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Abstract. Viewed narrowly, software development is concerned only
with formal computations; viewed more broadly, it is concerned also
with the problem world outside the computer. The broader view com-
pels us to deal with the physical and human world by formalisations that
bring it within the scope of formal reasoning, allowing us to deal e�ec-
tively with the causal chain that relates the customer's requirements to
the formally described external behaviour of the computer. It o�ers not
only a sparsely explored �eld of application for formal techniques, but
also fresh challenges that can contribute to shaping and extending those
techniques. The primary challenge centres on the impossibility of exact
true description of the problem world: any description is only an approx-
imation to the reality. Appropriate speci�cation and design structures
can achieve the reliability and extensibility necessary for each particu-
lar system. The study of such structures merits an important place in
computer science.

1 Introduction

The theme of this colloquium is \Formal Methods at the Crossroads: from
Panacea to Foundational Support", and one of its original purposes was \to
discuss the underpinnings of software engineering based on formal methods."
We are concerned, then, with the relationship between the practical activity of
software development and the more theoretical foundational subjects commonly
associated with the discipline of computer science.

To many computer scientists the relationship is transparently obvious. The
essence of software development, they say, is the application of computer science
to programming. To the extent, therefore, that practitioners fail to master and
exploit the results obtained and o�ered by computer science they are failing in
the most immediate and elementary obligation of their profession. The respon-
sibility for determining the scope and content of computer science belongs, of
course, to the computer scientists.

To some practising software developers the relationship is no less compelling,
but has an almost contrary sense. Computer science, they say, addresses chiey
those aspects of software development that cause them little or no diÆculty in
their daily practice; it ignores many aspects that present serious development
challenges and thus have a large impact on the quality and value of the system
�nally produced. Computer science, they believe, is largely irrelevant to their
practical needs.



This disagreement arises partly from the uncertain scope of software engi-
neering . For some practitioners software engineering comprises not only software
construction but also the business justi�cation of the proposed system, the polit-
ical activities necessary to obtain the required investment, the human problems
of managing the development team, the negotiation of conicting demands from
di�erent groups of potential users and other stakeholders, ethnographic studies
to discover unobvious properties of the system's human environment, and other
similar tasks. Evidently computer science has little or nothing to contribute in
these areas, and to computer scientists, qua computer scientists, they are of little
or no interest.

But even when we restrict the scope of software engineering to exclude these
`soft' concerns|for example, by de�ning it as \the development of software to
meet a clearly identi�ed need", there is still a large unresolved issue about what
that restricted scope actually is1. This paper cites a narrower and a broader view
of the restricted scope and sets them in context; it argues that we should take
the broader view; and it presents some topics and concerns that the broader
view would embrace.

2 The Scope of Software Development

The narrower of the two views holds that software development is concerned only
with the software product itself and the computations it evokes in the machine.
This view has been most eloquently advocated by Dijkstra. In an article[3] in
Communications of the ACM he wrote:

\When all is said and done, the only thing computers can do for us is to
manipulate symbols and produce results of such manipulations ... .
\The programmer's main task is to give a formal proof that the program
he proposes meets the equally formal functional speci�cation ... .
\And now the circle is closed: we construct our mechanical symbol ma-
nipulators by means of human symbol manipulation."

Of the formal functional speci�cation he wrote:

\The choice of functional speci�cations|and of the notation to write
them down in|may be far from obvious, but their role is clear: it is
to act as a logical `�rewall' between two di�erent concerns. The one is
the `pleasantness problem,' ie the question of whether an engine meeting
the speci�cation is the engine we would like to have; the other one is the
`correctness problem,' ie the question of how to design an engine meeting
the speci�cation. ... the two problems are most e�ectively tackled by
... psychology and experimentation for the pleasantness problem and
symbol manipulation for the correctness problem."

1 To reect this restricted scope we will use the term `software development' in pref-
erence to `software engineering'.



Dijkstra always described himself, proudly, as a programmer2. His view is rel-
evant to our concerns here because he advocates with perfect clarity the restric-
tion of his discipline to the construction of programs to satisfy given formal spec-
i�cations. A speci�cation describes the computer's externally visible behaviour,
perhaps in the form of an input-output relation. The choice of speci�cation is a
matter of `pleasantness', for which the software developer or programmer is not
responsible. The programmer's concern is simply to produce a program whose
executions will satisfy the speci�cation. Programming correctly is programming
to a given speci�cation of machine behaviour.

Dijkstra's article evoked several invited responses. One response, by Scherlis,
clearly expressed a broader view of the scope of software development [17]:

\... one of the greatest diÆculties in software development is formal-
ization|capturing in symbolic representation a worldly computational
problem so that the statements obtained by following rules of symbolic
manipulation are useful statements once translated back into the lan-
guage of the world. The formalization problem is the essence of require-
ments engineering ..."

In this broader view, the concerns and diÆculties of software development extend
more widely into the world, to where the customer for the software will look to
evaluate the success of the system.

3 The Context of Software Development

Dijkstra speaks of the computing `engine', and Scherlis of the `world'. These are
the fundamental notions in understanding the context of software development.
For consistency with some earlier accounts [7, 8] the term `machine' will be used
here for `engine', and `problem world' or `problem domain' for `world'.

3.1 The Machine, the World and the Requirement

In software development, the machine is what must be constructed by program-
ming: it is realised by a general-purpose computer executing the software we
develop. The problem domain is that part of the world in which our customer
requires the machine to have its e�ect. For example, in a lift control system the
problem domain contains the lift shafts, the cars, the doors, the winding gear,
the motor, the buttons, the indicator lights and the passengers. In a library
administration system the problem domain contains the members, the books,
the membership cards, the library sta�, the library building, and so on. For us,
as software developers, the problem world is given: our task does not include
designing or constructing the lift mechanism, but only exploiting its properties
to achieve the e�ects our customer demands.

The machine and the problem world interact at an interface of shared phe-
nomena. Their interaction, along with the customer's requirement, is shown in
the simple diagram of Figure 1.

2 He eschewed the term `software engineer', which he despised.
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Fig. 1. The Machine, the Problem World and the Requirement

The shared phenomena at interface a are typically shared physical events
and states. For example, in the lift control system the machine can turn the
motor on by setting a certain line to high; we may then regard this interaction
phenomenon as a shared event MotorOn, controlled by the machine, in which
both machine and problem domain participate. Other such shared events may
be MotorO� , MotorPos and MotorNeg , the last two setting the motor polarity
and hence its direction of rotation. Similarly, when the lift arrives at a oor it
closes an electrical switch, and the machine can sense the state of this switch;
we may regard this phenomenon as a shared state SensorOn[f ] , controlled by
the problem domain. Another shared state may be UpButton[f ] , allowing the
machine to detect that the Up button at oor f is depressed. These phenomena at
the interface a are the speci�cation phenomena, because they are the phenomena
in terms of which the speci�cation of the machine's external behaviour must be
expressed3.

The customer appears in the diagram connected to the problem world by the
dashed arrow marked b. This arrow indicates the customer's interest in a set of
physical phenomena b, that in general are distinct from the set at the interface a.
For example, the customer's requirement is that in certain circumstances the lift
should rise and eventually arrive at a certain oor. These phenomena|rise and
arrive|are not shared by the machine at interface a: they are distinct from the
speci�cation phenomenaMotorOn and SensorOn[f ] . The phenomena at b are the
requirement phenomena, because they are the phenomena in terms of which the
customer's requirement is expressed. The requirement phenomena are related
to the speci�cation phenomena by causal properties of the lift mechanism|for
example, that if the motor polarity is set positive and a MotorOn event occurs,
then the lift car will start to rise. It is these causal properties that the machine
exploits in order to satisfy the customer's requirement by sensing and controlling
the phenomena at its interface with the problem world.

3.2 Solution In the World and In the Machine

A solution of the problem must be based on at least the following descriptions:

3 Shared phenomena present two faces. From a vantage point in the problem world
they may be called MotorOn etc; but in a formal speci�cation of machine behaviour
they would more properly be named as they are seen from the machine side of the
interface, as `line X31FF high' etc.



{ requirement R: a statement of the customer's requirement;
{ domain propertiesW: a description of the given properties of the problem
world;

{ speci�cation S: a speci�cation of the machine's behaviour at its interface
with the problem world; and

{ program P: a program describing the machine's internal and external be-
haviour in a language that the general-purpose computer can interpret.

To show that the problem is solved we must discharge a proof obligation whose
form is, roughly:

(P ) S) ^ ((S ^W)) R)
Each implication must be separately proved. We must show that a machine
satisfying the speci�cation, installed in a problem world satisfying the domain
properties, will ensure satisfaction of the requirement4. The task of identifying,
capturing and analysing the domain properties, and developing the speci�cation,
may be characterised as solving the problem in the world . The task of developing
a program to satisfy the speci�cation may be characterised as solving the problem
in the machine. Dijkstra's `logical �rewall' marks the boundary between the two
tasks.

There is an obvious analogy between the two tasks. A requirement referring
to phenomena that are not in the machine interface is analogous to a machine
speci�cation that refers to speci�cation constructs that are not in the program-
ming language. Immediate and direct implementation is impossible, and some
kind of re�nement is needed to obtain a version, equivalent to the original, from
which unimplementable constructs have been eliminated. In re�nement aimed
at program development we rely on the semantics of the programming language
to justify each re�nement step. In developing the program speci�cation from the
requirement we must rely on the domain properties, which alone can bridge the
gap between the requirement phenomena and the speci�cation phenomena.

But the analogy must not be carried too far. The two implications in the proof
obligation have slightly di�erent forms: the domain properties are explicitly men-
tioned in the second implication, but the programming language semantics are
not mentioned in the �rst. This di�erence reects the formality and relative sim-
plicity of the programming language semantics: by writing the program text in a
well-known language we bring in the semantics implicitly. For a good language,
the programming constructs are few and their semantics are regular and certain:
the programmer is not expected to choose some small subset of the semantics
in preference to the rest. But the domain properties are not like this. Although
we regard them as given, in the sense that they are not a part of what must be
constructed, exploring the domain and choosing which properties are useful for
the purpose in hand is often a major development concern.

In general, a problem domain exhibits an unbounded set of causal and other
relevant properties. It is therefore not trivial to identify the `semantics of the
speci�cation'|that is, all the consequences of the machine's actions at its in-
terface with the domain. Further, the analogue of linguistic meta-properties like

4 A more substantial (but imperfect) discussion of this proof obligation is given in [5].



referential transparency , that contribute to the regularity of programming lan-
guage semantics, are rarely found in the physical world. As a result, the task of
choosing, describing and analysing the domain properties needed to allow the
worldly problem to be solved is far from straightforward. The developer must
record exactly which properties have been chosen, and assert them explicitly in
discharging the proof obligation.

3.3 The Broader and the Narrower View

In the context of this relationship between the machine and the problem world
we can characterise the narrower and broader view of software development
by the di�erent subject matters that they encompass. The narrower view is
concerned only with P and S and the �rst implication: with the machine and its
speci�ed behaviour at its interface a to the problem world. Because the shared
phenomena at interface a are phenomena of the machine no less than phenomena
of the problem world, the narrower view can be properly said to be concerned
only with the machine. The broader view encompasses not only the machine
but also W and R and the second implication: that is, it is concerned with the
problem world itself and the customer's requirement expressed in terms of the
requirement phenomena at b. In short: the narrower view holds that software
development is solely in the machine, while the broader view holds that it is
both in the machine and in the problem world.

At �rst sight it may seem that the broader view is just a simple extension of
the narrower view: it merely enlarges our notion of the machine. In the narrower
view the machine was just the computer and the software; now it includes the lift
mechanisms and the passengers, or the library books and the membership cards.
The customer's requirement has taken the place of the functional speci�cation
in the narrower view; once again, we are not responsible, as software developers,
for its choice.

But the e�ect of the extension runs deep. The problem world is not just a
simple extension of the machine, because it is|in general|informal where the
machine is formal. Important consequences ow from this informality.

4 Formal and Informal Domains

The general-purpose computer has been carefully engineered so that, for most
practical purposes, it can be regarded as a formal domain: that is, as the physical
embodiment of a formal system. This is why programming, in the narrow sense
of creating a program P to satisfy a given formal speci�cation S can fruitfully be
regarded as an entirely formal discipline. A formal system, physically embodied,
has two fundamental properties:

1. Occurrences of the phenomena that are signi�cant for the purpose in hand
can be recognised with perfect reliability. For example, a bit in store is either
1 or 0: there are no doubtful cases. (More precisely, the doubtful cases, in



which a bit is in course of changing from one state to the other, are hidden
from view by clocking and other synchronisation mechanisms.)

2. Universally quanti�ed assertions can be made that are useful for the purpose
in hand and are true without exception. The assertions that constitute the
description of the computer's order code are of this kind.

These fundamental properties underpin reliable formal reasoning. True state-
ments about the programmed behaviour of the computer, symbolically manipu-
lated according to appropriate formal rules, are guaranteed to result in further
true statements5.

In an informal domain we can rely on neither of these two fundamental
properties. The denotation of any term we introduce, and the correctness of any
universally quanti�ed assertion we make, may be beset by a multitude of hard
cases. We say what we mean by a vehicle, and we are immediately confronted
by the diÆcult question: Is a skateboard a vehicle? We assert con�dently that
every human being has a human mother, and we are immediately pressed to
consider the very �rst homo sapiens . We calculate and exploit the properties
of certain aircraft components; but we soon �nd that they cease to hold in the
presence of metal fatigue, a phenomenon that we had previously ignored. The
source and symptom of this multitude of hard cases is the unbounded nature of
an informal domain. We can never say with perfect con�dence, as we can in a
formal mathematical domain, that all relevant considerations have been taken
into account.

5 The Meeting of Formal and Informal

In some computer applications the problem world too can be regarded as a formal
domain. It may be abstract rather than physical, as in the problem of factorising
a large integer. It may be itself a part of the same or another computer, as in
the problem of recording and analysing the usage of CPU cycles. It may be a
domain already formalised for a speci�c purpose, as in the problem of playing a
game of chess.

But formal problem domains are the exception, not the rule. Most useful ap-
plications deal with an informal world, in which distinctions between phenomena
are fuzzy and no universally quanti�ed assertion is unconditionally true. These
applications present the `worldly computational problems' to which Scherlis al-
ludes. In discharging the proof obligation (P ) S) ^ ((S ^ W) ) R) we are
confronted by the uncomfortable fact that P and S are formal descriptions of a
formal domain, but W and R are formal descriptions of an informal domain|
with all that this implies. We must, somehow, construct a convincing proof that
relates the formal and the informal.

5 Of course, this guarantee depends on correct design and implementation of the com-
puter and fault-free execution of the program. But in most practical circumstances
these conditions are satis�ed. Computer failure need be considered only for the most
critical systems of all.



Of course, we will not succeed by abandoning formality in our descriptions
and arguments. On the contrary, we must deal with the informal problem world
in a formal way that is e�ective for the particular problem in hand. We will
still use formal terms, and their denotations will be inescapably fuzzy; we will
use universally quanti�ed formulae, and they will not be unconditionally true.
The challenge is to ensure nonetheless that, in Scherlis's words, `the statements
obtained by following rules of symbolic manipulation are useful statements once
translated back into the language of the world'. We aim at suÆcient usefulness,
not at unconditional truth.

6 Problem World Complexity

Introducing a computer into a system can hugely increase the system's discrete
behavioural complexity. Consider, for example, a central locking system for a
typical four-door car. The customer's requirements are about the opening and
closing of the doors and the boot. These requirements include security against
theft, protection|so far as possible|against locking oneself out of the car, ac-
cessibility for employees in a parking garage while keeping the boot locked,
protection against carjacking, convenient locking and unlocking, protecting chil-
dren against unintended opening of doors while the car is in motion, automatic
unlocking in the event of a crash, and so on. The problem domain encompasses
the contexts in which these requirements have meaning (including their human
actors), and also the equipment of the car, including at least:

{ four exterior door handles;
{ an exterior lock on the driver's door;
{ an exterior boot lock;
{ four interior door handles with individual locking buttons;
{ a central locking switch;
{ an ignition switch sensor;
{ a boot release lever;
{ two child-locking activation levers on the rear doors; and
{ a crash sensor.

The possible states and usage scenarios of this equipment give rise to a very
large state space and great behavioural complexity. Certainly there is much
more complexity than was possible in an old-fashioned car in which the locks are
operated mechanically: it was diÆcult to construct practicable direct mechanical
or electro-mechanical linkages between locks on di�erent doors, and a typical
system would not go far beyond locking and unlocking all four doors when the
driver's door is locked or unlocked from the inside.

The need to master this kind of complexity is not new: it is central to soft-
ware engineering techniques. However, because the broader view of the scope
of software development takes in the customer requirements and the relevant
aspects of the problem world, it becomes necessary to consider the requirement
phenomena and their causal connections to the handles, switches and sensors



that participate in the speci�cation phenomena. This is where the informality of
the problem world can introduce new diÆculties. For example, one well-known
and much admired make of car provided automatic unlocking in the event of a
crash by unlocking all the doors unconditionally whenever a sensor located in
the front bumper detected an impact. This scheme, unfortunately, frustrated the
requirement of security against theft: an intelligent thief realised that he could
open a locked car by simply kicking the front bumper in the right place.

This kind of anomaly in a complex problem world system is not new. Very
complex legal, business and administrative systems existed in the Roman em-
pire and in some earlier civilisations. Anomalies arise because of the informal
nature of the problem world: it is always possible for a consideration to arise
that the system has not previously encountered and is not designed to handle.
Traditionally, such anomalies are handled by an ad hoc overriding of the sys-
tem's rules by human intervention. In an automated system no such overriding
is possible. There is therefore an obligation to build a system that is|so far as
practicable|robust against such eventualities. Formal methods are needed for
analysing the vulnerabilities of the descriptions S, W and R to unexpected con-
siderations, and the implications of those vulnerabilities for the demonstration
that the system satis�es its requirements.

7 Problem World Unreliability

Conviction that a system built to a certain behavioural speci�cation S at the ma-
chine interface will guarantee satisfaction of the customer's requirement depends
on a proof that (S ^W)) R). The description W describes those properties of
the problem world that we rely on to ensure satisfaction of the requirement R.
For example, in the lift problem we rely on such properties as these:

{ If a MotorPos event occurs, followed by a MotorOn event, then the lift car
will start to rise in the lift shaft;

{ SensorOn[f ] holds if and only if the lift car is within 6in of the home position
at oor f ;

{ the concrete lift shaft constrains the lift car not to move from oor n to oor
n+ 2 without passing oor n+ 1.

These properties allow the machine to provide the required lift service, in terms
of lifts moving to oors in response to requests, by a suitably designed behaviour
in terms of the speci�cation phenomena.

Unfortunately, because the problem world of the lift's mechanical and elec-
trical equipment is not a formal domain like the domain of the integers, no
properties W can be guaranteed to hold unconditionally. The motor may fail to
rotate when a MotorOn event occurs, because an electrical connection may have
been severed, or the motor windings have burned out. Even if the motor rotates,
the lift car may fail to rise, because the gearbox connecting the motor to the
winding drum has failed, or because the cable has snapped. A oor sensor may



be stuck at closed. The lift shaft may collapse in an earthquake. This unreliabil-
ity of the problem world itself is a major barrier to improving the reliablity [9]
of the systems we build.

At �rst sight it may seem that the description W should be elaborated to
take account of as many of these failures as are considered likely enough to merit
explicit treatment. But this is not really an attractive approach. The resulting
descriptionW would be tremendously complicated, and its complications would
lead to many errors in development of the system. More importantly, the prop-
erties on which we rely for normal correct operation of the system would be
obscured by epicycles of possible but improbable failures.

A more attractive approach is to separate the normal operation of the system
in the absence of failure from its operation in the presence of various failures.
Failure operation may be structured as a set of fallback modes. For example, if
a slight overheating of the motor is detected it may be appropriate to return the
lift car slowly to the ground oor and keep it there; but if the lift car reaches
oor n � 1 from oor n in less than a preset minimum time, suggesting some
failure or impending failure of the winding gear, it may be appropriate to apply
the emergency braking system to prevent a catastrophic fall.

Such a separation gives rise to a problem decomposition into several subprob-
lems: one corresponding to each operation mode, and one or more correspond-
ing to the choice of execution mode at each point in time. Each subproblem,
of course, has its own set of descriptions|speci�cation, problem world proper-
ties and requirement|and its own proof obligation. The relationship among the
subproblems of this set raises some non-trivial concerns:

{ The di�erent subproblems have, in general, di�erent but possibly intersect-
ing sets of requirement and speci�cation phenomena. For example, the event
in which the machine applies the emergency brake appears in the speci�ca-
tion phenomena of one failure-mode subproblem but not in the speci�cation
phenomena of the normal operation subproblem.

{ The di�erent requirements Ri are, in general, mutually contradictory. For
example, the requirement to return the lift car to the ground oor if the
motor overheats contradicts the requirement to provide service in response
to requests.

{ The di�erent problem world propertiesWi �t into some structure of approx-
imations to the reality. If this structure is suÆcient for the reality actually
encountered by the system, then at every stage in execution at least one of
the descriptions Wi describes problem world properties that hold at that
stage.

{ The di�erent speci�cations Si represent di�erent machine behaviours that
are, in general, mutually incompatible. Correct switching from one operation
mode to another must respect certain conditions of atomicity and of state
inclusion, both in the software machine and in the problem domain.



These concerns have been addressed by a number of researchers and prac-
titioners in the �eld of software engineering6. Their signi�cance for computer
science is that they may be susceptible to a more general treatment than they
have so far received.

8 Feature Interactions

Some systems (particularly, but not only, telephone systems and telecommuni-
cation systems more generally) evolve over a long period by successive addition
of new features. For example, one telephone feature is OCS (Originating Call
Screening), which allows a subscriber to enter into the system a list of directory
numbers calls to which are banned at the subscriber's phone. Another feature
is SD (Speed Dialling), which allows a subscriber to specify abbreviations for
frequently called numbers, the system expanding the abbreviations into the cor-
responding numbers. A third feature is CFB (Call Forwarding on Busy), which
allows a subscriber to enter into the system a directory number to which incom-
ing calls will be automatically forwarded when the subscriber's phone is busy. A
fourth is VMB (VoiceMail on Busy), which invites a caller to leave a recorded
message if the subscriber's phone is busy. New features are motivated by mar-
ket demand, and must be provided by any supplier who hopes to continue in
business. The system may have a very large installed base of hardware, software,
attached devices, and users; so redesigning the whole system to accommodate
a new feature is not a feasible option. Instead, new features must be added
to the existing system with the minimum disruption of software structure and
functionality and of users' expectations.

Such a system inevitably su�ers from the feature interaction problem. Two
features interact if the presence of one frustrates or modi�es the operation of the
other. The interaction may be desirable or undesirable, but the problem is always
to manage it appropriately both for the users and for the software. To take a
simple example, Call Forwarding on Busy and VoiceMail on Busy are competitive
`busy treatments'; if one of them is applied to a particular incoming call the other
is bypassed. This competition between these features can be resolved by a �xed or
variable priority scheme in the requirements structure. In the software structure
it is desirable that each feature should be implementable by an independent
module[6, 18] from which all reference to the other feature is rigorously excluded.

A more interesting interaction arises between Originating Call Screening
(OCS) and Call Forwarding on Busy (CFB). A subscriber who enters the number
of a chat line into the OCS list, to prevent a teenage child from calling the chat
line, can be frustrated by the teenager and a cooperative friend. The friend �rst
con�gures CFB at the friend's phone, specifying the chat line as the forward
number, and then ensures that the friend's phone is busy when the teenager
wants to call the chat line. The teenager calls the friend's number, and the call
is forwarded to the chat line.

6 Contradictory requirements, for example, have been treated in [13].



This second, more interesting, interaction raises some interesting concerns
about requirements and speci�cations, and about the relationship between them
and an implementation. The OCS feature may originally have been conceived
in terms of directory numbers dialled at the subscriber's phone: in this original
form it acts to bar any call initiated by dialling a forbidden number. Then,
perhaps, the addition of the SD (Speed Dialling) feature causes an immediate
interaction: if an abbreviation is used the barred number is not actually dialled
at the subscriber's phone, but is retrieved by the system from the subscriber's
SD dictionary to place the call. With hindsight it can then be seen that the OCS
feature should rather have been conceived in terms of numbers initiated at the
subscriber's phone, whether directly by dialling or indirectly by abbreviation.
But the interaction with CFB then shows that even this change is insuÆcient.
The chat line number is never initiated at the subscriber's phone; it is only
entered at the friend's phone when Call Forwarding is set up.

Essentially the diÆculty is that adding new features changes the problem
world in ways that were not foreseen. In the speci�c context of telecommuni-
cation system the diÆculty can be addressed by special-purpose architecture[6,
18]. The full challenge is to �nd a sound general basis for incremental feature-
based development that minimises, or at least mitigates, the e�ects of this diÆ-
culty. Certainly, standard notions of re�nement can not meet this challenge, and
other approaches|for example, retrenchment[2]|merit energetic exploration.
The goal is to identify or develop formal structures that will be more resilient
under the impact of this particular class of changes to the requirements.

9 Building and Using Analogic Models

A simple information problem may have the form shown in Figure 2.
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Fig. 2. An Information Problem

The problem world has been structured as two domains: the Subject Domain,
about whose state and behaviour information is required; and the Information
Outputs domain, to which the required information is to be delivered by the
machine. For example, the Subject Domain might be a chemical process plant,
and the Information Outputs domain a display panel used by the plant operating



sta�. The requirement is that a certain correspondence should be maintained
between some phenomena b of the Subject Domain and some phenomena d of
the Information Outputs domain. For example, the value of a certain �eld shown
in the display must correspond to the current level of liquid in a certain vessel;
the value of another �eld must correspond to the cumulative ow through a
certain valve; and so on7. The machine has access to the phenomena a, which it
shares with the Subject Domain; from these phenomena it must determine the
values of the requirement phenomena b. It also has access to the phenomena c,
which it shares with the Information Outputs domain; it uses these phenomena
to set the values in the display.

In general, the values to be set in the display �elds will not simply be repre-
sentations of states immediately available at interface a. Calculation of the �eld
values will need the use of local variables internal to the machine; some of these
variables correspond to phenomena of b that can not be directly observed but
must be computed by inference from the Subject Domain properties; others cor-
respond to phenomena that may be directly observed but must be remembered,
or perhaps integrated over time, or otherwise summarised. These local variables
of the machine constitute an analogic model [1] of the Subject Domain.

Where a non-trivial analogic model of this kind is necessary, it is appropriate
to separate the problem into two subproblems: one of maintaining the model,
and the other of using it to furnish the required information. This decomposition
is shown in Figure 3.
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Fig. 3. Decomposition of an Information Problem

7 The presence of an arrowhead on one dashed line and not the other indicates that
the correspondence must be achieved by constraining the Information Outputs, not
the Subject Domain.



The decomposition makes explicit the role of the model domain as an interme-
diary between the Subject Domain and the Information Outputs. Clearly, it is
desired that the original requirement should be equivalent to the composition of
the two subproblem requirements. That is:

(Model � SubjectDomain ^Outputs �Model), Outputs � SubjectDomain

However, there are many reasons why this goal can be achieved only imperfectly.
These reasons may include:

{ approximation of continuous by discrete phenomena;
{ unreliability of the tranmission of phenomena a across the interface;
{ unreliability of the feasible inferences of phenomena b from phenomena a;
{ loss of information due to lack of storage for an unbounded history of the
Subject Domain;

{ imperfect synchronisation of the Model with the Subject Domain; and
{ delays due to avoidance of interference between Machine1 and Machine2
in accessing the Model.

The study of these diÆculties, both individually and in combination, is im-
portant. Many system failures are at least partly attributable to unanalysed
deviation of a model from its subject domain. The topic may, perhaps, be re-
garded as analogous to the study of error terms in numerical analysis.

10 Dependable Systems

A dependable system is one for which reliance may justi�ably be placed on
certain aspects of its conformity to requirements and quality of service. If the
term `dependable' is to mean something signi�cantly di�erent from `good' it must
surely mean that some of these aspects are more dependable than others. For
example, in a system to control a radiotherapy machine one might distinguish
two requirements: that each patient receive the dose prescribed for his case; and
that no patient receive a lethal dose. A thoroughly successful system will conform
dependably to both of these requirements; but the dependability of conformance
to the second requirement is clearly more important.

An example of this kind of priority of requirements appeared in Section 7,
where the requirement that the lift must not crash in the event of motor failure
takes precedence over the requirement for servicing requests. In that example,
and in the whole discussion in Section 7, the root source of the diÆculty was
problem domain unreliability: any property on which satisfaction of the require-
ment depends may fail to hold. In a dependable system it is necessary also
to handle diÆculties whose source is unreliability in the software components
that we ourselves have developed. We must be able to be sure that the subpro-
gram precluding a lethal dose will have priority over the less critical subprogram
guaranteeing delivery of the prescribed dose|even if the latter is incorrectly pro-
grammed. This is a di�erent concern from our earlier concern with unreliability
of the problem world.



In physical systems priority may be straightforwardly achieved by exploiting
quantitative physical properties that allow one component to be made stronger
than another, ensuring that the weaker component will break before the stronger.
The most obvious example of explicit design on this basis is a fuse in an electrical
circuit: if the circuit is overloaded the fuse blows before any damage can be done
to the other parts of the circuit. Implicit illustrations are found everywhere,
especially in mechanical structures. Repainting a suspension bridge does not risk
causing immediate collapse, because the weight and other physical attributes of
the paint are quantitatively negligible compared to the corresponding attributes
of the piers, chains, roadway and other major components.

In the software technologies in common use there is, unfortunately, no obvi-
ous sysematic analogue of strength and other quantitative physical properties: in
a certain sense every software component is equally strong. As the Ariane-5 and
Therac-25 catastrophes showed, failure in a relatively unimportant component
can result in disastrous malfunction of a component critical to the whole oper-
ation of the system. As is well known, the Therac-25 replaced some hardware
safety interlocks present in the predecessor Therac-20 design with new software
safety interlocks[10]. An important factor contributing to the catastrophe was
the vulnerability of these software interlocks to failures in other, relatively unim-
portant, software components. What was needed was provided by the discarded
hardware interlocks but was not, apparently, achievable in software: that is, that
the interlocks should be stronger than the other components, and so invulnerable
to their failures.

In safety-critical systems it is acknowledged that the most critical components
must be identi�ed. Their correctness, and provision of a protected environment
for their execution, must take priority and should receive an appropriately large
share of the development resources. Identifying the most critical components,
and enabling this preferential treatment, are central goals of software design.
In e�ect, the emphasis in such developments moves from a simplistic goal of
uniform correctness of every part of a system to a more sophisticated goal of
appropriate relative strengths of di�erent components in a software structure.
Software faults can be tolerated, just as the inevitability of physical failure can
be tolerated.

A substantial body of work on software fault tolerance goes back at least
to the ideas of recovery blocks[14]. It seems desirable that more general formal
foundations should be established, on which a systematic discipline of design in
the presence of potential software failure can become the norm, as design in the
presence of physical component failure is the norm in traditional engineering
disciplines.

11 Conclusion

There is nothing new in this paper except, perhaps, the emphasis of its central
argument. For every topic proposed here as a worthy subject for the attention
of computer scientists it is possible to point to computer scientists who have



already produced important work on that topic8. It is also true that formal
calculi and notations are often strongly inuenced by the problems thrown up
by technological developments|the �-calculus being a notable example[11]. And
yet the centre of gravity of computer science today seems to lie elsewhere.

The argument of this paper is that the scope of computer science|more
precisely, the active interests of typical computer scientists|could fruitfully be
broadened to take in more of the problem world and with it a more direct
understanding of the consequences of its complexity, untidiness and unreliability.
It is not enough to look on the problem world from afar, hoping that distance
will lend perspective and will help to make the largest and most important
diÆculties stand out from a mass of trivia. Nor is it enough to listen carefully
to practitioners, trusting that they have already winnowed out the important
concerns and can be relied on to express their essence in a compact form and
bring them to computer scientists for solution. As Newton wrote in a letter to
Nathaniel Hawes[12]:

\If, instead of sending the observations of able seamen to able math-
ematicians on land, the land would send able mathematicians to sea,
it would signify much more to the improvement of navigation and the
safety of men's lives and estates on that element."

Such a broadening of computer science would surely lead to a greater em-
phasis on topics that are close to some core diÆculties of software development.
One goal of computer science is to provide sound scienti�c and mathematical
foundations for the practice of software development. Those foundations will be
deeper and better placed if they grow out of a wholehearted engagement with
the whole range of what Eugene Ferguson[4] calls `the incalculable complexity
of engineering practice in the real world.'
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