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Abstract.  The problem frames approach to software development is considered in the light of
the long-standing aspiration of software developers to merit a place among practitioners of the
established branches of engineering. Some principles of the approach are examined and some
comments made on the range of its applicability. The account given of the approach assumes that
the reader is already familiar with its basic ideas.

1. INTRODUCTION

It is widely held that software development should aspire to deserve recognition as an
engineering discipline.1 This view motivated the two NATO Software Engineering
conferences of 1968 and 1969, and is clearly stated in the report [NATO 69] of the first
conference:

“The phrase ‘software engineering’ was deliberately chosen as being provocative,
in implying the need for software manufacture to be based on the types of
theoretical foundations and practical disciplines, that are traditional in the
established branches of engineering.”

The report reflected what was clearly the consensus of the participants: software is, or should
become, one more class of engineering product, to be set alongside such established
engineering products as bridges, motor cars, chemical plants and aeroplanes. The consensus
was unchanged one year later at the second conference in 1969, and has been widely accepted
ever since.

The participants assumed implicitly that the phrase software engineering was to be
narrowly interpreted, to mean the engineering of the software itself—that is, of the structure
and content of program texts—and that it was primarily concerned with the processes of
software design, programming and testing, and with program execution. The alternative
broader interpretation of the phrase, to mean the engineering of change in the world by
devising and installing software-intensive systems, was not seriously considered.
Surprisingly, too, the conference participants devoted little of their discussion to exploring
and discussing the established practices in the engineering branches they hoped to emulate.2

Instead they focused on the processes, products and challenges they recognised in their own
practice of software development without comparing them with those of other disciplines.

A very interesting paper by Maibaum [Maibaum 97] discusses some aspects of the
relationship between software engineering and the established branches, drawing heavily on
Vincenti’s illuminating book What Engineers Know and How They Know It [Vincenti 93].
Vincenti writes chiefly about aeronautical engineering in the first half of the twentieth century
when the field was being established by researchers and practitioners. He gives illuminating
detail of five case studies including the problems of aerofoil design, a series of wind-tunnel
experiments on propellers, the invention and development of flush riveting, the concept of a
control volume as a theoretical tool in fluid dynamics, and the process by which the initially
                                                          
1 In this paper the terms software development and software engineering are used interchangeably.
2 An exception was the talk by W D McIlroy at the first conference, in which he advocated the development and
use of mass-produced software components, citing as possible examples trigonometric functions and input-
output routines.
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vague notion of flying qualities became more exact and amenable to quantitative analysis and
design. He also discusses the nature and anatomy of engineering knowledge, and the
processes by which it increases over time.

The present paper, too, draws on Vincenti’s book as a source of well-founded observations
about engineering practice. Its purpose is to discuss some principles and aspects of the
problem frames approach (which we will refer to as ‘PF’) to software development, and to
relate them to the practice that Vincenti describes. The problem frames approach is not a
development method. It is, rather, a perspective and a conceptual framework, embodying a
certain way of looking at an important group of problem classes and of structuring the
intellectual processes of developing good solutions. It is intended to be usable in several
ways: constructively, to guide development; analytically, to help understanding of completed
developments; and methodologically, to help understanding of existing and proposed
approaches to software engineering.

2. THE MACHINE AND THE PROBLEM WORLD

The PF view of software development takes as its starting point the alternative broader
interpretation of the phrase software engineering, corresponding closely to Rogers’s
definition [Rogers 83] of engineering, quoted and amplified by Vincenti:

“Engineering refers to the practice of organising the design and construction [and, I
would add, the operation] of any artifice which transforms the physical world around
us to meet some recognised need.”

This definition succinctly captures the PF view. The development task is to design and
construct an artifice. In PF we call this artifice the machine, constructed by building software
that is then executed on a general-purpose computer, specialising the computer to serve a
particular purpose. That purpose is to meet a recognised need, which we call the requirement.
Satisfying the requirement involves transforming the physical world around us: in PF, the part
of the world to be transformed, in which the requirement is located, is called the problem
world. The principal parts3, then, of a software development problem are the machine, the
problem world, and the requirement. Their relationships are shown in the generalised PF
problem diagram in Figure 1:

The machine interacts with the problem world at an interface of shared phenomena a.
Typically, these phenomena are events and states, controlled either by the problem world or
by the machine and shared at input-output ports or registers of the machine.4 The machine and
the problem world are both physical, conforming to their characterisation in Rogers’s
definition; their interactions at a are unmediated and therefore also physical. The requirement
is shown by a dashed oval, indicating its intangible quality. The requirement is not a tangible
part of the problem: it is a predicate or condition on the problem world that the machine is
                                                          
3 ‘Principal parts’ is a term drawn from Polya’s account [Polya 54] of the work of ancient Greek mathematicians
on techniques of problem capture and solution.
4 It is often convenient to raise the level of abstraction here—for example, by regarding an extremely reliable
input-output device, such as an attached printer, as an integral part of the machine: the phenomena a would then
include print events.

Figure 1.  Generalised Problem Diagram
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required to bring about. The link between the requirement and the problem world is
represented by a dashed line. This link denotes references by the requirement to the physical
phenomena b of the problem world. These are the phenomena that the customer for the
system would observe to determine whether the requirement is satisfied. In general, the
phenomena b, which we may call the requirement phenomena, are distinct—and sometimes
disjoint—from the phenomena a, which we may call the specification phenomena.5

The generalised problem diagram of Figure 1 emphasises the physical phenomena of the
requirement, the problem world and the specification: the machine and problem world, their
interaction, and the requirement, are all to be understood in terms of physical phenomena
rather than in terms of purely mathematical abstractions. That is not to say that PF eschews
abstraction, but rather that it insists that abstractions must be firmly grounded in observable
physical reality. For example, if we consider the striking of a key by a computer user to be a
shared phenomenon at the specification interface, we are abstracting from the causal chain
that runs from depression of the keytop to assigning the corresponding encoded value to a
machine register. This causal chain may be very complex, involving interpretation of the key
codes and execution of a debouncing algorithm; but we choose to regard the key depression
and the assignment as a single shared event. Such abstractions are inevitable in any treatment
of physical phenomena. What we insist on is that any abstraction can be unambiguously
explained in terms of phenomena that we can observe in the physical world.

Clearly this stipulation excludes certain problem classes. For example, PF makes no claim
to offer guidance in the problem of factorising a large integer, finding the shortest path in a
graph, or beating the world champion at chess or go. Nor can such problems be brought
within the scope of PF by a gratuitous reification—for example, by stipulating a physical
representation of the integer or graph in a disk file. In some problems, such as the
construction of a single-person computer game, the physical problem world may contain
nothing other than the operator or user, and the problem world phenomena (other than the
specification phenomena) are purely psychological. In such problems the PF approach may be
of no more than vestigial utility. However, it is important to recognise that problem worlds
involving the behaviour of people interacting with the system are fully appropriate to PF.6

3. PROBLEM REDUCTION

Because PF is concerned with engineering in the world, it demands a clear distinction among
three descriptions:

• the requirement R describes the customer’s requirement—how the world is desired to
be—in terms of the requirement phenomena b;

• the specification S describes, in terms of the specification phenomena a, the machine
behaviour that must result from execution of the software to be developed;

• the world properties W describes the given properties of the problem world that hold
independently of the machine’s behaviour and that capture the possible relationships
between the specification and requirement phenomena.

To show that the machine will indeed satisfy the requirement it is then necessary to show that:

S,W ú R

                                                          
5 Because they are the phenomena in terms of which the external behaviour of the machine—that is, of the
software—must eventually be specified.
6 An interesting extension [BrierRH 04] of the approach allows the knowledge they acquire and use in their
activities to be brought within its scope.
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In other words, if  machine satisfying S is installed in a problem world satisfying W, then the
requirement R will be satisfied.7 The gap between what is desired at the interface b and what
can be directly monitored and controlled by the machine at interface a is bridged by the given
properties of the problem world. Showing, formally or informally, that this relationship holds
among the three descriptions may be called the basic problem concern.

PF does not mandate a sequence of development tasks. But in concept we can imagine a
development process that begins by capturing the customer’s requirement R, and proceeds,
using the given properties W, to devise a machine behaviour specification S. We may call
such a process problem reduction. Starting from a problem involving the phenomena a and b
and the problem world properties, it derives a reduced problem in which the phenomena b and
the problem world do not appear at all.8 A problem of engineering in the world has been
reduced to the problem of building a machine with a specified external behaviour.9

(Eventually, once this reduction process is complete, a programming process will create a
program whose execution will satisfy S.)

Software development has traditionally dealt chiefly in what are, in this sense, reduced
problems. Early computers were connected very loosely and asynchronously, by data on
punched card or paper or magnetic tape, to their problem worlds. Most software, apart from
the compiler, the operating system kernel, and the software to manage input-output and
system resources, consisted of batch programs performing mathematical computations or data
processing tasks. Programs for mathematical computations were often written by people
already fully familiar with the task to be performed, who saw no need for a written
specification. Data processing tasks were often simply specified as reproducing, sometimes
with little or no change, the behaviour of an existing manual or punch-card system. The
production, content and format of program specifications were not considered to be a
significant part of the software development task.

This view was memorably expressed by Dijkstra [Dijkstra 89]:

“The choice of functional specifications—and of the notation to write them down in
—may be far from obvious, but their role is clear: it is to act as a logical ‘firewall’
between two different concerns. The one is the ‘pleasantness problem,’ ie the
question of whether an engine meeting the specification is the engine we would like
to have; the other one is the ‘correctness problem,’ ie the question of how to design
an engine meeting the specification. ... the two problems are most effectively tackled
by ... psychology and experimentation for the pleasantness problem and symbol
manipulation for the correctness problem.”

Dijkstra was concerned to maintain the mathematical purity of computer science, and rejected
the notion of software engineering in any sense. The ‘pleasantness problem’—that is,
obtaining the functional specification—was for others to address. Computer scientists and
software developers should restrict their attention to the ‘correctness problem’, and should
address it by formal mathematical techniques.

This narrow view of the software development task has had an enduring effect. Although
lip service is almost universally paid to the need to analyse and describe the problem world,
the reality is that most descriptions—certainly most formal descriptions—constructed in
software projects are descriptions of the machine rather than of the world. What may have

                                                          
7 For a more detailed discussion of this entailment see [GunterGJZ 99] and [HallR 03].
8 When the problem world is more complex, and is structured as an interacting set of problem domains, the
problem can be reduced step by step, by successively removing domains that are farthest from the machine.
9 Jon Hall and Lucia Rapanotti have pointed out the connection between problem reduction and the weakest-
environment calculus [LaiS 95].
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begun as an effort to describe the world slips quickly into a focus on an object or database
structure that is intended to represent it in the machine. The PF emphasis on the explicit
investigation, description and use of the given problem world properties can be seen as an
attempt to exert a countervailing intellectual force. PF views the process of problem reduction
as an integral and central part of the software engineering discipline.

4. REDUCED PROBLEMS IN ENGINEERING

It may perhaps seem that in spite of Rogers’s definition the PF emphasis on the problem
world is at odds with established engineering practice. At first sight, engineering practice
seems to focus very directly on the product, or artifice, to be designed and constructed,
leaving the world around it very much in the background. Automobile engineers appear to
think much more about cars than about roads or drivers, so justifying an analogous emphasis
in software engineering on the machine rather than the problem world.

A distinction should be made here between what we may call local and ubiquitous
problems. In a local problem the problem world is unique to a particular place, and the
engineer must examine that problem world in all its particularity. Consider, for example, the
building of a road or rail bridge over a navigable river. The bridge designer must obviously
carry out an explicit and detailed investigation and analysis of the given properties of the
particular problem world: the character of the ground on which the bridge supports will be
erected; the river currents; the sizes and speeds of vessels navigating the river; the local
winds; the density, nature and flow patterns of the planned traffic; and the seasonal variations
in temperature and other atmospheric conditions.

In a ubiquitous problem, by contrast, the engineering product is intended to be used
anywhere that the operational environment exhibits certain broad characteristics that are
essentially independent of the specific operational locality. Automobile engineering is
concerned with wheeled vehicles that travel on terra firma; aeronautical engineering is
concerned with vehicles that travel in the earth’s atmosphere. The problem world properties
of interest are then location-independent properties, and they do not demand a fresh explicit
description of roadways or of the atmosphere for each new car or aircraft design. Rather than
ad hoc products of the development project in hand, these descriptions are standard reference
material.

Vincenti writes of the indicative problem world properties to be considered by the
aeronautical engineer:

“Descriptive knowledge is knowledge of how things are. Descriptive data needed
by [aeronautical] designers include physical constants (acceleration of gravity,
for example) as well as properties of substances (failing strength of materials,
coefficients of viscosity of fluids, etc.) and of physical processes (rate of
chemical reactions and so forth). Occasionally they deal with operational
conditions in the physical world (frequency and strength of atmospheric gusts for
aircraft fatigue-loading calculations). As we have seen with flying qualities, they
also encompass information on human beings (maximum forces exerted by pilots
[on an aircraft’s manual controls]).”

Certainly, some of this descriptive knowledge—strength of materials and rate of chemical
reactions—is clearly about the substrate of the engineering artifice itself rather than its
problem world or operating environment. Frequency and strength of gusts, however, and
forces exerted by pilots, are certainly properties of the problem world. But they do not require
to be established afresh on each occasion. In respect of these properties the engineers need
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only address the reduced problem, reduced in the light of standard knowledge of the
properties of the problem world or environment.

5. NORMAL AND RADICAL DESIGN

Vincenti draws on his own experience of aeronautical engineering and on the work of the
philosopher Michael Polanyi [Polanyi 58] and the historian Edward Constant [Constant 80] to
explain the central importance of normal—as opposed to radical—design for established
engineers. Normal design is what allows them to succeed where they do and as often as they
do. Of an engineer practising normal design he writes:

“The engineer engaged in such design knows at the outset how the device in
question works, what are its customary features, and that, if properly designed
along such lines, it has a good likelihood of accomplishing the desired task.”

“Every device possesses an operational principle, and, once the device has
become an object of normal, everyday design, a normal configuration. Engineers
doing normal design bring these concepts to their task usually without thinking
about them.”

In short, it is usually otiose, or even harmful, to rework from basic principles a problem
whose requirements, design and solution have been firmly established by long and successful
experience. Vincenti gives the example of automobile design:

“Automobile designers of today usually (but not invariably) assume without much
thinking about it that their vehicle should have four (as against possibly three) wheels
and a front-mounted, liquid-cooled engine.”

Vincenti lays some stress on the hierarchical structure of engineering products in the
established branches. He distinguishes between devices and systems. Devices are “single,
relatively compact entities”, while systems are “assemblies of devices brought together for a
collective purpose.” The distinction is, of course, relative. The struts of an aircraft’s landing
gear are a device—a part of the landing gear viewed as a system. The landing gear, viewed as
a device, is a part of the aircraft regarded as a system. The aircraft itself can be viewed as a
device forming a part of the airline system, or even of a national or global system of air
transport.

Although the distinction between devices and systems is relative in this sense, it is also
closely associated with the distinction between normal and radical design. Normal design can
be applied only to a device, to a “single, relatively compact entity”. Radical design is always
necessary for a system, where there is no history of successful development of closely fitting
precedents. Radical design may also be necessary when a new kind of device is necessary.
Then the engineer’s ambitions must be dramatically lowered:

“... how the device should be arranged or even how it works is largely unknown. The
designer has never seen such a device before and has no presumption of success. The problem
is to design something that will function well enough to warrant further development.”

In effect, only normal design can realistically hope to produce a reliable product with no
major defects or failures. Though less conspicuous than radical design, normal design makes
up by far the bulk of day-to-day engineering enterprise.10

                                                          
10 But not, unfortunately, in software engineering.
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6. ELEMENTARY PROBLEM FRAMES

Elementary problem frames can be regarded as defining problem classes in software
engineering that are currently the object of normal design. Their machines, together with the
problem worlds that provide their purpose, play the role that Vincenti’s well-understood
devices play in the established engineering branches. Particular elementary problem frames,
specialised from the universal problem diagram of Figure 1, capture classes of software
development problems whose software solutions take the form of individual programs or, at
most, very small systems of programs. For example:

• In a WorkPieces problem a User edits a WorkPiece such as a text or graphic document.
The requirement is that the edit commands issued by the User should effect appropriate
corresponding changes in the WorkPiece.

• In a Required Behaviour problem the Control Machine is required to impose a particular
behaviour on a Controlled Domain.

• In an Information Display problem the Information Machine is required to monitor the
state and behaviour of a Real World and to display information about it on a Display.

Problem frames do not aim to capture classes of problems of realistic size and complexity.
Most of them capture simple subproblems that can appear only as ingredients or aspects of
realistic problems. For example, the WorkPieces frame captures problems of simple
document editing. The subsequent use of the document, and even the user’s ability to inspect
different parts of the document while it is being edited, are ignored: the solution to a
WorkPieces problem is not useful in isolation.

Each problem frame constitutes what we might call a problem pattern.11 It stipulates:

• a decomposition of the problem world into a particular set of physical problem domains
interacting with each other and with the machine in a particular topology;

• a characterisation of each problem domain according to its physical properties—causal,
lexical or biddable—as they affect the problem (the Controlled Domain is causal, the
WorkPiece is lexical, and the User is biddable);

• a characterisation of each interface according to the types of the subsets of the
phenomena—events, states, symbols—that are shared at the interface and to the
assignment of  control of each subset to one of the sharing domains;

• the nature of the requirement and of its link—none, reference only, or constraining—to
each problem domain.

Problems that fit different elementary frames specialise the basic solution concern in
different ways, giving rise to frame concerns of different forms. The specialisation arises
because the given properties W of each problem domain d must be separately described, and
these descriptions must be combined with each other and with the specification S and
requirement R in a way that respects the connectivity of the frame diagram and the control of
shared phenomena.

The frame concern of a problem class can be regarded as loosely analogous to the
operational principle of a device class in normal design—how the characteristic parts of the
                                                          
11 The very well-known work on object-oriented patterns [GammaHJV 94, BuschmannMRSS 96] has some
obvious similarities, and is clearly concerned with the identification of devices that, once identified, can become
the object of normal design. But patterns are firmly located within the machine all parts of each pattern are
represented in programming terms. The work on analysis patterns [Fowler 96] is an interesting treatment of some
problem fragments in an object-oriented setting.
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device fulfil their special function in combining to an overall operation which achieves the
device’s purpose. Vincenti cites Sir George Cayley’s famous statement of 1809 [Cayley 09]
in which he characterised the principle of the fixed-wing aircraft: “to make a surface support a
given weight by the application of power to the resistance of air.” The surface provides the lift
because the applied power drives the surface against the resistance of the air.12

In addition to the frame concern each problem frame raises a number of specific concerns that
must be addressed if the solution is to be acceptable. For example:

• Initialisation. The machine necessarily begins operation in its initial state, and at that
moment the problem world is also in one of some set of states. If the developer has not
considered the problem world state that in fact holds initially in a particular case, the
specified machine behaviour is unlikely to satisfy the requirement, at least for some initial
period of operation and possibly for the whole lifetime of the system.

• Breakage. A causal domain may be damaged if certain sequences of operations are
performed on it. For example, some component of a Controlled Domain may be damaged
if certain operation sequences are performed by the machine. The developer must identify
such sequences, and ensure that the machine always avoids them.

• Reliability. A causal problem domain typically satisfies its properties description with
high—but never with perfect—reliability. If the reliability is too low in relation to the
criticality of the system it is necessary to detect, or even to anticipate, failures and to
prevent, mitigate or compensate their effects.

• Information deficit. In an Information Display problem the information directly and
currently available to the machine at the time it must produce each display output may be
inadequate. It may have been available at an earlier time; or it may be information that
must be accumulated from the beginning of execution; or it may be deducible only by
elaborate calculation or estimation from the information available earlier. The developer
must then find some effective way of overcoming this information deficit.

In general, different problem frames raise different specific concerns. Information deficit
does not arise in WorkPiece problems. Information Display problems do not raise reliability
concerns. Breakage is not a concern in WorkPieces problems. To a significant extent the set
of concerns that must be addressed, and the detail of each concern, depend on the
characteristics of the frame’s problem domains. Breakage and reliability do not arise for
lexical domains; information deficit does not arise for biddable domains. However, the
importance of a particular concern can not be finally determined by considering abstract
characteristics either of domains or of problem frames. It must be ultimately determined by
the knowledge, experience and judgement embodied in a particular class of normal design
task. The engineer practising normal design knows in advance what concerns will be most
important.

Many of the failures documented in P G Neumann’s Risks forum [Risks 04] can be
attributed to the absence of established normal design practice for at least the failing part of
the system. With hindsight the mistake or neglect that led to the failure is conspicuous, and
we may often wonder why the developers did not see it. The reason is that they were doing
radical design, not normal design, and their knowledge, experience and judgement were not
specifically honed for the particular design task they were doing. In Vincenti’s words, they
“had no presumption of success.” The blame for the failure may be laid at the developers’
door for ignoring existing normal design practice; or at the customer’s door for stipulating
                                                          
12  It appears that the chief obstacle to Cayley’s building a fixed-wing aircraft was the lack of an internal
combustion engine. He had correctly calculated that steam engines could not offer an adequate power/weight
ratio.
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requirements that  went too far beyond what can be reliably delivered by current practice; or
at the software development community’s door for failing to evolve a normal design practice
when enough knowledge and experience existed to do so.

7. INSTANTIATING ELEMENTARY FRAMES

In an established branch such as aeronautical engineering [Constant 80], the task of
normal design is “the improvement of the accepted tradition or its application under new or
more stringent conditions”. Relatively small design changes give quantitative increments in
cost, performance or economy, while retaining the customary configuration of parts and the
accepted operating principle. Examples in software engineering are most readily found in the
improvement of what we may call internal software components—components all of whose
interactions are with other formally specified software components, within the machine. The
classic handbook for a large variety of such software devices is Knuth’s magnum opus The
Art of Computer Programming [Knuth 68,69,72], where detailed discussions are given of the
construction and performance of algorithms for sorting, tree traversal, garbage collection and
many other purposes. Some examples can be cited closer to the problem world. Spell
checkers, for instance, appear to have become the object of normal design, to judge by their
greatly improved speed and reliability.

In the design of solutions for problems fitting elementary problem frames the need for
incremental quantitative improvement may be present, but is usually dominated by the need to
instantiate known solutions for the detailed properties of specific problem domains. Instances
of the WorkPieces frame, for example, will differ not only in response time and speed of
saving the document being edited, but more importantly in the different lexical structures and
operations of the WorkPieces they can handle. Similarly, instances of the Required Behaviour
frame will differ in the structural and dynamic properties of the Controlled Domain. These
differences provide the core subject matter for software development methods. For example, a
model-based method such as Z [Hayes 87] or VDM [Jones 90] is very appropriate to
instantiating the common data structures of a set of WorkPieces together with the repertoire of
editing operations which can be applied to them. Similarly, problems fitting the
Transformation frame, in which the task is to produce sequential output streams from
sequential input streams, can often be appropriately solved by the JSP design method
[Jackson 76]: the sequential structures of the streams are described in regular expressions
which are then combined to give the required program structure.

8. COMPOSITE ELEMENTARY PROBLEMS

A problem fitting an elementary frame will sometimes be soluble by a simple machine,
whose specification can be a single text. But sometimes a specific concern will demand a
decomposition into two or more subproblems. For well-understood elementary problem
frames this decomposition will be highly standardised. This standardised decomposition is
another aspect of what Vincenti calls “a given operational principle and normal
configuration”: it is understood not only how the device should work but also what
arrangement of parts will best allow it to work in that way.

Consider, for example, an Information Display problem in which the requirement is to
maintain a Display showing information about a Real World. Figure 2 shows the problem
frame diagram:
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The requirement is that the visible phenomena of the Display should correspond in a certain
way to the state of the Real World. If the particular problem in hand presents a significant
information deficit problem (as most Information Display problems do), the standard solution
is to decompose the problem into two subproblems communicating by a Model domain, as
shown in Figure 3:

The Model domain is an invented lexical domain, often a database on disk. One subproblem
constructs and maintains the Model, satisfying the requirement that the Model should
correspond in a certain way to the Real World; the other subproblem maintains the Display,
using the Model and satisfying the requirement that the display should correspond in a certain
way to the Model. If we can express the requirements Display À Model and Model À Real
World as relations, it seems clearly desirable that their relational composition should be equal
to the original requirement Display À Real World.

Introducing the Model domain is unavoidable, and is necessarily universal practice in
software development. Decomposing the problem into the two subproblems shown, however,
is not standard practice: essentially it is a separation into two concurrent processes. They will
subsequently need to be composed. In normal design of a composite device, the technique and
mechanism of composition is standardised. Here, for example, a standard technique of mutual
exclusion, applied to critical regions of appropriately chosen granularity, may be sufficient.

9. DECOMPOSING REALISTIC PROBLEMS

If problems fitting elementary problem frames are devices in Vincenti’s terms, then realistic
problems are usually systems—‘assemblies of devices brought together for a collective
purpose’—and consequently the object of radical design. To repeat Vincenti’s words, “The
designer has never seen such a device before and has no presumption of success. The problem
is to design something that will function well enough to warrant further development.” The
need for radical design springs from either or both of two sources. Some of the devices

Display À
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Figure 2.  Information Display Problem Diagram
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Figure 3.  A Standard Decomposition
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making up the system may be currently unfamiliar, themselves demanding radical design; and
the particular combination of devices may be novel, posing unfamiliar problems of
interaction.

The PF approach aims to contain and minimise the radical aspects of development in any
particular case by application of two interlocking principles. The first principle is that a
realistic problem should be decomposed, so far as possible, into subproblems that fit known
elementary problem frames. That is: all those parts or aspects of the system that can be
properly regarded as familiar devices should be identified, and developed by the applicable
techniques of normal design. What makes PF distinctive here is the granularity and
compactness of the parts into which the problem is decomposed. Elementary problem frames
capture closed systems, which, even if not realistically useful in isolation, are complete in
themselves. Each subproblem has its own machine, its own problem world, and its own
requirement, and has no external connections.13

The second principle, flowing from the first, is that subproblem composition is a major
development topic in its own right, demanding explicit and separate consideration. Because
the devices identified in the decomposition are closed systems, and to a large extent
standardised, their normal development pays no attention to the need to combine them with
other devices into a realistic system. But eventually, of course, the decomposed subproblems
must be recombined or composed. Composition brings its own concerns. The composition of
the subproblem requirements must be shown to approximate closely enough to the original
problem requirement; the subproblem machines must be configured for some kind of parallel
execution, cooperating to whatever extent is necessary; conflicts between subproblems must
be resolved.

In the PF approach, the central principle to be applied here is that treatment of the
composition concerns should be deferred until each subproblem has been identified and
analysed to the point of obtaining a satisfactory machine behaviour specification and problem
world description. Until this point, the identification and treatment of the decomposed
subproblems should—in principle—take no account of the eventual need to make them work
together.

This principle stands in opposition to the most commonly used techniques, in which
consideration of the composition concerns is integrated at the outset into the treatment of the
subproblems. An advantage of the traditional technique is that composition can become a
relatively trivial mechanical matter of matching actual to formal parameters or output stream
to input stream definitions.14 An advantage of deferring the composition concerns is that the
subproblems are then seen in their purest forms, in which they correspond exactly to known
devices, not yet complicated by their eventual interactions. Further, the composition concerns
can be dealt with later as an explicit task of composing known devices into a system. If the
deferred composition concerns then prove to demand substantial reworking of the
subproblems to be composed, this is not a disadvantage of the separation: it is rather an
indication that dealing simultaneously with the subproblems and their composition concerns
would have been very difficult.

                                                          
13 Some commonly used development techniques, by contrast, decompose problems into open parts, usually of
smaller granularity. This is true, for example, of decomposition into programming objects (which offer and
invoke methods); of dataflow decomposition into sequential processes (which assume stream or database
communication with other processes); and of requirements decomposition into use cases (each detailing one
episode of user interaction within a larger, usually unspecified, context). Each of these techniques has its place;
but from a PF point of view none is satisfactory as the chief form of problem decomposition.
14 However, the widespread emphasis on integration testing suggests that in practice the common technique is
hard to carry through successfully.
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10. COMPOSITION CONCERNS

Composition concerns arise when subproblems have parts of their problem worlds in
common. Examples of composition concerns are:

• Interference. Two subproblems interfere if one causes change in a problem domain and
the other inspects the same domain: for example, the Model Builder machine changes the
Model domain while the Model User machine inspects it. The Model User subproblem
has a domain properties description of the Model, and it is necessary to ensure that the
Model conforms to this description during each inspection. A suitable granularity must be
chosen for mutual exclusion of atomic changes and inspections.

• Scheduling. A scheduling concern arises when interference can not be dealt with by
atomicity of changes and inspections. Suppose, for example, that in a library system one
subproblem deals with membership and another deals with borrowing and returning
books. In the books subproblem membership is treated as static, although in reality it is
constantly changing as people join and leave the library. Questions then arise about book
loans towards the end of a membership period. Can a member whose membership has
only one week to run borrow a book for two weeks? What if a borrower resigns from
membership before returning the book?

• Conflict. The requirements of two subproblems that cause change in the same domain
may sometimes conflict. For example, in a lift control problem the subproblem
requirement of providing lift service may conflict with the subproblem of ensuring safe
operation in the presence of mechanical and electrical faults: lift service may demand
movement of the lift car to service a request, while safety demands that it be locked by the
emergency brake at its current position in the shaft. Clearly two conflicting requirements
can not both be satisfied: one must be given precedence.

The interference concern can be regarded as an implementation matter. The properties
description of the Model domain as seen by the Model User machine has already been given.
To address the concern it is necessary only to ensure that this description holds at the relevant
times.

The scheduling and conflict concerns, by contrast, raise requirements issues that were not
visible when the subproblems were considered in isolation.

11. IMPLEMENTING COMPOSITION

In the PF approach architecture can be seen as the composition and implementation of the
subproblem machines in a realistic problem. Because realistic problems are likely to be the
object of radical design, there are several approaches that can be valuable in different cases.

Two reported approaches aim to bring more realistic problem classes within the ambit of
normal design. The first is reported in [HallJLNR 02], where the machine of a subproblem is
assumed to be specialised in a standard way that implements a particular scheduling and
prioritisation scheme. The problem is to satisfy customer orders in a warehouse. Investigation
of the requirement shows the potential for interference between orders for the same product,
leading to duplicate allocation of the same stock. It also shows the need for a fair scheduling,
ensuring that an order placed earlier will be allocated scarce stock in preference to a later
competing order. The solution proposed is to use a specialised machine rather than the generic
general-purpose computer usually assumed in an elementary problem frame. The specialised
machine has built-in behavioural properties one-at-a-time and first-come-first-served, each
capable of being instantiated for the problem in hand. In effect, aspects of the requirement are
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being delegated to the implementation. Some part of the requirement need not be stated in
explicit detail because it is implicit in the choice of the specialised machine.

  The second of these approaches is reported in [RapanottiHJN 04], where the idea of an
architectural frame or AFrame is introduced as an elaboration of the problem frame diagram
to accommodate an early architectural decision. One of their examples is a Transformation
problem frame in which a standard decomposition into sequential processes is expected, and
the architectural decision has been made to implement composition of the resulting machines
by the pipe-and-filter architecture. Another example draws on the well-known MVC pattern
[KrasnerP 88].

Both of these approaches can be regarded as enlarging the set of devices that can be the
object of normal design by defining specialised composite elementary problem frames. A
different approach is reported in [LaneyBJN 04], where the task of composing conflicting
requirements is addressed. In this approach an additional machine—which may be viewed as
an architectural connector—is introduced between the conflicting machines and their common
problem domains, and arbitrates in cases of conflict. In [LaneyBJN 04] the approach is
examined in several different cases of real and potential conflict, and offers, at least in part,
the possibility of application in the composition of many different realistic problems.

12. SPECIALISATION AND THE GROWTH OF KNOWLEDGE

It is apparent from Vincenti’s account that an important part of the success of the established
branches of engineering can be attributed to specialisation. Vincenti takes it entirely for
granted that aeronautical engineers do not work on problems in other branches: they do not
design bridges or chemical plants or even motor cars. The specialisation goes deeper, to much
lower levels. For example, W F Durand and E P Lesley devoted their work from 1916 to 1926
on the design of propellers [Vincenti 93]. One whole chapter of Vincenti’s book is devoted to
the development by the aircraft companies of flush riveting, in which the aerodynamic
properties of wings and fuselages are improved by the use of rivets whose head do not
protrude above the surface of the skin.

Even a cursory inspection of the literature of an established branch of engineering reveals
a similar level of specialisation. Whereas much software engineering literature tends to focus
on general concerns or on methods proposed for universal or nearly universal application,15

the established literature tends rather to focus on highly specialised applications and
problems. For example, one issue of The Journal of Structural Engineering [JSE 02] contains
papers on such topics as “Performance Evaluation of Controlled Steel Frames under Multilevel
Seismic Loads”, “Stress Concentration Factors of Doubler Plate Reinforced Tubular T Joints”,
“Reliability Assessment of Highway Truss Sign Supports”, and “Wind Sensitivity of
Recycled Plastic Soundwalls”. This kind of specialisation seems an essential foundation for
the incremental growth of knowledge in the established branches of engineering.

Specialisation is essential to the growth of knowledge because it allows experience to be
accumulated effectively and systematically. The accumulation of experience and knowledge
demands a conceptual structure within which it can be evaluated and stored, and from which
it can be reliably and easily retrieved when it is relevant. Excessively narrow specialisation
results, perhaps, in a smaller contribution to knowledge than would otherwise have been
possible, but in a contribution nonetheless. Absence of specialisation often results in no
contribution at all: the knowledge gained is too vaguely expressed, and is added to a largely
unstructured corpus of software engineering knowledge in general rather than to a specific
place or places in a detailed structure. The existence of a structured corpus of knowledge

                                                          
15 The present paper, of course, can be criticised as providing yet another example of this tendency.
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offers no guarantee that the knowledge will be used—that is, retrieved and applied when it
should;16 but the absence of such a structure virtually guarantees that it will not be used.
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