
Relating Software Requirements and Architectures using Problem Frames

Jon G. Hall Michael Jackson Robin C. Laney Bashar Nuseibeh Lucia Rapanotti
The Open University, UK

{J.G.Hall, M.A.Jackson, R.C.Laney, B.A.Nuseibeh, L.Rapanotti }@open.ac.uk

Abstract

Problem frames provide a means of analyzing and de-
composing problems. They emphasise the world outside of
the computer, helping the developer to focus on the problem
domain, instead of drifting into inventing solutions.

However, even modestly complex problems can force us
into detailed consideration of the architecture of the solu-
tion. This is counter to the intention of the problem frames
approach, which is to delay consideration of the solution
space until a good understanding of the problem is gained.

We therefore extend problem frames, allowing architec-
tural structures, services and artifacts to be considered as
part of the problem domain. Through a case study, we
show how this extension enhances the applicability of prob-
lem frames in permitting an architecture-based approach to
software development. We conclude that, through our ex-
tension, the applicability of problem frames is extended to
include domains with existing architectural support.

1. Introduction

Problem frames [14, 15] classify software development
problems. They structure the analysis of the world in which
the problem is located — the problem domain — and de-
scribe what is there and what effects one would like a sys-
tem located therein to achieve. The problem frame approach
provides an opportunity for practitioners to gain experience
and for problem domain expertise to be built.

Partitioning knowledge in this way is also the realm
of software architectures (by which we mean architectures
themselves [24, 2, 1], as well as frameworks [7] and design
patterns [8]). With software architectures firmly part of the
solution domain, problem frames and software architectures
could be regarded as complementary.

In previous work [21], we have argued that modern soft-
ware development must exploit the synergy that exists be-
tween problem and solution domains, in order to allow soft-
ware developers to explore requirements and design oppor-
tunities. To achieve this, we proposed the Twin Peaks model

of software development — a variation of which is shown
in Figure 1 — that illustrates the iterative nature of the de-
velopment process. This is a process during which both
problem structures and solutions structures are detailed and
enriched. In this context, we would see the use of archi-
tectural support as aiding the focus on the essential design
requirements of the problem by allowing design concerns
to be treated more abstractly and to be combined with be-
havioural requirements. In this paper, we extend problem
frames towards this end.

DependentIndependent

General

Detailed

Solution
Structure

Problem
Structure

Specification

L
ev

el
 o

f 
de

ta
il

Implementation
Dependence

Figure 1. The Twin Peaks model: iterating be-
tween problem and solution structures

The paper is organised as follows. Section 2 introduces
the relevant concepts and notation of problem frames and
summarises our proposed extensions. Using a case study,
Section 3 illustrates the difficulties of using problem frames
to incorporate architectural design concerns during problem
analysis. Our extensions are detailed and validated in Sec-
tion 4. Section 5 provides a comparative account of related
work. Section 6 concludes the paper with a discussion of
the ideas, including outstanding issues for future work.

Proceedings of RE'02, Essen, 2002



2. Problem Frames

Most real problems are too complex to fit within a prob-
lem identification/solution description model. They require,
rather, a third level of description: that of structuring the
problem as a collection of interacting subproblems, each of
which is smaller and simpler than the original, with clear
and understandable interactions.

Problem frames are a notation for this third level, and
provide analysis techniques for progressing from problem
identification to problem structuring. A problem frame de-
fines the shape of a problem by capturing the characteristics
and interconnections of the parts of the world it is concerned
with, and the concerns and difficulties that are likely to arise
in discovering its solution. An example of a problem frame
is thecommanded behaviourframe, illustrated in Figure 2.

Control
machine

Operator

Controlled
domain

CM!C1
CD!C2

Commanded
behaviour

OP!E4

C3

E4

B

C

Figure 2. The commanded behaviour frame

The commanded behaviour frame is typically used when
there is some part of the physical world whose behaviour
is to be controlled in accordance with commands issued by
some operator. The problem is then to build a machine that
will accept the operator’s commands and impose control ac-
cordingly.

The components of the problem frame represent things
in the real world:

• Thecontrol machineis the machine to be built.

• The controlled domainis the part of the world to be
controlled. It is acausaldomain, marked C in the di-
agram, its phenomena being physical and causally re-
lated. The controlled domain and the control machine
share an interface consisting of two sets of phenomena:
C1, controlled by the control machine (indicated by the
prefix CM!), and C2, controlled by the controlled do-
main (prefix CD!). As we shall see, the interface acts
as a conduit between the two domains. The controlled
domain is an example of agiven domain: a problem
domain whose properties are given, not designed.

• The operator issues commands, which appear in the
diagram as events E4, shared with the machine and
controlled by the operator (prefix OP!). The operator is

assumed to generate events in E4 spontaneously; such
a domain is termedbiddable, marked B in the diagram.

• The commanded behaviouris the required behaviour
of the controlled domain in response to the operator’s
commands, E4. This required behaviour is expressed
in terms of phenomena C3, which are, in general, dis-
tinct from both C1 and C2.

Problem frames are specialised to represent particular
problems. In addition to more descriptive annotations on
the various problem frame components, the specialised dia-
gram also contains a legend detailing the various events and
commands (jointly, phenomena). Later (Figure 3) we show
the commanded behaviour frame specialised for a ware-
house ordering system.

Each frame has an associatedframe concernthat must be
addressed in any problem of the class. The frame concern
identifies the correctness argument that must be made. For
the commanded behaviour frame, this argument will exploit
explicitly stated causal properties of the controlled domain
to show that the machine behaviour in terms of the phe-
nomena C1 and C2 will cause the required behaviour of the
controlled domain in terms of the phenomena C3.

Using problem frames does not imply the choice of a
particular development method. Even so, in this paper we
structure the problem statement around the determination of
particular problem frame diagrams, and identify the associ-
ated phenomena, domains and interfaces. We then describe
the requirements of the frame in detail.

2.1. Extending problem frames

The problem frames approach does not address the con-
cerns of those who work in well-known application do-
mains; there, expertise — often expressed as software ar-
chitectures — is used as the foundation of software devel-
opment. The benefit is that expertise shortens development
times for new systems. We observe that domain-specific
solutions embody some knowledge of the problem domain,
and so should be able to inform the problem analysis for
new software developments within that domain. Also, these
pre-packaged solutions manifest themselves as software ar-
tifacts, and so already provide part of the solution.

In [15], the aim is to design and build the machine do-
main by creating its software. The physical machine is as-
sumed to be a ‘general-purpose computer’, to be specialised
by the software; no particular structure is assumed of the
machine. Being general purpose, then, classical problem
frames can make no direct use of existing architectural sup-
port and expertise.

With the above observation, though, it is not unreason-
able to assume that architectural support can be used to add
structure to the machine domain of a problem frame. To



this end, we introduce an extension to problem frames that
allows this to be achieved. We go on to show how the ex-
tension can be used to benefit from architectural support
through a simple case study development of a small ware-
housing ordering system.

2.2. Notational conventions

To present our case study we must be able, succinctly,
to represent various requirements statements. To do this we
will make informal use of an event model similar to that of
the causal logic of [20]. We make no claims of the notation
other than convenience of expression.

Succinctly, an event instance is a point in time. Events
are grouped (by event name) into event classes, from which
event instances are taken. Two event instances of the same
classe will be distinguished through parametrisation. The
formula e ∧ [p] means ‘at the time that event instancee
occurred, the predicatep held’. We also define, for event
instancesa andb in appropriate event classes:

a ; b (read asa leads tob) the occurrence ofa is suffi-
cient and necessary to cause the occurrence ofb;

a # b (read asa beforeb): the occurrence ofa is before
the occurrence ofb; and

a #̂ b (read asa immediately beforeb): the occurrence
of a is before the occurrence ofb, and no other event
instance of the class ofa or b will occur in between.

For semantics, we need only observe that these operators
constrain traces of event instances of a system:a ; b says
thata will not occur in a trace without an associatedb, and
vice versa; a # b says thata occurs in a trace beforeb (the
necessity is removed);a #̂ b says that ifa occurs in a trace
thenb occurs as the next element of that trace (when classes
other than those ofa andb are ignored).

We also use an informal imperative pseudocode to de-
scribe behaviour where necessary.

3. Case Study — Warehouse Ordering System

A software house has developed an architecture to facil-
itate the development of warehouse ordering systems. The
architecture includes a ‘One At A Time (OAAT)’ service,
through which events arriving in quick succession can be
managed, and a ‘First Come First Served’ service, which
provides an event queue. For succinctness of reference
within our case study, we specify the behaviours of the
OAAT and FCFS services in our event model as follows.

For event classesA andB with event instancesa andb,
respectively:

OAAT(A,B): a ; b⇒ a #̂ b

Described in this way, OAAT prevents other events being
interposed betweena andb in any trace.

For event classesA andB with event instancesa1, a2 and
b1, b2, respectively:

FCFS(A,B): (a1 ; b1 ∧ a2 ; b2 ∧ a1 # a2)
⇒ b1 # b2

Described in this way, FCFS preserves the ordering of re-
lated pairs of events with reference to the arrival of the first
event of the pair.

OAAT and FCFS are defined as generic architectural ser-
vices, i.e. they are parametrised with event classes. This
feature permits architectural service instantiation within any
application based on the services. In particular, we will
make use of it in this paper in Section 4.

3.1. Requirements statement

The software house has received the following require-
ments statement for a warehouse ordering system:

The warehouse contains initial quantities of a range of
products. (For simplicity, we assume that products are
never replenished.)

Customers place orders by specifying an order number,
a product, and a quantity. Orders are processed by passing
requests to the warehouse. If the warehouse can satisfy an
order from stock it reserves the specified quantity of stock
and the allocation is notified. Otherwise no allocation or
reservation is made.

No customer should be left waiting for an order indefi-
nitely, nor should ‘queue jumping’ be allowed.

Warehouse staff behaviour Warehouse staff are respon-
sible for reserving stock. Their behaviour, although not en-
tirely appropriate (they are human!), can be described as
follows:

while true {
boolean satisfiable := false;
receive Request(orderNo, prod, qty);
satisfiable := (qty <=

(prod.initialQty - prod.reservedQty));
do the admin;
if (satisfiable) then {

prod.reservedQty :=
(prod.reservedQty + qty);

send Alloc(orderNo,prod,qty,true)
}
else

send Alloc(orderNo,prod,qty,false);
}

where:

• Request(orderNo, prod, qty) is an order
with numberorderNo for qty amount of product
prod .



• Alloc(orderNo, prod, qty, success) in-
dicates the satisfaction (success = true ) or other-
wise (success = false ) of the order. In the case of
a satisfiable order, the reserved level of the product is
increased accordingly. Otherwise no change is made.

The presence of the unspecified administration activ-
ity reminds us that the test and possible assignment of
prod.reservedQty should be executed atomically.
Otherwise, interleaving of accesses by two staff members
to the same product might give the wrong result. Unfortu-
nately, the warehouse staff are not amenable to such disci-
plines as mutual exclusion.

3.2. A classical problem frame approach

The firm’s developers wish to investigate the require-
ments for this problem using the Problem Frame approach.
To do this, from the requirements statement the firm’s de-
velopers decompose the problem into independent subprob-
lems. These are:

• satisfy the customers’ orders if possible: a commanded
behaviour problem; the machine (i.e. the ordering sys-
tem) conveys the order to the warehouse and notifies
the customer whether the order can be satisfied.

• prevent queue jumping: a commanded behaviour prob-
lem; the machine ensures that orders are processed
First Come First Served.

• enforce mutual exclusion: a commanded behaviour
problem; the machine ensures that orders are dealt with
by the warehouse One At A Time.

Satisfying customer orders The commanded behaviour
frame for the first subproblem is shown in Figure 3.

CU!E1: Order(O#, Prod, Qty) WH!E4: Alloc(O#, Prod, Qty, Success)
AM!E2:Reply(O#, Prod, Success) WH!C5: InitQ(Prod, Qty)
AM!E3:Rqst(O#, Prod, Qty) WH!C6: Resvd(Prod, Qty)

Allocation
Machine

Customers

WarehouseAM!E3
WH!E4

Allocation &
Reservation

CU!E1
AM!E2

C5, C6

E1, E2

Figure 3. A commanded behaviour frame for
Allocation & Reservation

The developers have identified three requirements asso-
ciated with the Allocation & Reservation requirement. The

first (R1a) states that each order will eventually receive a
reply:

R1a: Order(o, p, q) ; Reply(o, p, success)

wheresuccessis eithertrueor false.
The second (R1b) states that a satisfiable order will result

in a reply and a reservation:

R1b: Order(o, p, q) ∧ [InitQ(p, qi) ∧ Resvd(p, qj)
∧ (qi − qj) ≥ q]

; Reply(o, p, true) ∧ [Resvd(p, qj + q)]

The third (R1c) states that an unsatisfiable order will re-
sult in a reply, but no reservation:

R1c: Order(o, p, q) ∧ [InitQ(p, qi) ∧ Resvd(p, qj)
∧ (qi − qj) < q]

; Reply(o, p, false) ∧ [Resvd(p, qj)]

Preventing Queue Jumping The commanded behaviour
frame for the second subproblem is shown in Figure 4.

CU!E1: Order(O#, Prod, Qty) FM!E3: Rqst(O#, Prod, Qty)

FCFS
Machine

Customers

WarehouseFM!E3

FCFS

CU!E1

E3

E1

Figure 4. A commanded behaviour frame for
First Come First Served

The developers identify a single requirement (R2) asso-
ciated with First Come First Served, that requests should be
dealt with in the order that they are received by the machine:

R2: Order(o1, p1, q1) ; Rqst(o1, p1, q1)
∧ Order(o2, p2, q2) ; Rqst(o2, p2, q2)
∧ Order(o1, p1, q1) # Order(o2, p2, q2)

⇒ Rqst(o1, p1, q1) # Rqst(o2, p2, q2)

Enforcing Mutual Exclusion The commanded be-
haviour frame for the third subproblem is shown in Figure 5.

The developers identify a single requirement (R3) asso-
ciated with One At A Time, that only one request will be
dealt with at a time:

R3: Rqst(o, p, q) ; Alloc(o, p, q, success)
⇒ Rqst(o, p, q) #̂ Alloc(o, p, q, success)

wheresuccessis eithertrueor false.



OA!E3: Rqst(O#, Prod, Qty) WH!E4: Alloc(O#, Prod, Qty, Success)
CU!E1: Order(O#,Prod,Qty)

OAAT
Machine

WarehouseOA!E3
WH!E4

OAAT

E3,E4

CustomersCU!E1 E1

Figure 5. A commanded behaviour frame for
One At A Time

At this point, the developers produce a machine speci-
fication for each subframe, build correctness arguments for
the satisfaction of each subproblem’s frame concern, and
then recompose them in a way that satisfies the combined
requirements to produce a correct system. For brevity, we
do not reproduce these development steps here. It is clear
that the development can be carried through to a machine
specification for the entire problem.

The reader will note that, up to naming of events, R2 and
R3 contain expressions that are similar to the specification
of the architecturally provided services OAAT and FCFS
given at the beginning of Section 3. In effect, this devel-
opment process requires the bottom-up (re-)development of
OAAT- and FCFS-like services, even though these are avail-
able within the firm’s developed architecture. This redevel-
opment is necessitated by the fact that there is no mecha-
nism in the classical problem frames approach to take ad-
vantage of available architectural support. To illustrate this
further we consider the alternative analysis path based on
given domains.

A classical approach based on given domainsThe alter-
native path available to the developers is to admit the archi-
tectural services as predetermined problem domain objects,
i.e. given domains, and to construct a problem frame based
thereon. The resulting problem frame is shown in Figure 6.
Again the developers develop a machine specification, and
build correctness arguments for the satisfaction of the frame
concern, giving a correct system. Again, for brevity, we do
not reproduce these development steps. But, again, the de-
velopment can clearly be carried through successfully to a
machine specification.

Although this development path would support our ar-
gument that architecturally provided services can be seen
as problem domain objects, it has the following drawbacks:

• even though in this case the added complexity is small,
in the general case there could be a combinatorial ex-
plosion of boxes and connectors between the added

given domains;

• the problem frame moves from being within a recog-
nised class: the domain objects introduced do not fit
within the general commanded behaviour frame, but
have been introducedad hoc; whether the resulting
frame remains within the expertise of a domain expert
is moot; and

• because the services are outside the machine domain,
their use therein is arguable.

We therefore discount this approach, and look instead to
extend the problem frame approach in a more systematic
way.

CU!E1: Order(O#, Prod, Qty) WH!E4: Alloc(O#, Prod, Qty, Success)
FC!E1’: Order’(O#, Prod, Qty) OA!E4’: Alloc’(O#, Prod, Qty, Success)
AM!E3: Rqst(O#, Prod, Qty) AM!E2: Reply(O#, Prod, Success)
OA!E3’: Rqst’(O#, Prod, Qty) WH!C6: Resvd(Prod, Qty)
WH!C5: InitQ(Prod, Qty)

Allocation
Machine

Customers

WarehouseAM!E3
OA!E4’

Allocation,
Reservation &

Fairness

FC!E1’

C5, C6

E1, E2

FCFS

OAAT

CU!E1

OA!E3’
WH!E4

AM!E3

AM!E2

Figure 6. OAAT and FCFS services as given
domains

4. Extending Problem Frames

Let us assume that we want to make use of the architec-
turally provided OAAT and FCFS services with properties
defined by their service descriptions given in Section 3. As
previously discussed, there is no gain in considering them
for sub-problem frame analysis or as given domains; we
therefore need to look elsewhere to employ them. The ap-
proach we suggest is to use them to annotate the machine
domain. This simultaneously reminds us of their presence
within the problem domain — they appear in the problem
frame — and allows them to appearwithin the machine, and
hence the solution, domain.

As an example of an annotated machine domain, Fig-
ure 7 shows the warehouse ordering system machine
domain annotated with services: OAAT and FCFS,
parametrised with the appropriate event classes.



FCFS

OAAT

CU!E1: Order(O#, Prod, Qty) WH!E4: Alloc(O#, Prod, Qty, Success)
AM!E2:Reply(O#, Prod, Success) WH!C5: InitQ(Prod, Qty)
AM!E3:Rqst(O#, Prod, Qty) WH!C6: Resvd(Prod, Qty)

Services:
OAAT(E3,E4) FCFS(E1,E3)

Allocation
Machine

Customers

WarehouseAM!E3
WH!E4

Allocation,
Reservation &

Fairness

CU!E1
AM!E2

C5, C6

E1, E2

Figure 7. A frame with annotated machine do-
main

This frame shares the same domain descriptions, require-
ments and frame concern as that of Figure 3. However,
through the annotation we are reminded of the fact that the
machine domain can rely on the OAAT and FCFS services
provided by the architecture. We can factor this extra infor-
mation into the machine domain specification and into the
correctness argument that discharges the frame concern.

4.1. Machine Specification

Accepting this annotated machine domain, we can spec-
ify the machine as having the following simple behaviour.
The machine should generate request events from order
events and reply events from allocation events:

S1: Order(o, p, q) ; Rqst(o, p, q)

S2: Alloc(o, p, q, success)
; Reply(o, p, success)

4.2. Discharging the Frame Concern

To follow the development through we need to build a
correctness argument that brings together the requirements,
domain descriptions and machine specification to discharge
the frame concern. However, with the annotated machine,
we may also rely on the descriptions of the architectural
services. In the following we outline informally the cor-
rectness arguments required to discharge the frame concern;
although a more formal treatment is possible, for brevity
we do not give it here. The discharge of the frame con-
cern is shown in Figure 8; the numbers there relate to the
steps in the following subsections. As the frame concern is
the same for both correctness arguments, we give the figure
only once.

Allocation
Machine

Customers

Warehouse

Allocation &
Reservation

FCFS

OAAT

1
(requirement)

2
(specification)

3
(domain props)

4
(requirement)

Figure 8. Discharging the frame concern

Service (R1a, R1b, and R1c)

1 When the customer issues an order (requirement)...

2a ... the machine generates a corresponding request to
the warehouse (specification) ...

3 ... the warehouse processes the order with respect to
current stock levels and issues a reply to the machine
(domain properties) ...

2b ... the machine generates a corresponding response to
the user (specification) ...

4 ... thus achieving the required results in every case.

Fairness (R2 and R3)

1 When customers issue two (or more) orders (require-
ment)...

2a ... the FCFS service sequences the orders by arrival
time and sends them to the machine (specification) ...

2b ... the machine generates corresponding requests to the
OAAT service (specification) ...

2c ... the OAAT service allows one request at a time
through to the warehouse ...

3 ... the warehouse processes each order with respect
to current stock levels and issues replies to the OAAT
service (domain properties) ...

2d ... the machine generates corresponding responses to
the customers (specification) ...

4 ... thus achieving the required results.



5. Related work

The structuring of problem domains and associated re-
quirements has been the subject of considerable work in re-
cent years. Early work by Parnas and colleagues proposed
a four-variable model [13] upon which the SCR require-
ments specification approach and associated tools were de-
veloped [12]. SCR partitions the world into monitored and
controlled variables, and shares much in common with the
problem frames approach. Its main focus, however, is on
event-based (control) systems, and its tabular notation has
not been used to incorporate architectural considerations.

A number of goal-based requirements approaches, most
notably KAOS [17] and the NFR framework [5], have pro-
posed the explicit use of the notion of ‘goals’ to struc-
ture requirements and, consequently, the problem domain.
KAOS in particular, allows domain properties, assumptions
and constraints to be represented as part of its goal-based
specifications. More recent work by Letier and van Lam-
sweerde addresses the identification of agents (e.g., compo-
nents), and their assignment to goals [18, 17]. The KAOS
approach remains essentially goal-driven and it is not clear
how existing architectural artifacts can influence the prob-
lem structuring process. Similarly, the NFR framework uses
high-level goals to initiate a process of identification of as-
sociated design components.

A very common structuring approach to requirements
specifications is still the use of pre-defined templates or
standards that prescribe how requirements specification
documents should be partitioned [23, 16]. This form of
template-based structuring is common for requirements ex-
pressed in natural language. The technique allows both re-
quirements and design information to be included in the
descriptions, but it is much more difficult to enforce clear
separation between descriptions of the problem domain and
those of the solution domain.

The structuring of the solution domain is much more
commonly and thoroughly researched. It includes structur-
ing at the implementation level through a variety of pro-
gramming constructs; but, more relevant to the context of
this paper, structuring at the design level is through design
abstractions such as functions [22], objects [19], aspects [6],
and so on. Much of the recent research on software architec-
ture has focused on the use of components and connectors
as structuring concepts [24]. But, with a few notable excep-
tions [2], very little consideration has been given to relating
such software architectures to requirements in the problem
domain.

The relationship between requirements and architectures
has received increased attention recently [4]. Brandozzi and
Perry [3] have suggested the use of intermediate descrip-
tions between requirements and architecture that they call
‘architectural prescriptions’, which describe the mappings

between aspects of requirements and those of an architec-
tural description. It is not clear however that the overhead
of an additional description is practical.

Recent work on software product lines and system fam-
ilies has also examined the relationship between architec-
tures and requirements. The work has focused on identify-
ing core requirements (identified perhaps through a process
of requirement prioritisation) and linking them to core ar-
chitectures (identified perhaps by examining the stability of
various architectural attributes over time) [25]. This work
has not explicitly addressed the issue of iterative develop-
ment in this context, focusing instead on domain abstrac-
tions and reuse.

Wile [26] has examined the relationship between certain
classes of requirements and their corresponding dynamic
architectures, to enable requirements engineers to monitor
running systems and their compliance with these require-
ments. The focus of this work is runtime monitoring, not
more traditional development activity.

Grunbacher et al [9] explore the relationships between
software requirements and architectures, and propose an
approach to reconciling mismatches between requirements
terminology and concepts with those of architectures. This
approach may provide useful capability for capturing and
maintaining complex relationships between different arti-
facts of requirements and architecture; it has currently been
used only in a very particular context.

Finally, the industrial strength method REVEAL [11],
based on a clear separation between the world and the ma-
chine [10], provides a practical approach to developing sys-
tems in the manner that we proposed in this paper. RE-
VEAL, however, assumes a more traditional development
process that is less fine-grained than that suggested by our
Twin Peaks model, and therefore potentially less amenable
to iterative development in which design informs require-
ments as much as requirements inform design.

6. Discussion and Conclusions

In this paper we have described an extension to problem
frames that is intended to facilitate their synergistic com-
bination with software architectures. In essence, we have
extended the current model of machine domain in problem
frames to mean ‘architectural engine’, i.e. a computer in
which architectural structures, services and artifacts can be
relied on by software executing in the machine. We have
applied the extension to a small case study to show how de-
velopment with extended machine domains may proceed.

The extension has methodological implications that re-
quire investigation. By allowing the properties of a partic-
ular machine domain to become an explicit factor in dis-
charging the frame concern, we enable ‘non-green field’
development using the problem frames approach. We con-



jecture that this will reduce development times by allow-
ing the developer to describe the problem domain more ab-
stractly, closer to the ‘business logic’ that operates in the
domain. Moreover, the admission of the extension leads to
multiple intertwined development paths; architectural sup-
port will be the subject of design activities separate from
those of a product based on it. Whether our extension al-
lows full use of the power of this idea remains to be seen.
To ensure it does, we must at least factor in some notion
of inter-developmental stability in which the architectural
support appears a fixed point in product development; cur-
rently, this appears to be catered for by the notion of a fixed
architecture ‘API’, with deprecation mechanisms providing
flexibility.

Finally, notationally, the extension is slight. Whether the
annotation of machine domains is sufficient to capture all
useful architectural support again remains to be seen. We
intend to apply the ideas of this paper to larger case studies,
with various flavours of architectural support, to explore the
demands that each places on the notation.

7. Acknowledgments

We acknowledge the support of our colleagues in the De-
partment of Computing, the Open University.

References

[1] L. Barroca, J.G. Hall, P.A.V. Hall (eds), Software Architec-
tures — Advances and Applications, Springer, 2000.

[2] L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, Addison Wesley, 1998.

[3] M. Brandozzi, D.E. Perry, Transforming Goal Oriented Re-
quirement Specifications into Architectural Prescriptions.
In [4].

[4] J. Castro J. Kramer (eds), Proceedings of First International
Workshop From Software Requirements to Architectures
(STRAW’01), 2001.

[5] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, “Non-
functional Requirements in Software Engineering”,
Kluwer Academic Publishers, 2000.

[6] T. Elrad, R.E. Filman, A. Bader (eds), Special issue on As-
pect Oriented programming, Communications of the ACM,
44(10), 2001.

[7] M.E. Fayad, D.C. Schmidt, R.E. Johnson, Building Appli-
cation Frameworks, Wiley Computer Publishing, 1999.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
patterns: elements of reusable object-oriented software,
Addison-Wesley, 1995.

[9] P. Grunbacher, A. Egyed, N. Medvidovic, “Reconciling
Software Requirements and Architectures: The CBSP Ap-
proach”, Proceedings of the 5th International Symposium

on Requirements Engineering (RE’01), pp.202-211, IEEE
CS Press, 2001.

[10] C.A. Gunter, E.L. Gunter, M. Jackson, P. Zave “A ref-
erence model for requirements and specifications”, IEEE
Software, 17(3):37-43, 2000.

[11] J. Hammond, R. Rawlings, A. Hall, ‘Will it Work”, Pro-
ceedings of the 5th International Symposium on Require-
ments Engineering (RE’01), pp.102-109, IEEE CS Press,
2001.

[12] C.L. Heitmeyer, R.D. Jeffords, B.G. Labaw, “Automated
Consistency Checking of Requirements Specifications”,
ACM Transactions on Software Engineering and Method-
ology, 5(3):231-261, 1996.

[13] K. Heninger, D.L. Parnas, J.E. Shore, J.W. Kallander,
“Software Requirements for the A7E aircraft”, TR3876,
Naval Research lab, Washington, DC, 1978.

[14] M. Jackson, Software Requirements & Specifications: a
Lexicon of Practice, Principles, and Prejudices, Addison-
Wesley, 1995.

[15] M. Jackson, Problem Frames, ACM Press Books, Addison
Wesley, 2001.

[16] B.L. Kovitz, Practical Software Requirements: A Man-
ual of Content and Style, Manning Publications Company,
1998.

[17] A. van Lamsweerde, “Goal-Oriented requirements Engi-
neering: A Guided Tour”, Proceedings of the 5th Interna-
tional Symposium on Requirements Engineering (RE’01),
pp.249-261, IEEE CS Press, 2001.

[18] E. Letier and A. van Lamsweerde, “Agent-based Tactics for
Goal-Oriented Requirements Elaboration”, Proceedings of
24th International Conference on Software Engineering,
ACM Press, May 2001.

[19] B. Meyer, Object Oriented Software Construction. (2nd edi-
tion) Prentice-Hall, 1997.

[20] J. Moffett, J.G. Hall, A. Coombes, J.A. McDermid, “A
Model for a Causal Logic for Requirements Engineering”.
Journal of Requirements Engineering, 1(1), 1996.

[21] B.A. Nuseibeh, “Weaving Together Requirements and Ar-
chitecture”, IEEE Computer, 34(3):115-117, March 2001.

[22] D.L. Parnas, J. Madey, “Functional Documentation for
Computer Systems”, Science of Computer Programming,
25(1):41-6, Oct 1995.

[23] S. Robertson, J. Robertson, Mastering the Requirements
Process, Addison Wesley, 1999.

[24] M. Shaw, G. Garlan, Software Architecture: Perspectives
on an emerging discipline, Prentice Hall, 1996.

[25] D.M. Weiss, C.T.R. Lai, Software Product Line Engi-
neering,: A Family-Based Software Development Process,
Addison-Wesley, 1999.

[26] D. Wile, “Residual Requirements and Architectural
Residues”, Proceedings of the 5th International Sym-
posium on Requirements Engineering (RE’01), Toronto,
Canada, pp.194-201, IEEE CS Press, 2001.


