Requirements Eng (1997) 2: 92-101
© 1997 Springer-Veriag London Limited

Requirements
Engineering

Telecommunications Service Requirements: Principles for Managing

Complexity

PamelaZave® and Michael Jackson®
ATST Laboratories — Research, ®Florham Park, USA and % ondon, UK

Telecommunications services are complex and rapidly
becoming more so. If we wish to apply formal methods
of requirements engineering in the telecommunications
domain, then the primary obstacle we face is the sheer
complexity of the behaviour to be described. This paper
focuses on one kind of telecommunications system, the
long-distance telephone network (LD TN), and presents
several ways of managing complexity in LDTN require-
ments. The alleviation of complexity comes from careful
application of some general principles of requirements
engineering. At the same time that these principles help
us manage complexity, the productive [focus on complex-
ity enhances the motivation for these principles.

Keywords: Feature interaction; Telecommunications;
Telephony

1. Introduction

Telecommunications services are complex and rapidly
becoming more so. If we wish to apply formal methods
of requirements engineering in the telecommunications
domain, then the primary obstacle we face is the sheer
complexity of the behaviour to be described.

This paper focuses on one kind of telecommunica-
tions system: the long-distance telephone network
(LDTN). An LDTN is part of the world-wide voice-
transmission network, some components of ‘which are
illustrated in Fig. 1. )

A telephony device is an input/output device for
voice. A telephony device is usually connected to the

Correspondence and offprint requests to: Pamela Zave, AT&T
Laboratories — Research, 180 Park Avenue, room B211, Florham
Park, NJ 07932, USA. Email: pamela@research.att.com

VAN

AN

telephony
device

VAN

line

wireless
aceess

Fig. 1. Some components of the world-wide voice-fransmission
network.

network by a line, dedicated to the device and also
capable of supporting a single two-way voice channel.
The alternative to a line is a wireless channel, which is
dedicated to many devices in succession. A line or
wireless channel leads from the telephony device to a
switch, which is a voice-handling node of the network.
Switches are connected by many trunks, each of which
is like a line in supporting a single two-way voice
channel.

The role of an LDTN in the world-wide voice-
transmission network is illustrated by Fig. 2, where the
boundaries of different telephone systems, owned and
operated by different service providers, are also
shown. -

A private branch exchange (PBX) is a private switch,
usually found on the premises of a business or
institution. A local network or local system provides
direct access by telephones to the rest of the world-
wide network. An LDTN provides long-distance serv-
ice. A national network provides telephone service for
an entire country, combining the functions of local
networks and LDTNs. A cellular network provides



Telecommunications Service Requirements

mobile service; it may reach the rest of the world
through any other type of system.!

LDTN requirements are complex in two orthogonal
dimensions. They exhibit feature complexity, by which
we mean complex services offered to their paying
customers. This complexity has given rise to the well-
known ‘feature interaction’ problem [1-3]. They also
exhibit system complexity, by which we mean behav-
ioural complexity arising from the properties of large

'Other combinations are possible. For example, in the United States,
there are now systems that act like national networks in the sense of
combining the functions of local and long-distance networks, and that
act like long-distance networks in the sense of having direct
competition and needing the cooperation of other service providers
for access to some local telephones.

!
i
1
1
1

VANRRVANRRVAN

93

distributed computing systems. Some sources of system
complexity are race conditions, unsynchronised local
clocks, resource failures, and the need for dynamic
performance tuning.

System complexity concerns the service provider
alone — even if customers are affected by it, they do not
want to know about it and could do nothing about it if
they did. Feature complexity, on the other hand, affects
customer and service provider alike. If feature com-
plexity is out of control, an LDTN will be difficult to
build, use, maintain, extend, and market.

This paper presents several ways of managing feature
complexity in LDTN requirements. The alleviation of
complexity comes from careful application of some
general principles of requirements engineering. At the
same time that these principles help us manage
complexity, the productive focus on complexity
enhances the motivation for these principles.

[ e s S a
, national network

Fig. 2. Some systems and components of the world-wide voice-transmission network.




94

2. Principle: Requirements are About the
Environment, not About the System

The requirements for a computer-based system concern
the environment of the system as well as the system
itself [4-6]. Recently we have shown that it is both
possible and desirable to go much further in this
direction, and to write requirements that do not
mention the system at all [7-9]. The next few para-
graphs give a very brief summary of how this is done.

The phenomena of the environment include those
phenomena that are shared between the environment
and the system. These shared phenomena constitute the
system/environment interface. Thus, it is possible to
describe interface behaviour without mentioning phe-
nomena that belong exclusively to the system.

Conventional requirements focus on what the system
to be built will do. If we cannot talk about the system,
then we must have an alternative way to convey
equivalent information.

The alternative is supplied by making a distinction
between indicative and optative properties of the
environment. An assertion in the indicative mood,
commonly known as ‘domain knowledge’, describes the
environment as it would be without, or in spite of, the
system. A statement in the optative mood, commonly
known as a requirement, describes.the environment as
we would like it to be because of the system. Thus a
requirement constrains the system by describing its
desired effect on the environment.

When the system to be built is as large and complex
as an LDTN, then the absence of the system from the
requirements is a big relief. Any unnecessary traces of
the system architecture will cause unwanted complexity
in the requirements.

The next three subsections present different aspects
of LDTN requirements, showing for each one how a
healthy focus on the environment can be maintained.
Each aspect is interesting because it benefits greatly
from this approach, because it is a challenge to this
approach, or both.

2.1. Agreements

The service provider running an LDTN makes business
agreements with its subscribers and with other service
providers. These agreements control routing, feature
application, billing rates, and other aspects of call
processing.

The global state of an LDTN contains a representa-
tion of the current state of the agreements made by its
service provider. In a requirements method based on
description of the system to be built, formalisation of

P. Zave and M. Jackson

this part of the system state would be a major agenda
item. How is it possible to specify LDTN requirements
without mentioning this part of the system state?

The key fact is that agreements themselves are
phenomena of the environment. Agreements relate
entities such as subscribers, credit accounts, directory
numbers, and features, all of which have a meaningful
existence in the telecommunications environment. The
relations among them, including ‘subscriber sponsors
credit account’, ‘directory number is assigned to sub-
scriber’, and ‘subscriber purchases feature’, are used by
the LDTN but are not brought about by it. For this
reason, LDTN requirements should describe them in
the indicative mood. The indicative assertions will
include such information as type constraints, arity
constraints, and correlations among relations.

Provisioning is the usual term for getting data into
the state of the LDTN. To keep the focus on the
environment, we notice that provisioning events mark
official changes to the agreements, and are therefore
clearly phenomena of the environment. Provisioning
events also happen to be shared with the system, which
makes them interface phenomena as well. The relation-
ships between provisioning events and the state of
agreements, like relationships among the agreements
themselves, are most accurately described in the indica-
tive mood.

The requirements for call processing refer to the
current state of agreements, for example to specify
which features apply to which calls. The domain
knowledge (indicative assertions) mentioned above will
be used eventually to implement these requirements.
The system must construct, from the shared provision-
ing events, an internal representation of the agreements
in the environment. This internal representation is
consulted during call processing.

Syntactically, domain knowledge relating agreements
to provisioning events and to each other may not look
much different from a specification of a system contain-
ing agreements. The benefits are in the interpretation.
A statement of domain knowledge carries no implica-
tion that the information must appear in the system
state, or if it does, that it appear in the same form.

2.2. Indirect Access

An LDTN is not connected directly to any !e]éphones.
The external trunks of an LDTN lead to other
telephone systems, and through them. eventually, to
telephones.

Because service providers wish to please their
customers, requirements that describe what telephone
users experience would seem to be the best telephony




Telecommunications Service Requirements

requirements. The only external behaviour that the
implementors of an LDTN can guarantee, however, is
the behaviour of its external trunks. So telephone-to-
telephone requirements would leave a big gap between
the behaviour that an LDTN can guarantee and the
behaviour described in its requirements.

Ideally, this gap would be bridged by domain
knowledge of the behaviour of other telephone systems
[7-9]. But the reality is that very little can be said with.
certainfy about the behaviour of another telephone
system, and therefore very little can be proved about
what the remote customers of an LDTN experience.

For example, suppose that law or policy requires that
callers to a 900 number? hear an advisory announce-
ment before the 900 charges begin. Even if the LDTN
waits until its voice connection to the caller (which
passes through a local network) is completely stable
before playing the announcement, this does not guaran-
tee that the caller will either hear it or disconnect
before incurring 900 charges. The caller might use
features of the local network to put a stable connection
on hold and then return to talking and listening on it
later.

The simplicity to be gained here is the simplicity of
lowered expectations. It is no use writing many tele-
phone-to-telephone requirements, because they cannot
be satisfied. It makes more sense to concentrate on the
external trunks, and to ensure that the system’s
behaviour at its interface is exactly right.

For those who are concerned with the interoper-
ability of telephone systems, this discussion defines the
problem. Requirements can constrain any part of the
world, but a system can only control its own behaviour
at its own interface. If a system is to satisfy far-reaching
requirements, something must bridge the gap between
the behaviour it can guarantee and the behaviour it is
required to bring about. That something is domain
knowledge, which allows us to reason about causes and
effects in the environment. In the case of telephony,
much of the environment of a telephone system
consists of other telephone systems, so the satisfaction
of requirements by any one telephone system depends
on the properties of others.

2.3. System Complexity

In a requirements document, feature complexity plus
system complexity is a deadly combination. If you do
not believe this, you should examine Kay and Reed’s

’In the United States, callers to a 900 number pay a telephone
company for the connection and pay the destination service a per-
minute charge for connecting to it.

95

specification of ordinary telephone service with races
between the system and its telephones [10]. For-
tunately, feature complexity and system complexity
appear to be separable concerns.

The primary emphasis of requirements is customer
service, so the immediate problem is to write sound
feature requirements without straying into areas of
system complexity. The solution is to write deliberately
incomplete requirements, specifying the type or degree
of incompleteness in the environment.

Consider, for example, the problem of stimulus—
response race conditions. These are races between the
system’s response to a user stimulus and the user’s
subsequent stimulus. If admitted, these add greatly to
the complexity of a specification or program. For this
reason, many popular Janguages such as Esterel [11]
declare them to be impossible — they assume explicitly
that the system always responds before the next
stimulus.

The trouble with this assumption is that it bears little
or no relation to reality. A more realistic alternative is
to declare explicitly that the requirements only con-
strain those behaviours in which the environment waits
for responses before issuing additional stimuli. As with
the agreements in Section 2.1, environment-oriented
requirements may look much the same as system-
oriented requirements, but they are interpreted
differently.

The behaviours not covered by the formal require-
ments should be similar to those that are. It may be
possible to formalise this using techniques such as those
suggested by Jacob [12]. If not, telecommunications
engineers are well accustomed to providing reasonable
and customary implementations of incomplete
specifications.

As another example of avoiding system complexity,
consider resource failures that cannot be hidden from
users because they make promised services completely
unavailable. These exceptions can also add greatly to
complexity, if their effects are fully specified.

In the case of resource failures there is no determi-
nistic way to identify, in the environment, which
behaviours will satisfy the ordinary requirements.
Rather, the occasional non-conforming behaviour is
‘chosen’ by the system. So the incompleteness in this
case must take a probabilistic form, such as ‘99% of all
behaviours must satisfy the stated requirements.

It is a good idea to establish some general rules of
etiquette for'error handling. For example, in an LDTN
a good policy is to play an explanatory announcement
twice (ensuring that the customer hears and under-
stands it) and then to disconnect the customer (ensur-
ing that no further resources are wasted). Since these
policies constrain all behaviours, they restore some of




96

the certainty that was lost as a result of incomplete
requirements.

3. Principle: The Real-world Problem
Dictates the Formalisation, not the Other
Way Around

New specification languages are designed for a variety
of reasons. These reasons include exploring a new
computational paradigm (e.g., logic programming) and
exploiting a new verification technique (e.g., model
checking). Even when the motivation was to make
previous results ‘more useful, one cannot assume that
the language designer was thinking about the real
world in its entirety rather than about computers
themselves.

Sometimes the mismatch between formalism and the
real world becomes ludicrous. Many formal specifica-
tions of a queue would be satisfied by a queue that
surprises its user by spontaneously initiating its own put
and get actions. Because the specification language
abstracts away the control properties of events, it
cannot express the requirement that only the environ-
ment can initiate gets and puts [13].

Problems of inappropriate formalisation are espe-
cially likely when requirements engineers cling to the
use of a single formal language. Environments have
widely differing characteristics, and large, complex
systems usually have several distinctive aspects. No
language is good for them all.

One of the worst effects of inappropriate formal-
isation is runaway complexity. It is from this perspective
that we will look at the question of formalisation.

The ideal technique would be to write the require-
ments for each aspect of the system in the language best
suited to it, and to compose the partial requirements
specifications formally [14,15]. Since this is far more
easily said than done, the subsections of this section
present more specific techniques or principles, and
show how they apply to managing the complexity of
LDTN requirements.

3.1. Small is Beautiful

Small, clean, coherent languages are better for formal
specification than large, inclusive ones. In addition to
the obvious issues of aesthetics and semantic sound-
ness, a small language is more likely to offer some
major algorithmic capability — something that elim-
inates an entire task or subproject from the software
development project.

P. Zave and M. Jackson

An old, but still important, example is the case of the
context-free grammar. A context-free parser is a
valuable software component, and a context-free gram-
mar is a specification of it. Not only is the specification
small compared to the program, but it also has the
wonderful property that the program can be generated
automatically from it.

A more recent example is the broad and growing
popularity of model checkers. If you specify higher-
level properties in a version of temporal logic, and
lower-level properties in an appropriate language based
on communicating finite-state machines, then you can
often prove algorithmically that the lower-level descrip-
tion satisfies the higher-level one.

It is certainly true that there are broad-spectrum
specification languages, but they do not help reduce
complexity as well as narrowly focused ones. There is a
well known language trade-off between expressiveness
and analysability, and broad-spectrum languages go too
far in the direction of expressiveness to enjoy many
analytic or generative powers.

It is already well known that finite-state machines are
useful for telecommunications, so we shall give a
different example. For formalising the agreements of an
LDTN, we have found relational algebra to be both
notationally convenient and analytically powerful.

For example, here are two useful partial functions
(using the Z notation for relational algebra [16]):

dedicated-to: trunk +> customer
external-access-to: trunk + switch

A pair (1,c) belongs to dedicated-to and if only if the
trunk ¢ is dedicated to the customer c, typically to
provide direct communication between the LDTN and
the customer’s private switch. A pair (1.s) belongs to
external-access-to if and only if the trunk 7 is an cxternal
trunk connecting LDTN switch s to some switch
outside the LDTN.

It is an important constraint on the agreements
that:

dom dedicated-to C dom external-access-to

A trunk cannot be assigned to a customer unless it is on
the periphery of the LDTN. Also, the following
declares and defines a useful function:

special-customers: switch — P customer

special-customers‘(s:switch) A
ran((external-access-to~ ({s}) dedicated-to)

It says that the special customers of a switch as those
customers to which the switch is connected by dedi-
cated trunks. (external-access-to~ ({s})) is the relational
image of the set {s} under the inverse of the exiernal-




Telecommunications Sefvlce Requirenﬁents

access-to relation, i.e., it is the set of external trunks
connected to s. This set is used to determine the subset
of dedicated-to containing only those pairs in which the
trunk is connected to s. The range of this restricted
relation is the desired set of customers.

Like any proper algebra, relational algebra is unified
and coherent; many laws provide a rich calculational
potential. Relational algebra is easily type-checked.

The analysability of relational algebra has recently-

been extended by the development of the Nitpick tool,
which enumerates bounded state spaces automatically
and checks them exhaustively for counterexamples to a
specification [17]. Furthermore, a suite of tools for
handling agreements in a large switching system relies
on a formal agreements language close to relational
algebra [18,19]. The suite includes support for writing
update transactions and for specifying integrity con-
straints on the agreements. Other automated tools
perform verification and code generation, guaranteeing
database integrity and saving countless hours of work.

3.2. Use Domain-Specific Shorthands

Often a notation that is useful for many application
domains can be made even more powerful in a
particular domain by the addition of domain-specific
shorthands. We shall illustrate this principle in the
LDTN domain with the problem of unifying in-band
and out-of-band signalling on trunks.

In LDTN requirements, call processing is driven by
incoming signals associated with external trunks. It
seems sensible to abstract the signals as events and to
describe the events observable at each trunk in terms of
a finite-state machine, but this plan is threatened by the
existence of two radically different forms of
signalling.

Out-of-band signals are messages travelling on a
signalling channel that is completely separate from the
voice channel. In-band signals are sounds travelling on
the voice channel. For example, audible tones and
announcements are in-bands signals from the LDTN to
its environment. DTMF tones (‘touch tones’) are
frequently used as in-band signals from the environ-
ment to the LDTN. Automatically recognised words,
and changes between sound and silence, also sometimes
serve as in-band signals to the LDTN.

Obviously the implementations of in-band and out-
of-band signalling are vastly different, but the roles of
these signals in requirements are often identical. For
example, the directory number that a caller wishes to
reach usually arrives as an out-of-band signal - the local
network collects the dialled digits, determines that a
long-distance call is being requested, and sends an

97

initial message to the LDTN with the dialled digits in a
data field. But the directory number can also arrive as
an in-band signal. Suppose that a user sets up and
makes a credit-card call. He then wishes to make
another credit-card call without the bother of re-
entering his credit information. Some LDTNs will
accept the ‘¥ DTMF tone as a signal to disconnect the
current call, after which they will recognise in-band
digits as the directory number of a request for a new
call on the same credit account. Note that from the
perspective of the local network and its interface with
the LDTN, a sequence of credit-card calls made in this
way is a single episode in which a voice connection is
maintained continuously between the user and the
LDTN. This voice connection carries the in-band
signals by which the caller requests a sequence of long-
distance connections.

The solution to the specification problem is a
notation that expresses which changes of sound on the
incoming voice channel are significant as signals. These
significant changes can then be defined as events, and
used on an equal footing with out-of-band events. This
solution is illustrated by Fig. 3, which is a finite-state
machine augmented by a special shorthand for in-band
signalling.

Figure 3 is a partial specification of what can be
observed at a callee’s trunk. It is a finite-state machine
with nested stdtes as in Statecharts [20]. Event types
spelled in lower-case letters represent events controlled
by the environment (callee), while event types spelled
in upper-case letters represent events controlled by the
system (LDTN).

EXPEL, withdraw, and answer events all represent
out-of-bands signals. A withdraw event ends the call on
the initiative of the callee, while an EXPEL event ends
the call on the initiative of the caller (as transmitted
through the LDTN).

The remaining event types in Fig. 3 represent in-band
signals. Recall that in-band signalling from the LDTN
to the environment takes the form of audible tones or
announcements. The tones or announcements to be
played are specified as labels on appropriate states.
These sounds are begun or ended by events that enter
or leave the labelled states, respectively. If the callee is
receiving a collect call, for instance, then an event of
type COLLECT-PERMISSION-NEEDED begins the
announcement that this is a collect call. An event of
type MESSAGE-ENDED ends this announcement and
begins the playing of a recorded speech from the caller.
In the notation of Fig. 3, events can have attributes. The
s attribute of a COLLECT-PERMISSION-NEEDED
event is a recorded speech from the caller, which is why
it appears as the label of the state in which this speech
must be played to the callee. Another event of type




98

an>yer

CO T
PERMJSSION
NREDED

collect

announcement

MESJAGE
ENDED

COLLECT

PERMISSION MESSAGE

ENDED

NEEDED.s

TAKKING
ENABLED

accept|

P. Zave and M. Jackson

withdraw

(talking)

lcollect

collect

prompt
len=1 refuse colle
time=4

-

Fig. 3. A partial specification of a callee's trunk.

MESSAGE-ENDED ends this recording and begins
the announcement that prompts for acceptance or
refusal of the collect call. ’

To put in-band signalling from the environment to
the LDTN into an event format, we need to do two
things. The first is to indicate when incoming sounds
might be significant. For example, the state labelled
collect-prompt is also labelled len = 1, indicating that a
sequence of DTMF tones of length up to 1 may have
signalling significance in this state. Note that if a stdte
has monitoring for DTMF tones and an outgoing tone
or announcement, as this state does, then the outgoing
sound ceases as soon as the first incoming digit is
received.

Monitoring for DTMF tones can end in any of these
ways: (1) The state is exited because of some event
having nothing to do with monitoring, for example
EXPEL. (2) One digit is collected. (3) Since the state
also has time = 4 in it, 4 second elapse without the
arrival of a digit. ’

The second thing we need to do is to indicate which
incoming sounds -are interpreted as which symbolic
events in the specification. In termination situations 2
and 3, the event that ends monitoring (a digit arrival or
timeout) is an event represented in the specification. Its
type in the specification depends on which of the string
patterns found on transitions out of the monitoring

state best matches the collected string. If ‘1’ was
collected then the final event is considered to be an
accept-collect event. If nothing or any other digit was
collected, then the final event is considered to be a
refuse-collect event.

In summary, the special notations used in Fig. 3
accomplish two things: (1) they unify in-band and out-
of-band signalling for purposes of convenient specifica-
tion, and (2) they make it possible to specify require-
ments for in-band signalling easily and concisely.
Another example of a telecommunications-specific
shorthand - this time tables added to Z - can be found
elsewhere [21].

3.3. Partial Aspects are Better than Partial
Functionality

The current reality is that we cannot completely
formalise the requirements for an LDTN; the magni-
tude of the problem is much greater than the power of
any current solution’ technique. So we are faced with
the prospect of doing partial formalisation or none at
all, and faced with hard choices about where to invest
our efforts.

All too often the ‘choice’ is made by the following
scenario: (1) Begin with the ambition of specifying all
requirements. (2) Start formalising the obvious, core




Telecommunications Service Requirements

caller interface

: service customer,
caller interface ( )

(service agent)

N ,

oogooo

service-site
connection

99

caller interface
(sequence of
credit-card calls)

o]

normal
connection

callee
interface
(normal)

EOOOOOOO’OOOOOOOO

service-site
connection

ocobocoodooobodoo

Fig. 4. A Venn diagram of events involvéd in common LDTN features.

functions. In the case of an LDTN, modelling would
start with POTS (Plain Old Telephone Service, the
default or featureless service). (3) Add additional
features, usually the easy ones, until everyone’s ability
to manage the complexity of the specification is
exhausted. (4) Quit. The result of this scenario is that
the formal requirements cover the functionality of the
proposed system only partially. They are skewed
toward the familiar and well understood; they avoid the
troublesome and difficult.

[t should be obvious that this approach expends most
of the efforts where it will do the least good. It also
incurs a big risk of false abstractions and general-
isations, ones that cover the easy cases and fall apart on
the hard cases. This has definitely occurred in teleph-
ony, where current thinking is dominated by call
models.

A call is an attempt by one telephone (the caller) to
establish one connection to one other telephone (the
callee). The state of the call encodes or implies
information about the states of all three entities. The
term call model refers to any conceptual model for
telephony that describes telephony exclusively in terms
of calls?

Many features subvert the one-to-one-to-one corre-
spondence that is the essence of a call. For example,

*The most advanced call model in use today is the Intelligent
Network Conceptual Model (INCM). It was developed under the
auspices of the International Telecommunication Union (ITU) and
the European Telecommunication Standard Institute (ETSI), and is
being promulgated as a standard by those organisations [22,23].

conferences connect sets of telephores, from three tora
hundred. For a large conference, an appointment must
be made ahead of time. Thus, at its starting time, a large
conference can be thought of as a connection with no
telephones. Furthermore, the conference can even
initiate creation of the voice paths to all the participat-
ing telephones — very different from a call, which is
always initiated by a caller.

Figure 4 shows another example, using only common
LDTN features, full of exceptions to any call model.
Figure 4 is a Venn diagram, where the set elements
(small circles) are events and the sets (rectangles) are
the scopes of applied specification modules. As an
additional dimension of meaning, the vertical dimen-
sion of the diagram shows a rough time ordering on
events.

Each tall box in Fig. 4 is concerned with an interface
episode in which one trunk is being used to access one
telephone; this is the closest that LDTN can come' to
talking directly about telephones. Each wide box is
concerned with a two-way connection between such
episodes; a wide box corresponds to an application of a
specification module that coordinates events at the two
ends of the connection.

The labels .given some indication of the features
being used. The telephone on the left is used by a
service agent who is connected with a series of callers to
a toll-free number. The callers to the virtual service site
are queued and then connected to service agents in the
order in which they called. The second telephone is
simply one of the customers of the service site. The




100

third telephone is making a series of credit-card calls,
using the feature described in Section 3.2. It first
connects to a normal callee, and second to a service
agent. The fourth telephone is the normal callee
reached by the third telephone. Thus, even the com-
monest LDTN features create many-to-many corre-
spondences among telephones and connections. Clearly
many LDTN functions do not fit neatly into calls, and
any call model will be partial at best.

A better alternative to partial functionality is model-
ling specific, well-defined aspects or views of the
requirements. Each aspect may be narrowly focused,
and the aspects together may not cover all the
requirements, but an aspect is internally complete. For
example, it is possible to specify everything observable
at a telephone, quite separately from (and more simply
than) the connection features that relate one telephone
to another [24].

One advantage of the aspect approach is that it is
clear where you have completeness and where you do
not. Aspects can be chosen quite freely and the choice
can be made based on what is most important.

Most advantageous of all, a well-formalised aspect —
being tangible and complete — can really be useful. The
tools for agreements mentioned in Section 3.1 [18,19]
are an excellent example of this usefulness. They prove
that incompleteness does not render a formal model
ineffective, provided that the boundaries of its scope
are drawn in rational places. |

4, Conclusion

We have presented several ways of managing the
complexity of LDTN requirements, along with the
principles behind them. We hope that these observa-
tions will be interesting and suggestive to those who are
primarily concerned with other software application
domains.

We would like to be able to claim that these
techniques are sufficient to bring the complexity of
LDTN requirements down to a comfortable level, but
that is far from true. All we can say for sure is that these
techniques are helpful, and that we would not attempt
to deal with LDTN requirements without them.

References

1. Cameron EJ, Griffeth ND, Lin Y-J et al. A feature
interaction benchmark for IN and beyond. In.Bouma LG,
Velthuijsen H (eds), Feature Interactions in Telecommu-
nications Systems. IOS Press, Amsterdam, 1994, pp.
1-23

P. Zave and M. Jackson

. Griffeth ND, Lin Y-J. Extending telecommunications

systems: the feature-interaction problem. IEEE Comput
1993; 26(8): 14-18

. Zave P. Feature interactions and formal specifications in

telecommunications. IEEE Comput 1993; 26(8): 20-30

. Balzer R, Goldman N. Principles of good software

specification and their implications for specification lan-
guage. In Proceedings of the Specifications of Reliable

. Software Conference, IEEE Computer Socicty, 1979, pp.

10.

11.

12.

13;

14.

15.
16.

17.

18.

19.

20.

21.

58-67

. Jackson M. Information systems: modelling, sequencing,

and transformations. In Proceedings of the Third Inter-
national Conference on Software Engineering. IEEE
Computer Society Press, Washington, DC, 1978, pp.
73-81

. Lehman MM. Programs, life cycles, and laws of software

evolution. Proc IEEE 1980; 68(9): 1060-1076

. Jackson M. Software requirements and specifications: a

lexicon of practice, principles, and prejudices. Addison-
Wesley, Reading, MA, 1995

. Jackson M, Zave P. Deriving specifications from require-

ments: an example. In Proceedings of the Seventeenth
International Conference on Software Engineering.
ACM, New York, 1995, pp. 15-24

. Zave P, Jackson M. Four dark corners of requirements

engineering. ACM Trans Software Eng Methodol 1997;
6(1): 1-30

Kay A, Reed JN. A rely and guarantee method for timed
CSP: a specification and design of a telephone exchange.
IEEE Trans Software Eng 1993; 19(6): 625-639

Berry G, Gonthier G. The Esterel synchronous program-
ming language: design, semantics, implementation. Sci
Comput Program 1992; 19: 87-152

Jacob JL. Refinement of shared systems. In John
McDermid (ed). The theory and practice of refinement:
approaches to the formal development of large-scale
software systems. Butterworths, 1989, pp. 27-36
Lamport L. A simple approach to specifying concurrent
systems. Commun ACM 1989; 32(1): 3245

Nuseibeh B, Kramer J, Finkelstein A. A framework for
expressing the relationships between multiple views in
requirements specifications. IEEE Trans Software Eng
1994; 20(10): 760-773

Zave P, Jackson M. Conjunction as composition. ACM
Trans Software Eng Methodol 1993; 2(4): 379-411
Spivey JM. The Z notation: a reference manual, 2nd edn.
Prentice-Hall, Englewood Cliffs, NJ, 1992

Jackson D, Damon CA, Elements of style: analysing a
software design feature with a counterexample detector.
IEEE Trans Software Eng 1996: 22(7): 484-495

Corrico S, Ewbank B, Griffin T, Meale J, Trickey H. A tool
for developing safe and efficient database transactions. In
Proceedings of the Fifteenth International Switching
Symposium of the World Telecommunications Congress,
April 1995, pp. 173-177 -

Griffin T, Trickey H. Integrity maintenance in a tele-
communications switch. I[EEE Data Eng Bull 1994:
43-46

Harel D. Statecharts: a visual formalism for complex
systems. Sci Comput Program 1987; 8: 231-274

Zave P Secrets of call forwarding: a specification case
study. In Formal description techniques VIII (Proceed-
ings of the Eighth International IFIP Conference on




Telecommunications Service Requirements

22

Formal Description Techniques for Distributed Systems
and Communications Protocols). Chapman & Hall, Lon-
don, 1996, pp. 153-168.

Duran JM, Visser J. International standards for intelligent
networks. IEEE Commun. 1992; 30(2): 3442

101

23. Garrahan JJ, Russo PA, Kitami K, Kung R. Intelligent
Network overview. IEEE Commun 1993; 31(3): 30-36

24. Zave P, Jackson M. Where do operations come from? A
multiparadigm specification technique. IEEE Trans Soft-
ware Eng 1996; 22(7): 508-528




