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Abstract

We enumerate all possible trades which involve up to six faces of the
face set of a triangular embedding of a simple connected graph. These
are classified by the underlying combinatorial trade on the associated block
design, and by the geometrical arrangement of the faces necessary to avoid
creation of a pseudosurface in the trading operation. The relationship of
each of these trades to surface orientability is also established.
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1 Introduction

The concept of a trade is well established in combinatorial design theory and there
are several published listings of small trades in various types of design. Below we
give precise definitions sufficient for our purposes. A good overview is given in [2]
and the listings we make use of appear in [6]. The purpose of this current paper is
to investigate and to catalogue small surface trades in triangular embeddings. By
applying such trades one may generally move between nonisomorphic embeddings
of the same graph. Underlying any such surface trade there is a combinatorial
trade on some (possibly partial) twofold triple system. However, the existence of
a combinatorial trade amongst the triples formed by a set of triangular faces does
not ensure the existence of a corresponding surface trade since applying the trade
may transform the surface into a pseudosurface. The geometrical arrangement of
the faces is important both for the feasibility of the trade and for questions of
orientability.

In a recent paper, four of the present authors gave some results concerning
small trades in triangular embeddings [4]. However, that paper focused on a
different (although related) issue, namely the minimum non-zero number of faces
in which two triangular embeddings of Kn, the complete graph on n vertices,
can differ. In order to answer that question, a number of small surface trades
containing four or six triangular faces were presented. In the current paper we
give a definitive catalogue of such trades on up to six triangular faces and we
identify those which potentially can form part of an orientable embedding and
those which cannot.

For basic facts about graph embeddings, including their description by means
of rotation schemes, we refer the reader to [5]. We assume throughout that G is a
simple connected graph on n vertices, with vertex set V , embedded in a surface S.
The surface may be orientable or non-orientable but we exclude from consideration
pseudosurfaces (these result from a surface by making finitely many identifications
of finite sets of points on that surface). We further assume that all the faces of
the embedding are triangles. The embedding of G determines a partial twofold
triple system, PTTS(n) = (V,B), where B is the collection of triples of points
of V formed by the vertices of the triangular faces; this has the property that
every pair of points corresponding to an edge of G appears in precisely two triples
(triangular faces of the embedding), but the edges of the complementary graph do
not appear in any triple. When G is a complete graph Kn, the resulting PTTS(n)
is known as a twofold triple system, TTS(n). To avoid needless repetition, it is
convenient to regard a TTS(n) as a special case of a PTTS(n). A combinatorial
trade on a PTTS(n) may be defined as follows.

Suppose that T1 and T2 are disjoint sets of triples taken from a finite base
set U . If every pair of points of U occurs in the triples of T1 with precisely the
same multiplicity (0, 1 or 2) with which it appears in the triples of T2, then the
pair T = {T1, T2} is called a (combinatorial) trade. The volume of the trade T ,
vol(T ), is the common cardinality of T1 and T2, and the foundation of the trade
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T , found(T ), is the set of points of U which appear amongst the triples of T1 (or
T2).

The point of the foregoing definition is that if P1 = (V,B1) is a PTTS(n)
whose triples include those of T1, then by replacing these triples with those of T2,
we form another PTTS(n), P2 = (V,B2) say, and the triples of P1 and P2 cover
exactly the same pairs of points from V with the same multiplicities.

Now consider the effect of making a trade on an embedding. Suppose that M1

is a triangular embedding of the simple connected graph G in some surface S and
that P1 = (V,B1) is the associated PTTS(n). Further suppose that T = {T1, T2}
is a trade with found(T ) ⊆ V and that T1 ⊆ B1. Put B2 = (B1 \ T1) ∪ T2, so
that P2 = (V,B2) is a PTTS(n) covering all the edges of G precisely twice and
no other pairs from V . If we now regard the triples from B2 as triangular faces
and sew these faces together along the common edges, then this operation may
or may not result in an embedding M2 of G; the reason that the process may fail
to yield an embedding is that the sewing operation may yield a pseudosurface.
However, when the operation succeeds in producing a surface embedding, then
we say that T forms a surface trade on the embedding M1 of the graph G.

A variety of interesting questions may be posed concerning trades and embed-
dings. For example, does every combinatorial trade on a PTTS(n) yield at least
one surface trade? Is it possible to characterize those combinatorial trades which,
no matter how they lie on the surface, always transform a surface embedding into
a surface embedding (rather than into a pseudosurface embedding)? Which sur-
face trades are guaranteed to preserve orientability? How many different surface
trades with foundation less than n must a triangular embedding of Kn possess?
And if b = b(n) denotes the minimum integer such that any two triangular embed-
dings of Kn may be transformed into one another by a trade of volume at most b,
how does b vary with n? In order to make progress with such questions it is help-
ful to have a catalogue of small surface trades and to conduct some preliminary
investigation of their properties. This is the purpose of the current paper.

Apart from the trivial case G = K3, no triangular embedding of a simple con-
nected graph G can give rise to a PTTS(n) with a repeated triple. Furthermore,
in this trivial case, it is clear that no trade exists. We may therefore assume that
G 6= K3, and that the associated PTTS(n) does not contain any repeated triples.
We consider here the case of trades T on PTTS(n)s with vol(T ) ≤ 6. Up to
isomorphism, there are precisely five such trades, one having vol(T ) = 4 and the
other four having vol(T ) = 6. These five trades are all given in [6], where it is
shown that there are no further trades T = {T1, T2} having vol(T ) ≤ 6 except
possibly for trades with foundation sizes 8 or 9 having at least one repeated pair
of points occurring amongst the triples of T1 (and T2). However, these additional
possibilities are easily excluded as follows.

Let ni denote the number of points of T1 having multiplicity i > 0. For a
trade to exist, we must have n1 = 0. If |found(T )| ≥ 8 and vol(T ) ≤ 5 then, by
counting points and the occurrences of points in triples, we obtain

∑
i≥2 ni ≥ 8

and
∑

i≥2 ini ≤ 15, which is clearly impossible. So we only have to consider the
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cases when vol(T ) = 6 and |found(T )| = 8 or 9.
If |found(T )| = 9 then

∑6
i=2 ni = 9 and

∑6
i=2 ini = 18, giving ni = 0 for

i ≥ 3 and n2 = 9. But if the repeated pair is {x, y} then T1 contains triples
{x, y, a} and {x, y, b} and no further triples containing x or y. Consequently no
disjoint set T2 of triples covering the same pairs as T1 can exist.

If |found(T )| = 8, then
∑6

i=2 ni = 8 and
∑6

i=2 ini = 18, giving ni = 0 for
i ≥ 5 and n3 + 2n4 = 2. There are two numerical solutions to these equations
given by (n2, n3, n4) = (7, 0, 1) or (6, 2, 0). In the (7, 0, 1) case, four triples of
T1 contain some point x and there must be another repeated point a amongst
the eight occurrences of other points in these four triples. So T1 contains triples
{x, a, b} and {x, a, c} and no other triples containing a. As before, T2 cannot
exist. In the (6, 2, 0) case, suppose that x and y are the two points which each
occur in three triples of T1 and that S = {a, b, c, d, e, f} is the set of the remaining
points. If a repeated pair contains at least one point of S, say a, then we have
triples {a, α, β} and {a, α, γ} in T1 and no other triples in T1 containing a. So
once again T2 cannot exist. There remains only the possibility that T1 has two
triples {x, y, α} and {x, y, β}, and similarly that T2 contains {x, y, γ} and {x, y, δ},
where α, β, γ, δ ∈ S. But then T1 must also contain two further triples {x, γ, δ}
and {y, γ, δ}, and so the pair {γ, δ} is repeated and, by the earlier argument, this
is not possible.

The five trades are listed below; for clarity and conciseness we omit commas
and set brackets {, } from triples, so that, for example, 624 is the triple {6, 2, 4}.
The first three have common names as given. In each case T1 is isomorphic with
T2.

1. (Pasch or quadrilateral trade) T1 = {123, 145, 624, 635},
T2 = {124, 135, 623, 645}.

2. (6-cycle trade) T1 = {123, 145, 167, 834, 856, 872},
T2 = {134, 156, 172, 823, 845, 867}.

3. (Semihead trade) T1 = {127, 136, 145, 235, 246, 347},
T2 = {126, 135, 147, 237, 245, 346}.

4. (Trade-X) T1 = {123, 124, 156, 256, 345, 346},
T2 = {125, 126, 134, 234, 356, 456}.

5. (Trade-Y) T1 = {124, 125, 136, 137, 267, 345},
T2 = {126, 127, 134, 135, 245, 367}.

Surface trades are not new. For example, in Figure 1 of [1] (which relates to trian-
gulations of the projective plane), the pair {a, b} gives a geometrical realization
of trade-X, the pair {c, d} a realization of a Pasch trade, and the pair {e, f} a
realization of a semihead trade. However, in the current paper we examine each
of the five combinatorial trades in turn and determine the precise geometrical
circumstances in which a surface trade results.
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2 Pasch trades

Consider the possibility of the triangular faces (defined by their vertex triples)
123, 145, 624, 635 of an embedding M being traded with the triangular faces
124, 135, 623, 645 to form an embedding M ′. Initially we ignore the question of
orientability. At the point 1, and up to reversal, there are two possibilities for the
rotation in M , namely

(a) 1 : 23 · · · 45 · · · or

(b) 1 : 23 · · · 54 · · ·,

where · · · denotes undetermined sections of the rotation.
In M ′ there are faces 124 and 135, but in case (b) the partial rotations 4 · · · 2

and 3 · · · 5 preclude these unless these partial rotations are “empty”, i.e. case (b)
has the form 1 : 2354. In this case M also contains the faces 124 and 135, and
so M ′ would have two copies of each of these faces. So we may exclude case (b).
Applying similar reasoning at the other vertices shows that the (partial) rotations
in M and in M ′ at the points 1, 2, . . . , 6 are, up to reversals, as follows:

M M ′

1 : 23 · · · 45 · · · 1 : 24 · · · 35 · · ·
2 : 31 · · · 64 · · · 2 : 36 · · · 14 · · ·
3 : 12 · · · 56 · · · 3 : 15 · · · 26 · · ·
4 : 51 · · · 62 · · · 4 : 56 · · · 12 · · ·
5 : 14 · · · 36 · · · 5 : 13 · · · 46 · · ·
6 : 24 · · · 35 · · · 6 : 23 · · · 45 · · ·

Table 2.1: (Partial) Pasch surface trade.

Next we consider the question of orientability. Assuming a consistent orien-
tation of M and starting with 1 : 23 · · · 45 · · ·, we require 2 : 31 · · · 64 · · · and
4 : 51 · · · 62 · · ·. However, these give respectively 6 : 42 · · · and 6 : 24 · · ·, contra-
dicting orientability. Therefore a consistent orientation of M (and similarly M ′)
is not possible. Thus a surface trade based on the combinatorial Pasch trade is
necessarily between nonorientable embeddings.

We have shown the necessity of Table 2.1 for the existence of a Pasch surface
trade, but we have not demonstrated that such a trade exists. In order to do this,
we make an observation which in fact applies to all the arrangements of facial
triangles identified as potential surface trades in this paper; namely that there do
indeed exist triangular embeddings containing these trades. That is to say, in this
case, the partial rotation schemes M and M ′ shown in Table 2.1 may be completed
to form a triangular embedding of some simple connected graph G, with similar
completions in the other cases. To show this, take the rows of the partial rotation
scheme for M with the undetermined sections eliminated and then determine any
resulting non-triangular faces. From each such face, eliminate multiple vertices
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(if any) by the insertion of additional triangles involving new faces as illustrated
below in Figure 2.1, where the twice repeated vertex x is eliminated from the face
F by the insertion of new vertices x1 and x2.

r
r r r r

r
x x

Non-triangular face F

r r
x1 x2

Figure 2.1: Eliminating multiple vertices from face F .

Having completed this elimination, for a non-triangular face without multiple
vertices, insert a new vertex into the interior of that face and join it by non-
intersecting edges to all the vertices on the boundary, thereby forming a triangular
embedding of some simple connected graph.

Application of this algorithm to the case of the Pasch trade given in Table 2.1
give the rotations M and M ′ as shown below in Table 2.2

M M ′

1 : 23x45y 1 : 24x35y
2 : 31y64z 2 : 36y14z
3 : 12z56x 3 : 15z26x
4 : 51x62z 4 : 56x12z
5 : 14z36y 5 : 13z46y
6 : 24x35y 6 : 23x45y
x : 1364 x : 1364
y : 1265 y : 1265
z : 2354 z : 2354

Table 2.2: Example of a Pasch surface trade.

In general, it is clear that this algorithm will preserve orientability in the
sense that if a partial rotation scheme is potentially orientable, then the resulting
triangular embedding M will be orientable. This does not however ensure that
the traded embedding M ′ is orientable. We examine this aspect for potentially
orientable partial rotation schemes as these arise. It is always possible to render
both M and M ′ nonorientable by gluing on a nonorientable triangular embedding
which shares a common face with M and M ′.
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3 6-cycle trades

Consider the possibility of the triangular faces 123, 145, 167, 834, 856, 872 of
an embedding M being traded with the triangular faces 134, 156, 172, 823, 845,
867 to form an embedding M ′. Initially we ignore the question of orientability.
At the point 1, and up to reversal, there are eight possibilities for the rotation
in M . These are all of the form 1 : 23 · · · ab · · · cd · · ·, where {{a, b}, {c, d}} =
{{4, 5}, {6, 7}}. Arguing as in the Pasch case, four of the eight possibilities may
be excluded to leave the remaining four:

(1a) 1 : 23 · · · 54 · · · 76 · · ·,

(1b) 1 : 23 · · · 67 · · · 45 · · ·,

(1c) 1 : 23 · · · 67 · · · 54 · · ·,

(1d) 1 : 23 · · · 76 · · · 45 · · ·.

We then find that the permutations (2 4 6)(3 5 7) and (2 6 4)(3 7 5) preserve the
six specified faces of M (and of M ′) and respectively map case (1a) to case (1c)
and to case (1d). So, up to isomorphism, we may assume that the rotation at the
point 1 in M has one of the forms (1a) or (1b).

Similarly, the possible rotations at the point 8 in M are:

(8a) 8 : 34 · · · 65 · · · 27 · · ·,

(8b) 8 : 34 · · · 72 · · · 56 · · ·,

(8c) 8 : 34 · · · 72 · · · 65 · · ·,

(8d) 8 : 34 · · · 27 · · · 56 · · ·.

So there are eight possible combinations of the rotation at 1 and the rotation
at 8 in M . The permutation (2 3)(4 7)(5 6) applied to (1a, 8a) gives (1a, 8d),
and applied to (1b, 8a) gives (1b, 8d). The permutation (1 8)(2 3 4 5 6 7) ap-
plied to (1a, 8b) gives (1b, 8a), and the permutation (1 8)(2 6)(3 5) applied to
(1a, 8b) gives (1b, 8c). Therefore, up to isomorphism there are at most four
combinations of rotations at the points 1 and 8 in M . These are (1a, 8a), (1a,
8b), (1a, 8c) and (1b, 8b). Observe that the patterns of partial rotation sec-
tions is different in each of these cases. In the (1a, 8a) case these sections are
3 · · · 5, 4 · · · 7, 6 · · · 2, 4 · · · 6, 5 · · · 2 and 7 · · · 3, so that no section α · · ·β is re-
peated. In the (1a, 8b) case there is exactly one repeated section (ignoring direc-
tion). In the (1a, 8c) case there are three repeated sections (ignoring direction)
but it is not possible to obtain a consistent direction for all three. In the (1b,
8b) case there are again three repeated sections and a consistent direction can be
obtained. It follows that the four cases are nonisomorphic.

Next consider the rotations at the points 2, 3, . . . , 7. The possibilities at the
point 2 in M are

2 : 31 · · · 87 · · · or 2 : 31 · · · 78 · · · ,
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and these must trade to the rotations in M ′

2 : 38 · · · 17 · · · or 2 : 38 · · · 71 · · · .

By the same argument given for Pasch trades, the only possibility is 2 : 31 · · · 87 · · ·
in M trading to 2 : 38 · · · 17 · · · in M ′. Similar arguments apply at the points 3,
4, 5, 6 and 7. So we have the following table.

M M ′

2 : 31 · · · 87 · · · 2 : 38 · · · 17 · · ·
3 : 48 · · · 12 · · · 3 : 41 · · · 82 · · ·
4 : 51 · · · 83 · · · 4 : 58 · · · 13 · · ·
5 : 68 · · · 14 · · · 5 : 61 · · · 84 · · ·
6 : 71 · · · 85 · · · 6 : 78 · · · 15 · · ·
7 : 28 · · · 16 · · · 7 : 21 · · · 86 · · ·

Table 3.1: Rotations at points 2, 3, . . . , 7 for 6-cycle surface trades.

These rotations must be combined with each of the four possibilities for the points
1 and 8 to give four nonisomorphic forms for a 6-cycle surface trade.

It is easy to check that each of the isomorphism classes in M trades to the
same isomorphism class in M ′. Furthermore, in an orientable surface the partial
directed rotation 1 : 23 · · · 54 · · · 76 · · · implies 3 : 12 · · · and 4 : 15 · · ·. In cases
(1a, 8x) with x = a, b or c, if M is orientable this gives 3 : 12 · · · 48 · · · and
4 : 15 · · · 38 · · ·, contradicting the orientability of the triangular face 348. So the
only possibility for an orientable 6-cycle surface trade is (1b, 8b).

Examples of each of the four 6-cycle surface trades may be constructed using
the algorithm described in Section 2. In the (1b, 8b) case an example with
both M and M ′ orientable may be constructed by taking M to be the well-known
triangular embedding of the complete tripartite graph K3,3,3 in a torus. A rotation
scheme for M with tripartition {{1, 8, 9}, {2, 4, 6}, {3, 5, 7}} is:

1 : 236745 2 : 315879 3 : 486129
8 : 347256 4 : 517839 5 : 682149
9 : 276543 6 : 713859 7 : 284169

It is easy to derive the embedding M ′ and to verify that both M and M ′ are
orientable. An example of the (1b, 8b) case with M orientable and M ′ non-
orientable is given in [4], pages 158-160.

9



4 Semihead trades

Note firstly that in addition to the trade T = {T1, T2} given in the Introduc-
tion, there exists a second trade involving T1, namely T ∗ = {T1, T3} where
T3 = {125, 137, 146, 236, 247, 345}. However, the permutation (1 2)(5 6) pro-
vides an isomorphism between T and T ∗, and so it suffices to consider only the
trade T . Therefore consider the possibility of the triangular faces 127, 136, 145,
235, 246, 347 of an embedding M being traded with the triangular faces 126, 135,
147, 237, 245, 346 to form an embedding M ′. Initially we ignore the question of
orientability. As in the 6-cycle case and up to reversal, there appear at first to
be eight possibilities for the rotation at the point 1 in M , but these are reduced
to four by employing the usual argument. A similar situation occurs with the
rotations at the points 2, 3 and 4. However, at each of the points 5, 6 and 7 we
obtain a single possibility. Thus there are 44 = 256 possibilities for the partial
rotations at the points 1, 2, . . . , 7 in M . These may be represented as (1w, 2x, 3y,
4x) for w, x, y, z ∈ {a, b, c, d} where the rotations at the points 1, 2, 3 and 4 are:

(1a) 1 : 27 · · · 36 · · · 45 · · ·, (2a) 2 : 17 · · · 46 · · · 35 · · ·,
(1b) 1 : 27 · · · 36 · · · 54 · · ·, (2b) 2 : 17 · · · 46 · · · 53 · · ·,
(1c) 1 : 27 · · · 63 · · · 45 · · ·, (2c) 2 : 17 · · · 64 · · · 35 · · ·,
(1d) 1 : 27 · · · 54 · · · 63 · · ·, (2d) 2 : 17 · · · 53 · · · 64 · · ·,
(3a) 3 : 16 · · · 25 · · · 47 · · ·, (4a) 4 : 15 · · · 37 · · · 26 · · ·,
(3b) 3 : 16 · · · 25 · · · 74 · · ·, (4b) 4 : 15 · · · 37 · · · 62 · · ·,
(3c) 3 : 16 · · · 52 · · · 47 · · ·, (4c) 4 : 15 · · · 73 · · · 26 · · ·,
(3d) 3 : 16 · · · 74 · · · 52 · · ·, (4d) 4 : 15 · · · 62 · · · 73 · · ·,

and the remaining ones are

5 : 14 · · · 32 · · · , 6 : 13 · · · 24 · · · , 7 : 12 · · · 43 · · · .

A computer analysis of the 256 possibilities shows that there are precisely 28
isomorphism classes. By saying this, we mean that there are 28 nonisomorphic
geometrical arrangements of the six triangular faces on the surface M which
permit surface trades. The list below gives a representative of each class in M
and the number of the class to which it trades. One might legitimately regard
a pair of classes such as (3, 6) as being isomorphic with the pair (6, 3), and if
the reader takes this view then the number of isomorphism classes of trade pairs
reduces from 28 to 19.
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class # representative trades to
1 (1a, 2a, 3a, 4a) 1
2 (1a, 2a, 3a, 4b) 2
3 (1a, 2a, 3b, 4b) 6
4 (1a, 2a, 3b, 4c) 7
5 (1a, 2a, 3b, 4d) 5
6 (1a, 2a, 3c, 4b) 3
7 (1a, 2a, 3c, 4d) 4
8 (1a, 2a, 3d, 4b) 8
9 (1a, 2b, 3b, 4b) 19

10 (1a, 2b, 3b, 4c) 18
11 (1a, 2b, 3b, 4d) 15
12 (1a, 2b, 3c, 4c) 17
13 (1a, 2b, 3c, 4d) 13
14 (1a, 2b, 3d, 4c) 14

class # representative trades to
15 (1a, 2b, 3d, 4d) 11
16 (1a, 2c, 3c, 4c) 16
17 (1a, 2c, 3c, 4d) 12
18 (1a, 2c, 3d, 4d) 10
19 (1a, 2d, 3d, 4d) 9
20 (1b, 2b, 3b, 4b) 26
21 (1b, 2b, 3b, 4c) 21
22 (1b, 2b, 3b, 4d) 23
23 (1b, 2b, 3c, 4b) 22
24 (1b, 2b, 3c, 4d) 24
25 (1b, 2b, 3d, 4b) 27
26 (1b, 2c, 3b, 4b) 20
27 (1b, 2c, 3c, 4b) 25
28 (1b, 2c, 3c, 4c) 28

Examples of each of the 28 semihead surface trades may be constructed using the
algorithm described in Section 2. Further analysis of these 28 classes using the
same technique as in the earlier sections shows that the only one compatible with
orientability is #16, namely (1a, 2c, 3c, 4c). An example of this trade with both
M and M ′ orientable is given in Table 4.1 where both M and M ′ are realizations
of the well-known toroidal triangular embedding of K7.

M M ′

1 : 273645 1 : 264735
2 : 715346 2 : 615437
3 : 617425 3 : 517246
4 : 516237 4 : 716325
5 : 147632 5 : 136742
6 : 135724 6 : 127534
7 : 126543 7 : 145623

Table 4.1: Example of an orientable to orientable semihead surface trade.
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A further example with M orientable and M ′ nonorientable is given by the fol-
lowing pair of rotation schemes.

M M ′

1 : 27wx3645 1 : 2647wx35
2 : 715346xwy 2 : 615437ywx
3 : 61x7425 3 : 51x7246
4 : 516237 4 : 716325
5 : 147632 5 : 136742
6 : 1357yx24 6 : 12xy7534
7 : 12y6543xzw 7 : 1456y23xzw
w : 17zy2x w : 17zy2x
x : 1w26yz73 x : 1w26yz73
y : 2wzx67 y : 276xzw
z : 7xyw z : 7xyw

Table 4.2: Example of an orientable to nonorientable semihead surface trade.

It is easy to check the orientability of M in Table 4.2. Orientability of M ′ with
the rotation at the point 1 in the direction shown requires the rotation at the
point 2 to also be in the direction shown; and we then have oriented triangles
1wx and 2wx, contradicting orientability.

5 Trade-X

Consider the possibility of the triangular faces 123, 124, 156, 256, 345, 346 of an
embedding M being traded with the triangular faces 125, 126, 134, 234, 356, 456
to form an embedding M ′. Initially we ignore the question of orientability. At
the point 1, and up to reversal, there are two possibilities for the rotation in M ,
namely (a) 1 : 324 · · · 56 · · ·, and (b) 1 : 324 · · · 65 · · ·. These trade respectively to
rotations in M ′ given by (a) 1 : 526 · · · 34 · · ·, and (b) 1 : 526 · · · 43 · · ·. A similar
situation occurs with the rotations at the remaining points 2, 3, 4, 5 and 6. Thus
there are 26 = 64 possibilities for the partial rotations at the points 1, 2 . . . , 6 in
M . These may be represented as (1u, 2v, 3w, 4x, 5y, 6z) for u, v, w, x, y, z ∈ {a,
b}, where the rotations at the points 1, 2 . . . , 6 are:

(1a) 1 : 324 · · · 56 · · ·, (4a) 4 : 536 · · · 12 · · ·,
(1b) 1 : 324 · · · 65 · · ·, (4b) 4 : 536 · · · 21 · · ·,

(2a) 2 : 314 · · · 56 · · ·, (5a) 5 : 162 · · · 34 · · ·,
(2b) 2 : 314 · · · 65 · · ·, (5b) 5 : 162 · · · 43 · · ·,

(3a) 3 : 546 · · · 12 · · ·, (6a) 6 : 152 · · · 34 · · ·,
(3b) 3 : 546 · · · 21 · · ·, (6b) 6 : 152 · · · 43 · · ·.
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A computer analysis of the 64 possibilities shows that there are precisely seven
isomorphism classes, and the list below gives a representative of each class in M .
Each of the isomorphism classes in M trades to the same class in M ′.

class # representative
1 (1a, 2a, 3a, 4a, 5a, 6a)
2 (1a, 2a, 3a, 4a, 5a, 6b)
3 (1a, 2a, 3a, 4a, 5b, 6b)
4 (1a, 2a, 3a, 4b, 5a, 6b)
5 (1a, 2a, 3a, 4b, 5b, 6a)
6 (1a, 2b, 3a, 4b, 5a, 6b)
7 (1a, 2b, 3a, 4b, 5b, 6a)

Examples of each of these seven surface trades may be constructed using the
algorithm described in Section 2. It is easy to verify by hand that the only one of
the seven compatible with orientability is #3, namely (1a, 2a, 3a, 4a, 5b, 6b). The
effect of #3 on an orientable embedding M is to produce an orientable embedding
M ′. To see this consider the partial rotation schemes for M and M ′ which are
shown in Table 5.1.

M M ′

1 : 324 · · · 56 · · · 1 : 526 · · · 34 · · ·
2 : 413 · · · 65 · · · 2 : 615 · · · 43 · · ·
3 : 645 · · · 21 · · · 3 : 241 · · · 65 · · ·
4 : 536 · · · 12 · · · 4 : 132 · · · 56 · · ·
5 : 261 · · · 34 · · · 5 : 364 · · · 21 · · ·
6 : 152 · · · 43 · · · 6 : 453 · · · 12 · · ·

Table 5.1: Potentially orientable surface trade-X.

Observe that each of the partial rotation sections α · · ·β at each point γ in M
appears in the same direction at γ in M ′. For example, 6 · · · 3 appears in the
rotation at the point 1 in M and in M ′. It then follows that if M is orientable, so
is M ′. An example of a complete rotation scheme M corresponding to case #3 of
trade-X is the orientable embedding of K19 given in [4], pages 157-8. A smaller
example is provided by K7 in a torus, as shown in [3].

It is worth noting that trade-X has a particularly simple geometric form. The
six triangular faces in M form three pairs, with the two triangles in each pair
sharing a common edge. The trade is effected by performing three diagonal flips
in which the common edges are firstly regarded as diagonals of quadrilaterals
and are then replaced by the alternative diagonals. This geometric interpretation
makes it clear that the trading operation can never result in a pseudosurface, and
that it will preserve the orientability of an orientable embedding.
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6 Trade-Y

Consider the possibility of the triangular faces 124, 125, 136, 137, 267, 345 of an
embedding M being traded with the triangular faces 126, 127, 134, 135, 245, 367
to form an embedding M ′. Initially we ignore the question of orientability. At
the point 1, and up to reversal, there are two possibilities for the rotation in M ,
namely (a) 1 : 425 · · · 637 · · ·, and (b) 1 : 425 · · · 736 · · ·. However, the permuta-
tion (6 7) preserves the six specified faces of M (and of M ′) and maps case (a) to
case (b). So, up to isomorphism, we may assume that the rotation at the point 1
in M has the form 1 : 425 · · · 637 · · ·. There are two alternative rotations at the
points 2 and 3 in M , namely (2a) or (2b) , and (3a) or (3b) where

(2a) 2 : 415 · · · 67 · · ·, (3a) 3 : 617 · · · 45 · · ·,
(2b) 2 : 415 · · · 76 · · ·, (3b) 3 : 617 · · · 54 · · ·.

At each of the remaining points 4, 5, 6 and 7, the usual arguments give a single
possibility as follows:

4 : 12 · · · 35 · · ·, 6 : 13 · · · 27 · · ·,
5 : 12 · · · 34 · · ·, 7 : 13 · · · 26 · · ·.

So there are four possible combinations of rotations at the points 1, 2 . . . , 7 in M
and these are defined by (2x, 3y) for x, y ∈ {a, b}. The permutation (2 3)(4 6)(5 7)
applied to (2a, 3b) gives (2b, 3a), and by checking the patterns of partial rotation
schemes, as in earlier cases, it is easy to show that the three cases (2a, 3a), (2a,
3b) and (2b, 3b) are nonisomorphic. It is also easy to check, by the same method,
that each of these three isomorphism classes in M trades to the same isomorphism
class in M ′.

The cases (2a, 3a) and (2a, 3b) cannot appear in an orientable embedding
because the directed partial rotation 1 : 425 · · · 637 · · · then gives 2 : 514 · · · 76 · · ·
and 6 : 31 · · · 72 · · ·, contradicting the orientability of the triangle 276. However,
the case (2b, 3b) is potentially orientable and an example of this trade with both
M and M ′ orientable is given in Table 6.1 where both M and M ′ are again
realizations of the toroidal triangular embedding of K7.

M M ′

1 : 425637 1 : 627435
2 : 514673 2 : 716453
3 : 716452 3 : 514672
4 : 217536 4 : 317526
5 : 123476 5 : 132476
6 : 315724 6 : 215734
7 : 132654 7 : 123654

Table 6.1: Example of an orientable to orientable surface trade-Y.
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A further example with M orientable and M ′ nonorientable is given by the fol-
lowing pair of rotation schemes.

M M ′

1 : 425w637x 1 : 627x435w
2 : 514y67 2 : 716y45
3 : 716zw45 3 : 514wz67
4 : 21x53wy 4 : 31x52yw
5 : 12734xw 5 : 13724xw
6 : 31w72yz 6 : 21w73zy
7 : 13526wzx 7 : 12536wzx
w : 15xy43z76 w : 15xy43z76
x : 17zyw54 x : 17zyw54
y : 24wxz6 y : 24wxz6
z : 36yx7w z : 36yx7w

Table 6.2: Example of an orientable to nonorientable surface trade-Y.

It is easy to check the orientability of M in Table 6.2. Orientability of M ′ with the
rotation at the point 1 in the direction shown requires the rotations at the points
3 and 7 to also be in the directions shown; and we then have directed rotations
w : z34 · · · and w : z76 · · ·, contradicting orientability.

Remark
As noted in [3], a large family of trades may be formed from face 2-colourable
triangulations. Take any such triangulation of a surface or a pseudosurface, and
consider the two colour classes. Each of the two resulting sets of triples covers
precisely the same pairs and these sets therefore form a combinatorial trade. For
example, the Pasch trade corresponds to a face 2-colourable triangulation of an
octahedron. The 6-cycle and semihead trades have similar representations. In
fact, any trade T = {T1, T2} on a PTTS in which T1 (and hence also T2) has no
repeated pairs may be represented in this way.
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