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Abstract

We construct a 2-chromatic Steiner system S(2, 4, 100) in which
every block contains three points of one colour and one point of the
other colour. The existence of such a design has been open for over
25 years.
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1 The background

A Steiner system S(t, k, v) is an ordered pair (V,B) where V is a set of cardi-
nality v, the base set, and B is a collection of k-subsets of V , the blocks, which
collectively have the property that every t-element subset of V is contained
in precisely one block. Elements of V are called points. In this paper we
are principally concerned with the case in which t = 2 and k = 4. Steiner
systems S(2, 4, v) exist if and only if v ≡ 1 or 4 (mod 12) [4]; such values
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of v are called admissible. Given a Steiner system S(2, 4, v), we may ask
whether it is possible to colour each point of the base set V with one of two
colours, say red or blue, so that no block is monochromatic. A Steiner system
S(2, 4, v) having this property is said to be 2-chromatic or to have a blocking
set. It was shown in [5] that 2-chromatic S(2, 4, v)s exist for all admissible v
with the possible exception of three values, v = 37, 40 and 73. Existence for
these three values was established in [3]. Perhaps we should also remark here
that it is known that for all v ≥ 25 there exists a Steiner system S(2, 4, v)
which is not 2-chromatic, [8].

In a 2-chromatic S(2, 4, v) let c and v − c be the cardinalities of the red
and blue colour classes, respectively. If b1, b2 and b3 are the numbers of
blocks with colour patterns RRRB, RRBB and RBBB, respectively, then
by counting pairs we have:

3b1 + b2 =
c (c− 1)

2
,

b2 + 3b3 =
(v − c)(v − c− 1)

2
,

3b1 + 4b2 + 3b3 = c (v − c).

Solving the equations for b2 gives b2 = (4vc − 4c2 + v − v2)/4, which is
non-negative for

v −
√

v

2
≤ c ≤ v +

√
v

2
.

Furthermore, in the extreme cases where {c, v−c} = {(v−
√

v)/2, (v+
√

v)/2}
it follows that b2 = 0; i.e. every block contains three points of one colour
and one of the other colour. Moreover, the monochromatic triples of each
colour appearing in the blocks form Steiner systems S(2, 3, (v −

√
v)/2) and

S(2, 3, (v +
√

v)/2). An S(2, 3, w) is usually called a Steiner triple system
and denoted by STS(w); they exist if and only if w ≡ 1 or 3 (mod 6), [6].
A modern account of Kirkman’s work is given in [1]. ¿From the preceding
discussion, it is easy to deduce that a 2-chromatic S(2, 4, v) having all blocks
containing three points of one colour and one of the other colour can exist
only if v is of the form (12s + 2)2 or (12s + 10)2, s ≥ 0.

The smallest non-trivial case is therefore v = 100, and has become known
as “the Design of the Century”. Its existence, and possible construction, has
been a problem in Design Theory for over 25 years. An early reference is
[7]. In this paper we construct the design. We make no claim for uniqueness
and, indeed, we think it highly unlikely.
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2 The method

The cardinalities of the two colour classes are 55, the red points, and 45,
the blue points. Denote the former by A0, A1, . . . , A54 and the latter by
∞, B0, B1, . . . , B43. We will seek an S(2, 4, 100) having an automorphism σ
of order 11 defined by

σ : Ai 7→ Ai+5 (mod 55), Bj 7→ Bj+4 (mod 44), ∞ 7→ ∞.

Our method is based on a simple backtrack algorithm with four distinct
stages.

Stage 1. Select systems STS(55) and STS(45), both having automorphism
σ, on the red and blue points respectively. The latter is an example of a 4-
rotational STS(v); such systems exist for v ≡ 1, 9, 13 or 21 (mod 24), [2].

Stage 2. The blue system has 30 orbits under the automorphism. We
partition these into five classes of six orbits, and label each class with a
different point from the set {A0, A1, A2, A3, A4}. Within each class we then
assign the label to one block of each of the six orbits in such a way that
the blocks to which the label is assigned form a partial parallel class; i.e. the
blocks are pairwise disjoint. The assignment of red points to the other blocks
of blue points is completely determined by σ. It is clear that this assignment
ensures that there are no repeated pairs of a blue point with a red point.

Stage 3. The red system has 45 orbits under the automorphism. We
next deal with the blue point ∞. In the course of performing stage 2 of the
algorithm the point ∞ will have been paired with two of the five subsets
{Ai+j : j = 0, 5, 10, . . . , 50}, i = 0, 1, 2, 3, 4. We assign ∞ to all blocks of a
single orbit whose red points cover the remaining three subsets.

Stage 4. This leaves 44 orbits of the red system. As in stage 2 we partition
these into four classes of 11 orbits and label each class with a different point
from the set {B0, B1, B2, B3}. Within each class, we then assign the label,
say X, to one block of each of the 11 orbits in such a way that the blocks
to which X is assigned form a partial parallel class, say P . We attempt to
do this while satisfying the further constraint that none of the 22 red points
with which X has already been paired in stage 2 occur in P . This latter is,
of course, a very severe constraint. Again, the assignment of the blue points
to the other blocks of red points is completely determined by σ.

Finally, we make a brief remark about our implementation of the algo-
rithm. Stages 3 and 4 execute very quickly on a modern computer system and
we always ran the backtracking to completion. However, for each particular
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choice of systems STS(55) and STS(45), we did not run the backtracking of
stage 2 to completion, preferring instead to return to stage 1 after a certain
period of time and select new systems.

3 The design

Listed below are 75 blocks which, under the mapping σ, give “the Design of
the Century”. As described in the last section, the construction of the design
involved significant computing. However, it is perfectly feasible, although
perhaps a little tedious, to check the design by hand, and the dedicated
reader is invited to do this.

B0 B1 B9 A0 B4 B6 B23 A0 B8 B11 B13 A0
B12 B20 B10 A0 B36 B5 B7 A0 B2 B3 B38 A0
B0 B4 B33 A1 B40 B3 B6 A1 B8 B24 B5 A1
B16 B7 B11 A1 B1 B2 B21 A1 B9 B13 B42 A1
B0 B6 B24 A2 B8 B19 B40 A2 B4 B31 B3 A2
B9 B14 B43 A2 B1 B7 B29 A2 B5 B26 B2 A2
B0 B14 B21 A3 B4 B35 B41 A3 B1 B10 B31 A3
B5 B23 ∞ A3 B2 B7 B18 A3 B22 B34 B3 A3
B28 B1 B14 A4 B4 B22 B26 A4 B0 B38 ∞ A4
B29 B39 B2 A4 B37 B5 B19 A4 B3 B11 B35 A4
A25 A29 A19 B0 A20 A32 A5 B0 A35 A48 A18 B0
A15 A39 A11 B0 A41 A43 A8 B0 A21 A42 A13 B0
A31 A14 A28 B0 A16 A9 A12 B0 A17 A23 A49 B0
A37 A44 A33 B0 A22 A34 A38 B0
A35 A36 A13 B1 A10 A17 A18 B1 A25 A44 A11 B1
A20 A43 A19 B1 A5 A37 A39 B1 A15 A6 A12 B1
A30 A23 A28 B1 A26 A29 A34 B1 A21 A38 A48 B1
A27 A42 A9 B1 A32 A49 A7 B1
A5 A7 A21 B2 A20 A25 A46 B2 A35 A41 A11 B2
A40 A54 A15 B2 A30 A47 A19 B2 A36 A37 A23 B2
A26 A39 A24 B2 A16 A32 A53 B2 A31 A12 A22 B2
A17 A8 A9 B2 A13 A28 A49 B2
A40 A43 A32 B3 A35 A44 A15 B3 A10 A20 A38 B3
A5 A27 A47 B3 A25 A6 A13 B3 A21 A26 A36 B3
A31 A42 A11 B3 A16 A28 A34 B3 A41 A9 A29 B3
A12 A17 A48 B3 A8 A24 A54 B3 A0 A11 A37 ∞

The Design of the Century
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