
Problem Architectures

A Position Paper for the ICSE-17 Workshop

on Architectures for Software Systems

Michael Jackson

14 November 1994

1 Problems and Solutions

The activity of software development is an activity of building machines to
solve problems. We construct a machine, in the form of a specialisation by
software of a general-purpose computer; and we install it in the world to serve
a purpose|just as an architect constructs a building and installs it in the
world to serve a purpose. The analogy is natural and direct. But the word
architecture connotes a concern with solutions rather than problems. Schools
of architecture sometimes refer to their subject as the built environment, a
term entirely appropriate both to architecture and to the analogous concept
in software. But in one way it is a narrow term: it focuses our attention on
the artifact, not on the problem it is intended to solve.

Some architects, especially Alexander [1], have paid explicit attention
to the problems they are solving, recognising that a building can not be
conceived and designed, or even criticised, without explicit analysis of the
purpose to which it will be put. In software development we should do no
less. But, as some workers in the area of software development patterns
[11, 4, 10] have recognised, we have too few intellectual tools for examining,
analysing, or classifying problems.

This shortcoming must be remedied if the �eld of software architecture is
to reach its fullest fruition. The virtues of an architecture are relative to the
problems for which it might be used. Comparison, analysis and evaluation
of architectures must relate them [19] to problems. But the obstacles to

1

focusing on problems are real. The traditional diÆculties of separating the
what from the how, and of avoiding implementation bias in speci�cations
[12], show how easily one can slip from stating the problem into postulating
a solution.

The study of problems is of interest in its own right, but it also has
very practical consequences for software development. In software, above
all, where the medium and product of work is description, e�ort devoted
to problem description and analysis is doubly repaid. Not only can design
and construction|as in any work of producing artifacts to solve problems|
proceed far more con�dently and purposefully when the problem has been
explicitly described. In software, many parts of the problem description often
can|and should|be transformed into directly useful parts of the solution.

2 Problem Frames

Polya's well-known book How To Solve It [18] expounds and ampli�es the
ideas of the ancient Greek mathematicians on problem-solving method. The
central idea is that each problem has principal parts and a solution task,
according to which it can be classi�ed. The Greeks recognised two problem
classes:

problems to �nd or construct The principal parts of a problem to �nd
or construct are an unknown, the data, and the condition. The solution
task is to �nd the unknown, correctly related to the data by the condi-

tion. For example: Construct a triangle whose sides are of lengths 6, 7,
and 8. The unknown is the triangle; the data is the lengths 6, 7, and 8;
the condition is that the triangle's sides are of those lengths; and the
solution task is to �nd the triangle.

problems to prove The principal parts of a problem to prove are the hy-

pothesis and the conclusion. The solution task is to prove that the
conclusion follows from the hypothesis. For example: Prove that if the
sides of a quadrilateral are equal its diagonals bisect each other. The
hypothesis is that the quadrilateral's sides are equal; the conclusion is
that its diagonals bisect each other; and the solution task is to show
that the latter follows from the former.

2

These structures, of principal parts and solution task, may be called prob-

lem frames. They can be thought of as templates against which each new
given problem may be checked. If a template �ts the problem, then the meth-
ods and techniques appropriate to the frame can be used. Polya discusses
several heuristics for solving problems of the two classes. For example: Break
the condition into parts; Change the unknown to bring it closer to the data.
Each heuristic is expressed in terms of the principal parts of the problem
frame. This allows Polya to discuss problems in terms of their parts and
structure without slipping into a discussion of putative solutions.

3 Problem Contexts and Domains

The principal parts of a problem frame are furnished by the problem context

and the relationships among parts of the context. The contexts of mathe-
matical problems are populated by abstract mathematical objects such as
triangles and quadrilaterals. Their properties are assumed to be well-known
to the problem solver, at least to the extent necessary for solving the problem.

But the context of a software development problem is located in the
natural and human world. There are employees, and aeroplanes, and tax
laws, and lifts, and bank accounts. It is not, in general, to be assumed
that their properties are well-known. On the contrary, they vary|widely
and sometimes arbitrarily|from one problem to another. So the context of
each particular software development problem must be made the subject of
a particular ad hoc study. This study is not an optional or ancillary part
of the development work, but a central and integral part of what developers
must do.

It is natural to structure a problem context as a number of domains. A
domain in this sense is not a general category of applications, such as the
banking domain or the process-control domain. Rather, it is a speci�c part of
the particular problem's context that can be studied and described in com-
parative isolation. For example, in a simple system to provide management
information about the progress of a chemical process in a plant, it may be
appropriate to consider the managers, the plant, and the information to be
produced as three separate domains. Each domain has its own phenomena,
and its own properties that may be regarded as relationships among those
phenomena [9].

3

In the simple information system the domains do not interact with each
other in the absence of the machine to be built. It is|as always|the pur-
pose of the machine to bring the domains into the required relationships by
interacting with all of them. This interaction can be viewed as interaction
by shared phenomena [20]. When a manager requests a report or an answer
to a question, the request is an event shared by the manager and the ma-
chine; when a vessel in the plant is at a certain temperature, that is a state
shared by the machine and the plant; when a graph is displayed in response
to a manager's request, the events and structures involved in the display are
shared by the machine and the domain of information outputs.

4 Software Problem Frames

The chemical process information system �ts into a simple problem frame:

simple IS frame The principal parts of a simple IS problem are a real world

domain, a domain of information requests, a domain of information

outputs, the system, and the information function. The solution task

is to construct the system so that it produces the information outputs

in response to the information requests; the information outputs must
contain the requested information about the real world, as speci�ed by
the information function. In our example, the real world is the chemical
plant, and the information requests are made by the managers.

A problem frame excludes many problems. The simple IS frame treats
the real world as autonomous. There is no notion that the chemical plant can
be controlled by the system: it is only a subject of observation and reporting.
So this frame does not �t any process-control problem. The information

outputs are concerned solely with the real world and so can not furnish any
information about previous requests. The system therefore can not provide
an analysis of its own usage or of any other aspect of the managers' behaviour.

Such simpli�cations and restrictions are essential to problem frames. A
frame delimits a class of problem by stripping away all the incidental com-
plications that characterise realistic problems. The purpose of this simpli�-
cation is to allow systematic methods of solution. There is a clear analogy
with the usual procedures of mathematics.

4

In general, the more constraining the problem frame, the more useful an
associated method can be. For example, the simple IS frame can be tight-
ened even further to �t a still smaller class of problem. We may stipulate that
the real world must be dynamic, not static; and that the information requests

must be regarded as an unstructured stream of atomic events. These fur-
ther simpli�cations are exploited by the JSD method [8] to give a reasonably
systematic procedure for analysing the problem and developing a solution.

A suÆcient set of problem frames for software development will have very
many more than two members. Very few frames have yet been identi�ed and
de�ned. Purely as illustrative examples, three frames are sketched here in
outline:

simple control frame The principal parts of a simple control problem are
the controlled domain, the desired behaviour, and the controller. The
solution task is to construct the controller so that it interacts with the
controlled domain and brings about the desired behaviour.

This frame would be appropriate for controlling the chemical plant.
The controlled domain must be dynamic, and partly autonomous and
partly reactive. The controller must interact directly with the con-

trolled domain. A method for a more elaborate version of this problem
frame, in which input and output subsystems are interposed between
the controller and the controlled domain, is described in [17].

workpieces frame The principal parts of a workpieces problem are the
workpieces, operation requests, a machine tool, and operation proper-

ties. The solution task is to construct the machine tool so that in
response to the operation requests it performs operations on the work-

pieces satisfying the operation properties.

This frame would be suitable for a simple text editor. The workpieces

must be inert, and the operation requests must be viewed as an un-
structured stream of events. For a problem �tting this frame it may be
e�ective to use a model-oriented method [12], treating the workpieces

as instances of an abstract data type.

supervised domain frame The principal parts of a supervised domain
problem are the supervised domain, the desired interaction, the supervi-
sor, and safety actions. The solution task is to construct the supervisor

5

so that it interacts with the supervised domain, performing the safety

actions when the supervised domain fails to interact with it in accor-
dance with the desired interaction.

This frame is suitable for problems in which human operators|for
example, aeroplane pilots or drivers of railway trains|are required to
behave according to certain rules. The supervisor is the air traÆc
control system or railway signalling system with which they interact.

These frames must be �lled out with much fuller characterisations of their
principal parts and associated methods. Here only the briefest sketches are
given.

5 Problem Complexity

A problem frame strips away the incidental complications that characterise
realistic problems. A realistic problem can be regarded as an assemblage
of simpli�ed problems, each of which �ts into a well-de�ned problem frame.
Such a realistic problem exhibits problem complexity. It must be decomposed
into simple problems for which e�ective methods are known. This decompo-
sition is guided by an initial description and analysis of the problem context,
and by knowledge of a repertoire of frames and associated methods.

In general, problem decomposition is into overlapping parallel frames:
hierarchical problem structure is unusual. Two frames are interconnected
by the domain phenomena they have in common. Two principal parts in
di�erent frames share domain phenomena in roughly the same kind of way
as parallel CSP [6] processes share common events.

Consider, for example, a simple text editor. A �rst complexity may be
that one view of the text is insuÆcient. For inserting and deleting words it
is appropriate to view the text as a simple character string; but for screen
display and cursor movement, and for printing, the text is structured as a
sequence of lines. The problem can be regarded as requiring two workpieces
frames, one for each view. The two views are pinned together by their
common phenomena: the characters in the string are the characters in the
lines (excluding the newlines and hyphens). An illuminating discussion of
this complexity in terms of Z schemas may be found in [7].

6

Another complexity in the text editor may be that the users are to be
constrained by certain rules of procedure. The text editor itself �ts into one
or two instances of the workpieces frame; imposition of the constraints �ts
into the simple control frame. Both are concerned with the same events:
the operation requests and the resulting performance by the machine tool

of operations on workpieces. Notice that in the workpieces frame, these
are events in separate domains; but in the simple control frame they are
events in a single controlled domain. Notice also that the machine tool, which
in the workpieces frame is the machine to be developed, appears in the
simple control frame as a part of the controlled domain.

Typically, di�erent frames demand di�erent views of the problem context,
and di�erent groupings of domains and their phenomena for allocation to
the principal parts of the frames. Di�erent views are also needed of the
control characteristics of domains and their phenomena. In the workpieces
frame the operation requests are autonomous: the users perform them at will
and the machine tool responds reactively in accordance with the operation

properties. But in the simple control frame these events become subject
to inhibition by the controller.

Di�erent views are similarly needed of the solution parts of the machine
being built. This means composing di�erent architectures in ways that are
not normally considered when the architectures are considered separately. A
clear example is given by Garlan and Shaw [5]. From one point of view a
pipe-and-�lter architecture is appropriate to the processing needs of a cer-
tain problem in oscilloscope design. Each �lter can be thought of as an
autonomous process, whose execution is constrained only by the availability
of its input. But the users of the oscilloscope must be able to interact with
it, and so must be able to impose some control on the �lter processes. This is
the solution counterpart of the di�erent views of the control characteristics
of problem domains as seen in di�erent problem frames.

6 Related Work

The notion of problem frames is rooted in the work of Polya and the Greek
mathematicians. That work appears not to have been exploited elsewhere.
The approach to complexity has something in common with the work com-
monly subsumed under the term `viewpoints', but there are substantial dif-

7

ferences.
The work of Finkelstein Nuseibeh and Kramer [16, 3] is more concerned

with the management of development methods and their products, and less
directly with the analysis of the problem in hand.

The CORE method [15] is also based on viewpoints: a CORE viewpoint
is associated either with an entity that interacts with the system in some
way or with a sub-process of the system.

The work of Leite [14] focuses on viewpoints based on the di�ering per-
ceptions of people involved in a development. \A viewpoint is a standing or
mental position used by an individual when examining or observing a uni-
verse of discourse." There is a strong emphasis in this work, as in the work of
Easterbrook [2], on the pitfalls of natural language, and the need to resolve
con
icts in its use.

An overview of viewpoints work can be found in [13].

References

[1] Christopher Alexander, Sora Ishikawa and Murray Silverstein; A Pattern
Language; Oxford University Press, New York, 1977.

[2] Steve Easterbrook; Handling Con
ict Between Domain Descriptions
with Computer-Supported Negotiation; Knowledge Acquisition Number
3 pages 255-289, 1991.

[3] A Finkelstein, J Kramer, B Nuseibeh, L FInkelstein, M Goedicke; View-
points: A Framework for Integrating Multiple Perspectives in System
Development; International Journal of Software Engineering and Knowl-
edge Engineering Volume 2 Number 1 pages 31-57, March 1992.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides; Pat-
terns: Elements of Object-Oriented Software; Addison-Wesley, 1994.

[5] David Garlan and Mary Shaw. An Introduction to Software Architec-
ture; in Advances in Software Engineering and Knowledge Engineering
Volume 1, V Ambriola and G Tortora eds; World Scienti�c Publishing
Co, New Jersey, 1993.

8

[6] C A R Hoare; Communicating Sequential Processes; Prentice-Hall In-
ternational, 1985.

[7] Daniel Jackson; Structuring Z Speci�cations with Views; Carnegie Mel-
lon University Report CMU-CS-94-126, March 1994.

[8] Michael Jackson; System Development; Prentice-Hall International,
1983.

[9] Michael Jackson and Pamela Zave; Domain Descriptions; in Proc RE'93
pages56-64; IEEE, 1993.

[10] Ralph E Johnson; Documenting Frameworks using Patterns; OOP-
SLA'92 Proceedings, ACM SIGPLAN Notices Volume 27 Number 10,
pages 63-76, October 1992.

[11] Ralph E Johnson; Why a Conference on Pattern Languages? ACM SE
Notes, Volume 19 Number 1, pages 50-52, January 1994.

[12] Cli� B Jones; Systematic Software Development Using VDM; Prentice-
Hall International, 2nd Edition 1990.

[13] Gerald Kotonya and Ian Sommerville; Viewpoints for requirements de�-
nition; Software Engineering Journal Volume 7 Number 6 pages 375-387,
November 1992.

[14] Julio Cesar Sampaio do Prado Leite and Peter Freeman; Requirements
Validation Through Viewpoint Resolution; IEEE Transactions on Soft-
ware Engineering Volume 17 Number 12 pages 1253-1269, December
1991.

[15] G P Mullery; CORE { a Method for Controlled Requirements Speci�-
cation; in Proc ICSE-4 pages 126-135; IEEE, 1979.

[16] Bashar Nuseibeh, Je� Kramer, Anthony Finkelstein; Expressing the Re-
lationships Between Multiple Views in Requirements Speci�cation; in
Proc ICSE-15 pages 187-196; IEEE, 1993.

[17] D L Parnas and J Madey; Functional Documentation for Computer Sys-
tems Engineering (Version 2); CRL Report 237, McMaster University,
Hamilton Ontario, Canada, 1991.

9

[18] G Polya; How To Solve It; Princeton University Press, 2nd Edition,
1957.

[19] Mary Shaw, David Garlan, Robert Allen, Dan Klein, John Ockerbloom,
Curtis Scott, Marco Schumacher; Candidate Model Problems in Soft-
ware Architecture; Software Architecture Group, Carnegie Mellon Uni-
versity, internal document, December 1993.

[20] Pamela Zave and Michael Jackson; Conjunction as Composition; ACM
Transactions on Software Engineering and Methodology, Volume 2 Num-
ber 4 pages 379-411, October 1993.

14/11/94

M A Jackson
101 Hamilton Terrace
London NW8 9QX
mj@doc.ic.ac.uk
jacksonma@attmail.att.com
+44 0171 286 1814 (voice)
+44 0171 266 2645 (fax)

10

