
Problem Structure And Dependable Architecture

Michael Jackson

Faculty of Mathematics & Computing, The Open University,
Milton Keynes MK7 6AA, England

jacksonma@acm.org
http://mcs.open.ac.uk/mj665

Abstract. An approach to software development is sketched in which problem
structuring is separated from software architecture. The problem is decomposed
into subproblems of familiar classes that can be considered in isolation; then the
interactions among the subproblems are considered. The architectural task is
seen as the task of composing the software machines associated with each
subproblem and with the more complex interactions among them. It is
suggested that such an approach embodies a good separation of concerns that
can contribute to achieving system dependability.

Introduction

Software architecture, according to Shaw and Garlan [9] is concerned with “... the
organization of a system as a composition of components; global control structures;
the protocols for communication, synchronization and data access; the assignment of
functionality to design elements; the composition of design elements; physical
distribution; scaling and performance; dimensions of evolution; and selection among
design alternatives.” We may ask how these concerns impinge on system
dependability, and—if they do—how to address them in a way that will improve
dependability.

An obvious analogy is with the dependability of engineered physical structures.
Many notorious engineering failures can be traced to structural design faults. A
structure that has been incorrectly designed to carry the imposed loads will fail in use.
The careful investigation that follows a failure reveals the design error; popularising
books on engineering [7, 2, 5] provide lucid explanations for lay readers. But it is far
from clear that the analogy is sound. Software is not itself a physical product, and the
forces imposed on it are, for the most part, not usefully quantifiable like the forces on
a beam or a truss. There are, of course, aspects of some systems where numerical
calculations of bandwith, network traffic, response times, or computational
complexity are critical to successful design. But for most aspects of the broad range of
systems this is not so.

Another important difference is that software is extremely malleable. Software for
a digital computer evokes a computation describable by a state machine: the
transitions of this machine can be grouped and configured in many different ways

2 Michael Jackson

without affecting the evoked computation. Presenting two candidate modularisations
of the KWIC problem [6], Parnas wrote:

“The systems are substantially different even if identical in the runnable
representation. This is possible because the runnable representation need only be used
for running; other representations are used for changing, documenting, understanding,
etc. The two systems will not be identical in those other representations.”

The ‘runnable representation’ is only one of several architectures of a system.
Other representations—and hence other architectures—are largely concerned with
human understanding. They embody attempts to master the complexity of a real-
world problem and of the software that must lie at the core of its solution, and to
ensure that all important concerns are adequately addressed. The goal for the software
architect is to avoid certain classes of system failure. Not all failures can be avoided
by software structure aimed at mastering complexity: examples of those that can not
include failures arising from poorly designed human interfaces, configuration errors,
unreliable hardware, slow response, inadequate throughput, and from many other
causes. But one important class that can be so addressed is functional failure, in which
the observable behaviour of the system is not what was intended or desired. In this
class we include failures to meet requirements of safety and reliability, and also
failures to repair or conceal or mitigate a malfunction where such response to the
malfunction is, or should be, a functional requirement of the system.

A View of Software Development

The principal parts1 of a software development problem are:

• the problem world, where the problem is located: for a lift control system this is the
users, floors served, lift car and shaft, doors, request buttons, winding gear,
indicator lights, floor sensors, and so on;

• the requirement, which is the behaviour to be established and maintained in the
problem world: for example, that the doors open only when the lift car is at a floor,
and that the lift comes when summoned and goes to the requested floor;

• the machine, which is the hardware-plus-software computer to be designed and
installed in the problem world and connected to it by the machine interface: for the
lift system this interface would be the port connections to the motor control, button
sensors, indicator lights, floor sensors, and so on.

The goal of the development is to devise, specify and build a machine that will
guarantee satisfaction of the requirement by exploiting and respecting the given
properties of the problem world. In the lift control problem these are the physical
properties that cause the lift car to rise when the motor is set on and up, the floor
sensor to close when the lift car arrives at the floor, and so on.

Because the requirement and the problem world are complex, the development can
fail in many ways. The requirement may have been misunderstood; the given
properties of the problem world may have been misunderstood; the machine that is

1 ‘Principal parts’ is a term taken from [8].

Problem Structure And Dependable Architecture 3

built may not satisfy its specification; the specification may be faulty—not
guaranteeing satisfaction of the requirement even if the requirement and the problem
world properties have been correctly understood and represented. It is a principal goal
of problem structuring—that is, of problem architecture—to achieve a clarity of
understanding that makes such failures avoidable.

Architecture and Decomposition

The key to mastering complexity is the separation of concerns, but we must clarify
what this means for software development. Architecture is concerned with structuring
the machine by organising it “as a composition of components” and with “the
assignment of functionality to design elements”. This demands a structuring of
functionality. The problem must be structured into subproblems, whose solutions can
eventually be assigned to software components. This structuring into subproblems is
primarily a decomposition of the problem requirement. Each subproblem has its own
requirement and its own problem world, which is a projection of the problem world
originally given. The problem world too demands to be structured, both to support the
problem decomposition and to separate parts whose interactions will be mediated by
the machine. For example, it is convenient to separate the lift car in the shaft from the
buttons and lights. We will regard the problem world, then, as an assemblage of
problem domains, but we must not expect that exactly the same structuring will be
appropriate for all subproblems. As Shaw and Garlan point out, there will be a need
for “the composition of design elements”. In fact we can go further: there will be a
need for composition of problem elements more generally, including requirements
and problem domains. Composition, as we shall see, is a major development task in
its own right, with its own characteristic concerns.

The structuring of requirements or functionality is rarely a concern in the
established branches of engineering, where most design work is normal, rather than
radical, design [10]. The engineer engaged in normal design knows the operational
principle of the device to be designed: that is, how it works, and how its characteristic
parts fulfil their special function in combining to an overall operation which achieves
the purpose. The designer of a car, for example, does not spend effort in decomposing
the functionality that converts fuel combustion into movement of the car. Normal
design dictates a decomposition into reciprocating engine, flywheel, gearbox, cardan
shaft, differential gear, half-shafts and road wheels, arranged in a standard
configuration and connected by well-understood interfaces.2

In software, by contrast, the decomposition of functionality is very often a task of
radical design [1], in which:

“... how the device should be arranged or even how it works is largely unknown.
The designer has never seen such a device before and has no presumption of success.
The problem is to design something that will function well enough to warrant further
development.”

2 Where there are choices—for example, between front-wheel and rear-wheel drive—the

designer must choose from a very small number of such standard configurations.

4 Michael Jackson

A developer confronted by a genuinely radical design task can do little but resort to
general principles and broadly formulated methods or design disciplines. They are, of
course, a very inferior substitute for an established normal design practice specialised
to the problem in hand.

A Problem Decomposition Discipline

One approach to the development task [4] is to regard it initially, and primarily, as a
task of problem decomposition rather than of solution design. The approach does not
aim at ‘seamless development’: no assumption is made that the problem structure will
suffice for the solution architecture. Taking the view presented earlier of the principal
parts of a software problem, the developer seeks to decompose the problem into a
collection of subproblems, each with its problem world, requirement, and machine.

At this stage, conceptually, each subproblem is considered in isolation, supposing
all the remaining subproblems to have been solved. For example, the service
requirement of one identified subproblem might be to provide normal lift service on
the assumption that the electromechanical equipment is functioning correctly, while
the safety requirement of another is to monitor the equipment behaviour and, if
serious malfunction is detected, to apply the emergency brake and hold the motor
switch off. Then in the service subproblem the problem world properties take no
account of possible malfunction or of the emergency brake. In the safety subproblem
the problem world properties take no account of service requests or of indicator lights;
the requirement is to monitor only the lift and door movements in response to the
changing motor and door control states, and to take appropriate action in the event of
malfunction.

This functional decomposition is guided above all by a need to identify
subproblems of known classes. The space, a priori, of possible decompositions is
very large. By insisting, so far as possible, that the arrangement and characteristics of
the principal parts of each subproblem must conform to a known pattern or problem
frame [4], the developer aims at two related goals, both contributing directly to
dependability. First, it becomes easier to grasp and communicate the decomposition
itself because an appropriate vocabulary is ready to hand. Just as a developer who
uses an object-oriented design pattern [3] such as Decorator can easily hold in mind
and communicate the pattern elements and the part of the problem to which it relates,
so too a developer who identifies a WorkPieces or an Information Display
subproblem can do the same. Second, a known problem frame to which an identified
subproblem conforms should already be, or can eventually become, the object of
specialised normal design practice and knowledge. The decomposition itself is locally
validated by the knowledge that the identified subproblem is soluble and that its
solutions have certain properties.

If the whole requirement has been structured as a set of subproblems of known
classes then the design task is radical only in the sense that it is a novel composition
of normally-designed components. The radical aspect of the development is restricted
to the composition concerns (which we discuss in a later section), and does not reach
down to the individual subproblems. Being able to treat the subproblems as objects of

Problem Structure And Dependable Architecture 5

normal design has a large positive effect on dependability. This positive effect goes
well beyond the saving of development effort by the adoption of ready-made, tested,
solutions. Any software-intensive system that interacts with the natural world is
potentially vulnerable to that world’s unbounded capacity for varied and novel
behaviour. Developing a successful system depends on identifying and selecting those
behaviours that are likely to prove significant, and making soundly judged decisions
about the system properties needed to deal with them effectively. This selection and
judgment can scarcely be achieved by working from first principles: it emerges as the
fruit of long experience of the kind that is captured in a normal design.

The Impact of Decomposition

The kind of problem decomposition discussed here departs from current common
practice. It is basically parallel rather than hierarchical. The service and the safety
subproblems for the lift are parallel: neither one is a part of the other; and their
solutions must run concurrently. Monitoring for equipment malfunction must
continue alongside the provision of lift service in the absence of serious malfunction.
Essentially, each subproblem is directly connected to the parts of the problem world
that are relevant to satisfying its requirement.

This is not to say that there is no hierarchical structure anywhere in the
decomposition. The practice of normal design is itself concerned with a structure of
parts fulfilling a requirement, and this structure may be partly hierarchical. Normal
design practice for the safety subproblem, for example, may dictate a decomposition
into a monitoring subproblem and an action subproblem, and a further decomposition
of the monitoring subproblem into a part that builds and maintains a model or
simulacrum of the equipment and its behaviour, and another that diagnoses
malfunctions from the model. Within the safety subproblem, then, there is a local
hierarchical structure fitting into the larger parallel structure of the whole problem.

The basic decomposition technique achieves a simplification of the individual
subproblems. The developer of the service subproblem is not concerned with the
possibility of malfunction: it has been specifically excluded from consideration.
Similarly the developer of the safety subproblem is not concerned with whether or
how lift service is provided: the problem world to be monitored is simply one in
which motor and door control states are changing spontaneously, and the states of the
door and floor sensors may or may not be changing as they should in response. This
separation of concerns is quite subtle, but, like many successful separations, it makes
a substantial contribution to the reduction of complexity: for the safety problem the
rich possibilities of scheduling lift movements in response to service requests are
abstracted away, leaving only a much simpler world of spontaneous changes of motor
and door control states.

Another impact of this decomposition is that the problem worlds of different
subproblems intersect, but analysis and solution of the subproblems may depend on
assuming different—and possibly incompatible—properties of their problem worlds.
This difference may be no more than a difference in the granularity with which the
behaviour of a particular problem domain is viewed; but it may be much more than

6 Michael Jackson

that. For example, in the service problem the analysis assumes that the lift car always
moves upwards when the motor state is on and up; in the safety subproblem the
assumption is that it may fail to do so because of some equipment malfunction.

Composition Concerns

A very large part of the complexity of any realistic system lies in the interaction of
subproblems. A major motivation for decomposition into distinct subproblems is to
avoid the combinatorial explosion of the possible states in each subproblem.
Misguided decomposition can lead to gratuitous complexity, forcing the developer to
consider combinations of requirements or behaviours that a better decomposition
would reveal to be orthogonal. But some of the subproblem interaction complexity is
inherent in the problem.

The form of decomposition we are discussing here postpones consideration of
problem interactions until the interacting subproblems have been identified and
analysed. The interactions then present themselves in the form of composition
concerns. If we imagine conjunctions of all the subproblems’ machine behaviours, all
the problem domain properties on which they depend, and all their requirements, we
may ask whether these conjunctions, taken together, constitute an adequate analysis
and solution of the original problem? If not, what additions and changes are
necessary? To ask and answer these questions is to address the composition concerns.

One example of a composition concern is direct requirement conflict. The
requirements of two subproblems may, in some circumstances, contradict each other.
If a malfunction has been detected in the lift equipment at a time when a user has just
pressed a button to request lift service, then the service requirement demands that the
motor be switched on to move the lift car in response to the request, while the safety
requirement demands that the motor be switched off. To address this concern it is
necessary to give precedence to one of the conflicting requirements, and to describe
their composition in a way that embodies this decision. This may, in some cases,
demand the recognition of a fresh subproblem, in which the machines of the
subproblems to be composed appear as problem domains and the composition rule is
regarded as a fresh requirement to be satisfied by the new machine.

Another example of a composition concern is interference. If the safety
subproblem has been decomposed into a part that builds and maintains a model of the
lift equipment behaviour, and another part that diagnoses malfunctions by inspecting
the model, then the composition must deal with the resulting interference. The model
is shared data for the two subproblem parts, and a suitable granularity must be chosen
for the necessary mutual exclusion.

As a third example, consider a decomposition of a lending library system in which
one subproblem deals with membership, regarding book loans as atomic events, and
another deals with loans, regarding membership as static. In their composition it is
necessary to deal with the interactions that arise from these two simplifications. What,
for example, is the required system behaviour when a two-week book loan is
requested by a member whose membership is due to lapse in one week?

Problem Structure And Dependable Architecture 7

These composition concerns seem to arise from the simplification
(oversimplification, we may honestly say) of the subproblems. But they were always
present in the original problem, and the decomposition has merely placed them in a
context in which they can be dealt with explicitly. In a more usual approach the
composition concerns are dealt with piecemeal as they come to attention in each
subproblem. This piecemeal approach has severe disadvantages. One disadvantage is
the added complication of the subproblem while its basic substance is not yet well
understood: this is an unwelcome distraction from the subproblem concerns in hand.
Another is that the composition concern itself is then being approached from one side
rather than the other, leading potentially to an asymmetry that distorts what may very
well be a symmetric composition concern. Another, deeper, disadvantage is that the
composition itself may well merit the status of a subproblem in its own right, but yet
be denied the appropriate focused concentration of the developers’ attention.

Architectures and Subproblem Implementations

Having addressed the decomposition, the resulting subproblems, and their subsequent
composition, the development must proceed to an implementation. In the view we are
taking here, this obligation focuses on designing a software structure that will
accommodate all3 of the subproblem machines—including any additional machines
arising from their composition.

We may identify this design task with a central aspect of what is usually
considered to constitute software architecture design. The functionality of the system,
including the subproblem interactions, has been fully specified in the machines to be
accommodated in the architecture. These specifications, however, are still in some
respects abstract. Consider, to take a simple example, a pair of subproblem machines
M1 and M2 that interact by respectively writing and reading a sequential data stream
S. The granularity of the interaction has already been determined, but the interleaving
of the machines, and the interfaces they present to other software components, have
not. The possible implementations, exploiting the malleability of software, include:
• M1 and M2 are run as separate threads communicating by a bounded buffer S that

enforces the necessary write-read exclusion;
• M1 and M2 are run sequentially in that order, communicating by a buffer S

(possibly on disk) that accommodates the whole of S;
• M2 is implemented as a procedure invoked by M1, each invocation passing a

record of S from M1 to M2;
• M1 is implemented as a procedure invoked by M2, each invocation passing back a

record of S from M1 to M2.
Choosing an implementation from such a set of possibilities is a local choice of
architectural style: there is no reason a priori to assume that the choice of
architectural style must be global for the system. The primary concern in architectural
design of this kind is clearly to accommodate the subproblem machines correctly,

3 For brevity and simplicity, we are ignoring the possibility of an implementation using

distributed hardware.

8 Michael Jackson

ensuring that their inputs are made available, their outputs sent to the appropriate
destinations, their persistent data preserved, enough compute cycles provided for their
execution, and so on.

Many other architectural concerns must also be addressed. One important such
concern is reliability with respect to failures— for example, failures of computer
hardware —that can not be addressed conveniently, or at all, except in the context of
architectural design. In the problem analysis that conceptually precedes architectural
design, it is a useful separation of concerns to assume that the computer executing the
software for each subproblem machine is perfectly reliable: unreliability in the
problem world—for example, malfunction of the lift equipment—is dealt with as a
problem decomposition concern, but computer malfunction is not. It is a part of
architectural design to consider the use of such techniques as triple modular
redundancy to avoid system failure in the presence of computer hardware
malfunction.

The possibility of failures of the software itself, due to faults in the problem
analysis, subproblem machine specification, or programming, must also be addressed.
In addressing requirement conflict among the composition concerns it was necessary
to establish a precedence among requirements: the safety requirement was more
important than the service requirement, so the safety requirement took precedence in
the event of conflict. The conceptual relationship between these two requirements is
clear: ideally we would like both good service and safety; but if we are ever forced to
choose we will choose safety. A similar conceptual relationship holds with respect to
functional dependability in the presence of software faults: ideally we would like all
system functions to be fully dependable; but if we are forced to choose we would
certainly prefer a system in which the safety function is more dependable than the
service function. To ensure this ordering of dependability is an architectural concern.
Suppose, for example, that the dependability of the requirement satisfied by our
subproblem machine M1 is more important than that of the requirement satisfied by
M2. Then the architect must choose an implementation structure in which software
failure of M2 can not cause failure of M1. This consideration should probably lead the
architect to exclude, for example, the tightly-coupled architectural designs in which
the two components are connected by procedure call.

Summary

The approach roughly sketched here pays explicit attention to the problem
architecture before addressing the software architecture. Subproblems of familiar
classes can be solved more reliably than unfamiliar problems, because their solutions
draw on the communal experience that is embodied in normal design practice. In the
problem architecture subproblems of familiar classes are identified, and their
composition in the problem space is then considered. The implementation and
configuration of the resulting machines then becomes the central theme of the
software architecture. The time ordering of development tasks implicit in this sketch
can be viewed as a methodological prescription for development. But it can also be
viewed more abstractly as a basis for understanding the relationship of problem

Problem Structure And Dependable Architecture 9

structure to software architecture, or even for reverse-engineering an existing
architecture to expose its structural relationship to the problem it solves.

Both in the analysis of the problem and the design of the software architecture the
approach could be characterised as bottom-up rather than top-down. Subproblem
composition is deferred until the subproblems have been analysed and, essentially,
solved. Software architecture is deferred until the components—the subproblem
machines—that are to be accommodated are well understood. Essentially this means
that the requirements and problem domain properties have been analysed and a
specification has been derived of the external behaviour of the machine that can
guarantee satisfaction of the requirement. Much of the complexity of software
development, and hence the potential for failure, springs from undesired or
unforeseen interactions. By postponing composition until the parts to be composed—
whether subproblem requirements or subproblem machines—are well understood, the
approach aims to get a better grasp of interaction complexity and so to improve
system dependability.

References

1. E W Constant; The Origins of the Turbojet Revolution; The Johns Hopkins University Press,
Baltimore 1980.

2. Eugene S Ferguson; Engineering and the Mind’s Eye; MIT Press, 1992.
3. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides; Design Patterns: Elements

of Object-Oriented Software; Addison-Wesley, 1994.
4. Michael Jackson; Problem Analysis and Structure; in Engineering Theories of Software

Construction, Tony Hoare, Manfred Broy and Ralf Steinbruggen eds; Proceedings of NATO
Summer School, Marktoberdorf; IOS Press, Amsterdam, Netherlands, August 2000, pp3-20.

5. Matthys Levy and Mario Salvadori; Why Buildings Fall Down: How Structures Fail; W W
Norton and Co, 1994.

6. D L Parnas; On the Criteria To Be Used in Decomposing Systems into Modules;
Communications of the ACM Volume 15 Number 12, pages 1053-1058, December 1972.

7. Henry Petroski; To Engineer is Human: The Role of Failure in Successful Design; St.
Martin's Press, New York, 1985; Macmillan, London, 1986.

8. G Polya; How To Solve It; Princeton University Press, 2nd Edition 1957.
9. Mary Shaw and David Garlan; Software Architecture: Perspectives on an Emerging

Discipline; Prentice-Hall 1996.
10. Walter G Vincenti; What Engineers Know and How They Know It: Analytical Studies from

Aeronautical History; The Johns Hopkins University Press, Baltimore, paperback edition,
1993.

Architecting Dependable Systems III
edited by R de Lemos, C Gacek, A Romanovsky
© Springer 2005

