple 267 as a block
2679 . . .. Then we cannot have 4569 . . ., or 1479 . . ., or 1689 . . ., or
3579 . . ., and so 9 must appear in all of 1239 . . . , 2589 . . . and 3489 . . ..
But now the pair 29 appears three times, a contradiction. A simi-
lar argument applies if we attempt to adjoin the point 9 to any of
the triples 348, 168 or 357. Thus the point 9 must be adjoined to
triples and pairs corresponding to two complete parallel classes of the
STS(9). The same argument applies to t, e and w, and so at least
one of the pairs from {9, t, e, w} must appear more than twice. We
conclude that g ≥ 14.

(E) l = 7 gives m2 + 3m3 = 21. Solutions of this immediately give g ≥ 14
apart from three cases, namely

(1) m2 = 0,m3 = 7,
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(2) m2 = 3,m3 = 6, and

(3) m2 = 6,m3 = 5.

We may take as two blocks of the bicovering B1 = 1234567 and B2 =
123 . . .. Suppose that |B2| ≤ 5, so that we can assume t, e, w 6∈ B1 ∪
B2. Consideration of the pairs 1t, 1t, 2t, 2t, 3t, 3t; 1e, 1e, 2e, 2e, 3e, 3e
and 1w, 1w, 2w, 2w, 3w, 3w then gives g ≥ 2+6+(6−2)+(6−4) = 14.
We can therefore assume that every block intersecting B1 in a triple
extends to a 6- or a 7-block of the bicovering.

Now considering case (E1), we see that the bicovering must have seven
6- or 7-blocks each of which contain three points from {1, 2, 3, 4, 5, 6, 7}
and at least three points from {8, 9, t, e, w}. These blocks must there-
fore cover at least 7× 3 = 21 pairs from {8, 9, t, e, w}. However, there
are only

(
5
2

)
× 2 = 20 pairs to be covered, and so case (E1) yields a

contradiction.

In case (E2), we see in a similar fashion that the existence of a 7-block
containing four points from {8, 9, t, e, w}, together with five further
6- or 7-blocks each containing three or four points from {8, 9, t, e, w}
again produces a contradiction. There remains, however, the pos-
sibility of exactly six 6-blocks of the form xxxyyy with x denot-
ing elements from {1, 2, 3, 4, 5, 6, 7} and y denoting elements from
{8, 9, t, e, w}. Collectively these blocks cover 6×3 = 18 yy pairs, leav-
ing two more blocks, say C1 and C2, to contain the remaining two yy
pairs. Now consider the xy pairs; the six 6-blocks cover 6×3×3 = 54
of these 7× 5× 2 = 70 pairs. At most eight more xy pairs can come
from the blocks C1 and C2, leaving a deficit of at least eight xy pairs.
In fact, the deficit will be greater unless both C1 and C2 contain an xx
pair. Consideration of C1 and C2 together with the blocks required to
cover the deficit of xy pairs shows that at least seven further blocks
are required, giving g ≥ 1 + 6 + 2 + 7 = 16.

In case (E3), it is again easy to see that there cannot be two 7-blocks
of the form xxxyyyy with x denoting elements from {1, 2, 3, 4, 5, 6, 7}
and y denoting elements from {8, 9, t, e, w} because the 6- and 7-
blocks would then contain at least 2 × 6 + 3 × 3 = 21 yy pairs. So
first suppose that there is precisely one 7-block of this form and hence
four 6-blocks of the form xxxyyy. These blocks cover 6 + 4× 3 = 18
yy pairs, leaving two yy pairs uncovered which must therefore lie in
two further blocks, say C1 and C2. The 7-block and the four 6-blocks
together cover 12 + 4× 9 = 48 of the 70 xy pairs. At most eight more
xy pairs can come from the blocks C1 and C2, leaving a deficit of at
least 14 xy pairs. Again, the deficit will be greater unless both C1

and C2 contain an xx pair. Consideration of C1 and C2 together with

11



the blocks required to cover the deficit of xy pairs shows that at least
ten further blocks are required, giving g ≥ 1 + 5 + 2 + 10 = 18.

We may therefore reduce case (E3) to consideration of the subcase in
which there are five 6-blocks of the form xxxyyy with x denoting ele-
ments from {1, 2, 3, 4, 5, 6, 7} and y denoting elements from {8, 9, t, e,
w}. These cover 5 × 3 = 15 yy pairs, leaving five yy pairs uncov-
ered. These five yy pairs may either occur in five separate blocks
C1, C2, C3, C4, C5 or in three blocks D1, D2, D3, where D1 contains
three points from {8, 9, t, e, w}. The five 6-blocks cover 5 × 9 = 45
of the 70 xy pairs. At most 20 xy pairs can come from the blocks
C1, C2, C3, C4, C5, leaving in this case a deficit of at least five xy pairs.
The deficit will be greater unless C1, C2, C3, C4 and C5 each contain
an xx pair. Consideration of these blocks together with the blocks
required to cover the deficit of xy pairs shows that at least four fur-
ther blocks are required, giving g ≥ 1 + 5 + 5 + 4 = 15. At most 14
xy pairs can come from the blocks D1, D2, D3, leaving in this case a
deficit of at least eleven xy pairs. By a similar argument to before,
this requires at least eight further blocks, giving g ≥ 1+5+3+8 = 17.

(F) l = 6 gives m2 +3m3 = 15. If m3 = 0 then m2 = 15 and so g ≥ 16. So
suppose m3 > 0. Then we have blocks B1 = 123456 and B2 = 123 . . .,
where |B2| ≤ 6. Consequently, we may assume that t, e, w 6∈ B2. Now
consideration of the pairs 1t, 1t, 2t, 2t, 3t, 3t; 1e, 1e, 2e, 2e, 3e, 3e and
1w, 1w, 2w, 2w, 3w, 3w gives g ≥ 2 + 6 + (6− 2) + (6− 4) = 14.

We conclude this section by combining the results of Lemmas 2.1 - 2.5.

Theorem 2.1 g(2, 2; 12) ≥ 14.
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