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Abstract. Analytical models are a fundamental tool in the development of 
computer-based systems of every kind: their essential purpose is to support hu-
man understanding and reasoning in development. To support reasoning, mod-
els must be substantially formal. The relationship between a formal model and 
its—typically—non-formal subject demands care: particular attention must be 
paid to the model interpretation, which maps its formal terms to the phenomena 
of the subject. An analytical model is to be regarded not as an assertion, but as a 
predicate within a larger logical structure of reasoning. Analogical models, such 
as databases, act as run-time surrogates for some parts of the problem world; in 
their design the properties of the model itself must be carefully distinguished 
from those of its subject. Some models may be informal: informal models have 
many legitimate uses, but cannot serve as a basis for formal reasoning. 

1   Modelling and Understanding 

The subject of these notes is the use of models and modelling in the development of 
computer-based systems. Models are of many kinds, built for many purposes. What-
ever the explicit purpose of a model, a vital implicit purpose is always to achieve,  
record and communicate some human understanding of its subject—that is, of what-
ever is being modelled. The subject and its understanding provide the central theme of 
these brief notes.  

2   Models and Subjects 

Richard Feynman, the physicist, described how as a teenager he had thought about 
certain elementary problems in Euclidean geometry [1]. He manipulated the diagrams 
in his mind: he anchored some points and let others float, imagined some lines as stiff 
rods and others as stretchable bands, and let the shapes slide until he could see what 
the result must be. He was using a mental model of a physical system to help him to 
understand an abstract mathematical system. Teachers of elementary arithmetic do 
something similar when they use a real physical model of an abstract mathematical 
system—for example, helping children to understand integer multiplication and divi-
sion by playing with rectangular arrays of pennies. In both cases understanding of a 
less familiar subject is achieved through the medium of a more familiar, and therefore 
more accessible, model.  

The word ‘model’ has many meanings and shades of meaning, but in the meanings 
that are most interesting in the development of software and information systems it  
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always denotes one role in a binary relationship: the complementary role is ‘subject’. 
The essence of this relationship is that in some way the model captures or expresses 
some understanding or knowledge of the subject, and can be used to provide further in-
formation or insight about it. As Feynman’s pivoting rods and the arithmetic teacher’s 
arrays of pennies show, there is no a priori requirement that the model be more abstract 
than the subject. It can be more concrete; but it must be in some way simpler, more ac-
cessible, more familiar, or more tractable than the subject. If it is not, the model 
achieves little or nothing: it can be discarded and the subject explored directly.  

3   Mental Models and Reasoning 

The model’s superior accessibility, familiarity and tractability depend, of course, on 
the knowledge and experience of the people who construct and use it. An adult with a 
modest knowledge of arithmetic can dispense with the physical arrays of pennies, al-
though they may still occasionally be useful in imagination to furnish a mental model. 
A number theorist will expect to think more abstractly, and perhaps more formally. 
Whether the number theorist is doing something radically different from forming and 
using a mental model appears to be an open question in cognitive science.  

In Mental models: a gentle guide for outsiders [2] P N Johnson-Laird writes: “Our 
plan in the rest of this paper is to start with how models can be used to reason, and to 
contrast them with the orthodox view that reasoning is based on a sort of mental logic. 
... On one side, there are those ... who claim that it depends on formal rules of infer-
ence akin to those of a logical calculus. On the other side, there are those, such as  
ourselves ..., who claim that it is a semantic process that depends on mental models 
akin to the models that logicians invoke in formulating the semantics of their calculi.” 
It is, of course, perfectly plausible that human reasoning depends both on formal in-
ference and on the use of mental models, combined according to the problem to be 
solved and the innate and learned capabilities, knowledge, and inclinations of the  
reasoner.  

Johnson-Laird reports a reliable experimental difference between the following 
two questions. People find it harder to answer one of them correctly than the other:  

“If A then B; A is true; what can be said about B?” 
(to which the correct answer is “B is true”) and  

“If A then B; B is false; what can be said about A?” 

(to which the correct answer is “A is false”). The second is the contrapositive of the 
first, and for someone with a little knowledge of elementary logic is of precisely 
equivalent difficulty. Yet the first question is answered correctly by nearly everyone, 
while a substantial minority of people fail on the second question, and those who do 
succeed take reliably longer to answer. Those who claim that reasoning depends on 
rules of inference identify a longer chain of deductions for the second question. Those 
who claim that it depends on mental models cite a principle of truth:  

“Individuals tend to minimise the load on working memory by constructing 
mental models that represent what is true, but not what is false.” 

Evidently, human capacity for understanding is not itself easy to understand.  
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4   Overt Models 

A mental model is a private possession, held in its owner’s mind and revealed only at 
the owner’s choice—and then only indirectly and uncertainly. An overt model, by 
contrast, is a public possession, intended to capture, communicate and make more 
widely available some understanding or notion of its subject, or some information 
about it.  

Russell Ackoff distinguishes [3] three kinds of model used in natural science: 
iconic, analogue and symbolic. An iconic model looks like its subject. A photograph 
is an iconic model of its human subject, and a child’s toy car is an iconic model of its 
subject automobile. An analogue model represents its subject by exhibiting different, 
but analogous, properties. The classic example is the use of a hydraulic system—
water flowing in a complex of pipes—as an analogue model of an electrical circuit. 
The volume of water flowing, the narrowness of the pipes, and the water pressure are 
analogues of the electrical current, resistance, and potential difference respectively. 
Iconic models are always, to at least some small extent, also analogue models. A sym-
bolic model, as its name implies, represents its subject symbolically, the symbols  
occurring as elements in some formalism that allows direct formal reasoning and cal-
culation. Thus a system of equations may be a symbolic model. By solving the equa-
tions for given values of some variables the values of others can be determined. A 
symbolic model may be representable as an analogue model: for example, an equation 
may be represented by a graph.  

In software development, which is a particular kind of engineering rather than a 
natural science, a slightly different taxonomy of models is useful. First, because engi-
neering is concerned with specific artifacts and specific cases, we must distinguish 
specific from generic models. A commonly familiar example of the distinction is that 
between a class model and an instance model in object-oriented development. The 
class model is generic: its subject is those properties that are shared by all instances of 
the class. The instance model is specific: its subject is one instance only.  

Second, the particular power of computers to create and maintain internal data 
structures make it both necessary and illuminating to distinguish analytical from ana-
logical models. An analytical model is a description of its subject; in Ackoff’s taxon-
omy it may be iconic or symbolic. For example, a finite state machine model of a  
possible behaviour of interest may be represented iconically in a diagram or symboli-
cally in a transition table. Analytical models are most often used in the development 
process itself to help the developers to capture, understand and analyse properties of 
the problem world, the system requirements, and the software. A curve-fitting pro-
gram, that chooses a curve type and adjusts the parameters of the curve to fit a set of 
data points, can be regarded as creating an analytical model at system execution time, 
but in most application areas this is exceptional. Because the properties of interest in 
software development are most often those that hold—or should hold—for all execu-
tions of the system, analytical models are typically generic. A finite state machine 
model, for example, may describe all successful withdrawals of cash from all possible 
ATMs in a particular system. Where some part of the problem world is a singleton 
and has only static properties—for example, the road layout for a particularly com-
plex junction at which traffic is to be controlled—an appropriate analytical model 
may be specific rather than generic; but this is somewhat unusual. 
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An analogical model in software development is always specific. It is not used in 
the development process, but in the system operation: the analogical model is built 
and maintained by execution of the hardware/software machine. An analogical model 
is not a description of its subject, but a concrete thing in its own right. It is a data 
structure represented on a substratum of computer storage—most often as a collection 
of disk records or an assemblage of programming objects in RAM. The commonest 
example of such a specific analogical model is a database held on disk. The system 
continually maintains the database, using information directly input during system 
operation. The database can then act as an easily accessible surrogate for its subject, 
allowing the system to provide needed or requested information by examining the 
state of the database.  

5   Model Imperfection 

An overt analytical model is a description of its subject. The description may be for-
mal or informal. It may be expressed in text, in equations, in diagrams, or in any other 
way judged suitable to the content of the description. An analytical model is inher-
ently non-physical. It can be represented in a physical medium—for example, written 
on paper or encoded in a computer file; but the physical medium is not the model, just 
as the plastic disc of a CD is not the music. In a broad sense, this intangibility makes 
the model invulnerable to the vicissitudes of time and physical failure. The model can 
describe change over time, but it is not itself subject to change; it can describe physi-
cal decay and failure, but it is not itself subject to decay or failure.  

However, this immunity to decay does not guarantee the quality of an analytical 
model qua model. For a non-formal subject, such as an engineering artifact, any  
analytical model—certainly at the levels of granularity of interest to software devel-
opers—is at best an approximation to its subject’s actual physical behaviour and 
properties.  

An analogical model, like an analytical model, is necessarily an imperfect ap-
proximation to its subject; but it is also imperfect in an additional way. Not only is the 
underlying understanding of the subject’s properties inevitably an approximation, but 
the analogical model itself possesses phenomena and properties which have no coun-
terpart in the subject and may distort understanding of the analogy. In the classic ana-
logue model, we observe that a broken pipe leaks water: so we might—quite 
wrongly—infer that a broken wire will leak electricity into the air. In the same way, 
an analogical model incorporated into a computer-based system possesses phenomena 
and properties which have no counterpart in the subject. For example, a relational da-
tabase may have null values in some row-column intersections; the rows may be  
ordered and indexed; and rows may be deleted for reasons of managing the database 
resources. These phenomena and properties can distort understanding of the analogy 
that underpins the relationship between model and subject.  

6   Models and Interpretations 

The meaning of the information provided by a model about its subject depends on an 
interpretation: that is, on an agreed mapping between the elements of the model and 
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Fig. 1. An analytical model 

the elements of the subject that they denote. Figure 1 shows an analytical model in the 
form of a state machine diagram having labelled circles for states and labelled arrows 
for transitions between states:  

The arrow from the small solid circle points to the initial state. The interpretation 
must map the model’s state labels to identifiable states of the physical subject, or its 
transition labels to identifiable events, or both. There are therefore at least these three 
components involved in using an analytical model: the subject matter; the model; and 
the interpretation.  

The subject of this model may be the controlling switch of an electrical device. The 
interpretation may then be:  

 Off     state: the switch is off 
 On     state: the switch is on 
 down    event: the switch is flipped down 
 up     event: the switch is flipped up 

The apparent simplicity of the model and interpretation may conceal some potential 
uncertainties. For example:  

• The On and Off states may be independently observable phenomena of the subject. 
A more informative interpretation might then have been: 

 Off     state: no current can flow through 
       the switch  
 On     state: current can flow through the  
       switch 

Alternatively, it may be that the On and Off states are not independently observable 
phenomena of the subject, but are defined by the model:  

 Off     state: either no up or down event has  
       yet occurred, or else the most recent  
       such event was an up event  
 On     state: some up or down event has oc- 
       curred, and the most recent such  
       event was an up event  

• The model may describe a switch, like an old-fashioned tumbler switch, in which 
two successive up events cannot occur without an intervening down event, and vice 
versa. Nothing is said about the effect of an up event in the Off state or a down 
event in the On state, because they cannot occur.  

Alternatively, the switch may be spring-loaded to return to a central position on 
each flip, placing no constraint on the sequence of down and up events. Nothing is 

up

down

OnOff
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said about the effect of an up event in the Off state or a down event in the On state, 
because they do not alter the switch state. 

• Identifying a formal term with a physical event or state is in itself an abstraction. 
For example, treating down and up as atomic events abstracts from the complex 
physical processes they involve. In a tumbler switch, moving the knob compresses 
a spring as the knob moves towards the centre of its travel; when the knob passes 
the centre and moves to the end of its travel, the compressed spring exerts gradu-
ally increasing force on the switch contacts, eventually pulling them open and 
swinging them to their other position.  

Abstracting this process as an atomic event is a good choice if the switch oper-
ates fast enough and reliably enough for the purposes of the model being built. 

• Off—whether defined or independently observable—is identified as the initial 
state, but the term initial has been given no interpretation. It may, for example 
mean: 

 Initial   the state in which the newly manu- 
        factured switch leaves the factory 

or: 

 Initial   the state of the switch when the  
        system begins execution 

In a particular use of the model, the meaning of Initial may be given by the context 
in which the model is proposed. Whether their meanings are given by the model con-
text, in an interpretation, or—as too often—left implicit, failure to deal properly with 
initial states is a rich source of error in software development. The problem of unini-
tialised variables is well-known in programming; but it is more difficult, and more  
often neglected, in the development of computer-based systems. The essence of the 
difficulty is to ensure compatibility between the initial state of the software to be  
executed and the current state of the problem world.   

7   Designations 

An element of an interpretation that associates a formal term in the model with a class 
of observable phenomena of the subject has been called [4] a designation. A designa-
tion must give a clear enough rule for recognising the phenomena to avoid harmful 
uncertainty. What is harmful depends on the nature and bounds of the subject, on the 
purpose to which the model will be put in the development, and on the opportunities 
that the developed system will offer for human common sense to override potential 
system failures resulting from modelling errors. In traditional manual systems, based 
on written processes and rules, system defects can often be repaired by reasonably re-
sorting to available exception procedures when the system would otherwise deliver 
absurd results. To the extent that a computer-based system aims at automation it ex-
cludes such exception procedures. It is therefore  important that developers’ analytical 
models should correspond very closely to the subjects they describe.  
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A good correspondence between model and subject requires care in choosing and 
distinguishing the different subject phenomena to be designated. Consider, for exam-
ple, a designation of the term mother:  

 mother(m,p)  m and p are human beings and m  
           is the mother of p 

For a system concerned with Old Testament genealogy this designation is adequate: 
within the scope of the human beings mentioned in the Old Testament the meaning of 
“m is the mother of p” is perfectly clear. For a system to manage the administration of 
a kindergarten it may perhaps be good enough, provided that no special treatment is 
needed for adoptive mothers and stepmothers. In a fertility research clinic this desig-
nation would be useless: it would be necessary to distinguish natural mothers, genetic 
mothers, surrogate mothers and, perhaps, others. 

If previously existing systems in the application area have a low degree of automa-
tion, the prevailing terminology of the area is not necessarily an adequate guide:  
application experts may underestimate the extent to which exceptional procedures are 
regularly invoked to compensate for terminological uncertainty. One well-known il-
lustration is the phenomenon of a telephone call. Suppose that A phones B, but B is 
busy. A accepts the system’s offer to connect them later, when B is no longer busy, 
and A hangs up. Soon, A’s phone rings, and A picks it up and hears the ringback tone. 
After a short period of ringing, B answers and A and B talk. Is this one, two, or three 
calls? Reliance on the obsolete notion of a ‘call’ caused much difficulty in computer-
based telephone systems in the last quarter of the twentieth century [5]. Similarly 
vague terminology is found in many application areas where the prevailing terminol-
ogy includes obsolete relics of an earlier, much simpler, system.  

8   Interpretation for Analogical Models 

Interpretation for an analogical model is significantly more complex than for an ana-
lytical model. At first sight it may seem that the same notion of interpretation will 
serve for analogical as for analytical models: an interpretation maps the terms of the 
model to the phenomena of the subject. However, there is an important difference. An 
overt analytical model is itself a description, expressed in some chosen language, us-
ing a finite number of terms. An interpretation maps just those terms to the elements 
of the subject. Physical phenomena of any tangible representation of the model are to 
be ignored. For the state machine shown in Figure 1 we do not seek an interpretation 
of the lengths of the arrows or the diameter of the circles: the semantics of a descrip-
tion in the chosen graphical language are unaffected by those graphical phenomena.  

An analogical model, by contrast, is a physical—and therefore inevitably non-
formal—thing: it is a concrete structure of phenomena, not an abstract structure of 
formal terms. It does not embody any clear distinction between those of its own phe-
nomena that are intended to participate in the analogy and those that are not. In effect, 
to understand the analogical model we also need an explicit analytical model.  

Figure 2 shows how model, subject, and interpretation are related for a simple  
analytical model and for an analogical model.  
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Fig. 2. Interpreting Analytical and Analogical Models 

The purpose of the analytical model in the right side of Figure 2 is to bound the 
physical properties of interest in the analogical model, by pointing out the analogies 
that relate it to the subject. This analytical model therefore has two distinct interpreta-
tions: S interprets it as a model of the subject; the other, M, as a model of the analogi-
cal model. The analogy is in this sense indirect: an exact understanding rests on the 
analytical model that the analogical model shares with its own subject.  

9   Designing and Understanding an Analogical Model 

In developing any model—whether analytical or analogical—the conceptual starting 
point must be to consider what questions the model is intended to answer, and what 
properties it must therefore capture. In both cases, these are properties of the subject 
of the model, not of the model itself.  

For an analytical model, the subject properties are directly expressed in the model. 
For an analogical model, the development process is conceptually more complex. 
First, the subject must be understood, and an appropriate analytical model developed. 
Then a type of analogical model—perhaps a database, or an assemblage of objects, or 
more generally a data structure in the programming language—is chosen or designed 
to offer exact analogues of the properties of the analytical model. Of course, there is a 
difficulty here. Because the analogical model is a concrete thing in its own right, and 
will inevitably possess properties that have no analogue at all in the subject, or impose 
constraints that are not present in the subject, the analogy is inevitably imperfect. So a 
part of the design task is to find good a compromise between fidelity to the subject 
and efficiency in the representations and accesses that the model affords. This task 
demands some clarity of thought: in particular, it demands a clear distinction between 
the properties of the model and the properties of the subject.  

There is an obvious temptation to save time and effort by abbreviating the devel-
opment task, short-circuiting the two interpretations and developing the analogical 
model directly from the subject. This is a common approach in object-oriented model-
ling, in which the developer describes the subject domain as if it were itself an assem-
blage of objects communicating by sending messages to each other. The benefit of the 
approach is a certain economy and directness. The disadvantage is an increased risk 
of error: the analytical model disappears from view, and is considered only tacitly and 
sporadically during the design of the analogical model.  
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10   The Context of a Model  

A model has a purpose, in the sense that it is intended to capture certain properties 
that its subject may have, and to answer certain questions about them. But it also has a 
context, in a broader sense. For an analogical model in a computer-based system the 
context is, essentially, always the same. The computer continually collects informa-
tion about the subject in the problem world, perhaps analyses and summarises it in 
some way, and updates the model to reflect it. The analogical model can then serve as 
a surrogate for the world: the state of the model is an acceptably accurate analogue of 
the state of the world. Its context is implicit: the presence of the model constitutes an 
assertion that the analogous properties hold in the subject.  

For an analytical model, by contrast, there are many possible contexts. An analyti-
cal model can be thought of a predicate M applied to its subject S: M(S) holds if—and 
only if—the model is a true description of the subject. Just as a predicate can appear 
in a sentence, so too can an analytical model. For example, in a system to control a 
lift, the problem world W consists of the building’s floors and lift shafts, the electro-
mechanical lift equipment, the users, the request buttons and display lights, and so on. 
We can imagine three distinct analytical models of the problem world: 

• G(W): this model captures the given properties of the problem world. It describes, 
for example, the arrangement of the floors, the causal chain between the motor set-
ting and the behaviour of the lift car, the way the lift and lobby doors work, and  
so on.  

• R(W): this model captures the required properties of the problem world, that the 
computer must somehow enforce. It describes, for example, the property that if  
the Up button at a floor is pressed, the lift car will eventually arrive at the floor and 
the doors will open, and that if a button inside the lift is then pressed that corre-
sponds to a higher floor the lift car will go to that higher floor, and so on.  

• C(W): this model captures the behaviour at the computer’s interface with the prob-
lem world. It describes, for example, the property that if the Up button at floor 3 is 
pressed when the lift is stationary at the ground floor, then the motor direction is 
set to Up and the motor is switched On (by the computer), that when subsequently 
the sensor at floor 3 is set On (by the arrival of the lift car) the motor is then 
switched Off (by the computer), and so on.  

In a successful development, the relationship among these three models is something 
like: 

(G(W) ∧ C(W)) ⇒ R(W) 

That is: the given properties of the problem world, in conjunction with the additional 
properties due to its interaction with the computer, ensure that the requirement is sat-
isfied. The truth of each model depends on the changing context. At the outset of the 
development, G(W) is true (assuming that the building and the lift equipment are 
known and correctly described). At that point in time, however, R(W) nor C(W) is 
true. C(W) is not true because the computer has not yet been built and installed; and 
R(W) is also not true—in the absence of the computer it is merely what the customer 
wishes were true. Later, when the development has been successfully completed, and 
the software is executing as intended, all three models will be true.  
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11   The Local Context of a Model 

The formula (G(W ∧ C(W)) ⇒ R(W), interpreted for a whole system, expresses a 
global context for the three models: it encompasses the whole development, and the 
behaviour of the whole system. In the course of the development it will be necessary, 
for a realistic system, to decompose all three models in a way that is not necessarily 
simple. These decompositions aim to master the complexity of the development prob-
lem and the eventually developed system, reducing one large and unmanageably  
complex problem to a structure of simpler problems.  

The decompositions that will be most useful will depend on the problem in hand. 
Because realistic systems are complex in a heterogeneous way, the most useful  
decompositions will be similarly heterogeneous. Some candidate dimensions of  
decomposition are:  

• Decomposition by function or feature. An e-commerce system for consumer use 
has such features as shopping basket, credit card validation and charging, collabo-
rative filtering, shipping management, and so on.  

• Decomposition by operational phase. An avionics system must behave differently 
in the different phases of a flight: in taxiing, taking off, climbing, cruising and  
so on.  

• Decomposition by problem world conditions. The behaviour of an air traffic con-
trol system in normal conditions is different from its behaviour in an emergency. A 
lift control system providing normal lift service must behave differently when an 
equipment fault—such as a failing hoist motor—is detected.  

Decomposition can be usefully regarded as decomposition into subproblems, in which 
each subproblem defines a local context. Different subproblems have different re-
quirements; they need different software behaviours for their solution; they concern 
different parts or domains of the problem world; and they exploit different properties 
of those domains. To understand and analyse a subproblem it is necessary to practise 
a separation of concerns. The models needed for a subproblem are local models for 
local contexts.  

The local context of a model puts in place a set of local assumptions, determining 
its purpose and the content of the description it embodies of its subject. In a lift sys-
tem, for example, the local context of providing normal lift service assumes that the 
equipment functions normally, exhibiting the behaviour that is necessary if the lift car 
is to be sent from floor to floor, the doors opened and closed appropriately, and so on. 
The relevant model of the lift equipment is therefore a model of healthy lift equip-
ment, describing the normal functioning. By contrast, the local context of fault moni-
toring requires a model of dubious lift equipment, describing equipment that may or 
may not function normally, and focusing on the properties that allow faults to be  
detected and perhaps diagnosed, when they occur.  

12   The Scope and Span of a Model  

The scope of a model is the set of all phenomena denoted by its interpreted terms. The 
scope of the model of the control switch shown in Figure 1 is {up, down, On, Off} if 
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they are all designated, independently observable, phenomena; but if On and Off are 
defined in terms of up and down, then the scope is only {up, down}. The switch may 
have other phenomena—for example, it may have a rotary dimmer knob—but they 
are out of scope: the developer of the model has decided that for the purpose of the 
model they should be ignored.  

The span of a model is how much it describes, measured by time or space or any 
other relevant quantifiable dimension. For example, in a lift control system it may be 
appropriate to model the required opening and closing of the lift doors in normal op-
eration. One required property may be the opening and closing of the doors when the 
lift car serves a floor, including the behaviour when an obstruction is detected: a 
model of this property has a span of one visit to one floor by one lift. Another re-
quired property may be that the lift doors are never opened when the car is not posi-
tioned at a floor: a model of this property has a span of one lift over the whole local 
context of normal operation. A model whose span is one lift can, of course, be applied 
to all the lifts in the system; and a model whose span is one visit to one floor can be 
applied to all visits to all floors; the spans of the models themselves, however, are not 
affected by their larger application.  

To be intelligible, the scope and span of a model must be appropriate to its subject 
and content. A notable—and widely practised—way of obfuscating a model is to re-
place it by a loose collection of models of inappropriately small span. For example, a 
state machine may be fragmented into a distributed collection of individual transi-
tions. Each transition makes understandable sense only as a part of the whole state 
machine: taken alone it can be understood only by a reader who already possesses a 
firm and clear mental model of the whole machine, and has this mental model vividly 
in mind while reading each fragment. The obvious danger is that neither the writer nor 
the readers have such a mental model available, and the fragments are never brought 
together to validate their collective meaning. The result is a model prone to many  
errors. For example: omitting transitions that should be included; making false as-
sumptions about reachability; and ignoring the disastrous effect of a neglected, but 
possible, sequence of transitions.  

The appropriate span for a model is not always obvious. Whenever the behaviour 
of a system feature or function is arranged in sporadic or cyclic episodes—for exam-
ple, in use cases—it is naturally attractive to construct a model of the function with a 
span of one episode. For some aspects of the episode this will be entirely appropriate. 
Much of the interaction of a bank customer with an ATM is encapsulated within the 
episode, and should be modelled with that span: the card is inserted before the PIN is 
entered; the card is withdrawn before the money is delivered; and so on. However, the 
episode may include events of a more global import: a certain amount of money is 
withdrawn from the account; a new PIN is specified; a new cheque book is requested. 
These events belong to behaviours of spans larger than the episode. Depending on the 
complexity of these behaviours, it may be necessary to model them also, each in its 
appropriate span.  

Using an appropriate span for a model is not just a matter of bringing together 
enough information in one document. A good model answers its designed questions in 
the simplest possible way, laying the smallest possible burden on the reader’s powers 
of perception, memory and reasoning, and helping the reader to form a good mental 
model of the subject. Because short-term human memory is severely limited, this 
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process of assembling a mental model must not require information to be collated 
from many separate places. From a purely formal point of view, a graph may be 
equally well represented in a diagram or in a list of nodes and arcs; but from the point 
of view of human intelligibility the diagram is hugely superior for almost every pur-
pose. The most important questions to be answered by a graph model are not usually 
questions about isolated nodes or arcs: they are questions about traversals of paths in 
the graph. The primary significance of a node or arc is its role and position in a set of 
possible traversals. The core success of the famous London Underground map is that 
it makes traversals—train journeys—very easy to identify. The importance of travers-
als explains also why even those computer scientists who disdain diagrams prefer to 
write their programs as structured, indented texts.  

13   Vague Models 

Almost any overt description—diagrammatic, textual or numerical—can be regarded 
as a generic or specific analytical model of its subject. Whether it is a useful model 
for its intended purpose will depend on many considerations. The importance of ex-
plicit designation for ensuring that the meanings of the terms used in the model are 
clear and exact has been stressed in this essay; but a shopping list can be useful even 
if some its entries are vague: “Lots of oranges if they’re sweet”, or even “Something 
nice for our dinner”. A more structured checklist can be useful even if it is similarly 
vague: “The chief quality measures are high customer satisfaction and a low rate of 
operator error”. The shopper and the project manager know that the terms in their 
models are very imprecise, and are careful not to lay too much weight on them. It is 
sometimes—but not always—worthwhile to establish quantitative empirical criteria 
for these imprecise terms.  

A model can be vague for other reasons than the absence of designations of its 
terms. The descriptive language itself may use fuzzy general notions like “about” and 
“some” and “low rate”; some linguistic terms—such as “nice” and  “satisfaction” may 
have no clear meaning that can be designated; some operators or connectives in the 
language—such as the lines or arrows in a graph, or the various node symbols—may 
have no clear semantics. This kind of vagueness can be easily tolerated, and can even 
be helpful, in contexts in which the model plays the role of a personal reminder, a 
sketch for live discussion, or an informal private note between two people; but it is 
very damaging if the model’s purpose is to serve as a basis for any kind of reasoning. 
Any conclusions reached by reasoning about a model must be encashed by interpret-
ing them in terms of the phenomena and relationships of the subject: if this cannot be 
done reliably then the value of the conclusions is diminished accordingly.  

14   Building Precision on Vagueness 

Formal reasoning cannot be based on an informal model. A faulty map cannot be cor-
rected until two sources of faults have been eliminated. First, the cartographic con-
ventions must be clearly established—for example, whether a road bridge over a  
railway is distinguished from a rail bridge over a road, and, if so, how. Second, the 
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designations must be clarified—for example, does a cross signify only a church or can 
it also signify a mosque or synagogue? Then the map can be corrected by comparing 
it with the terrain it is intended to describe and modifying the map to correspond to 
the terrain. Similarly, the informality of a model in software development cannot be 
repaired without repairing the inadequacies both of the modelling language and of the 
designations that relate the model to its subject.  

Suppose, for example, that a model is concerned with relationships of dependency 
among a population of distinct specific things or tasks or goals or documents. Such a 
model may be useful in program design, in tracing the relationship of an implementa-
tion to its requirements, and in other contexts too. In program design a relevant  
designation might be:  

depends(m,n)     m and n are program modules and m  
       depends on n in the sense that m will  
       not function correctly unless n func- 
       tions correctly  

This designation may seem clear enough. The writer or reader of the model may even 
be tempted to infer that depends is transitive:  

∀ m,n,o • depends(m,n) ∧ depends(n,o) ⇒ depends(m,o) 

However, perhaps the designation is far from clear enough. Suppose that modules in 
this context are procedures, that interaction is procedure call, and that a module m has 
functioned correctly if the result of ‘m(p1,p2,...)’, including any side effects, satisfies 
the specification of m. Then to clarify the meaning of depends(m,n) it may be neces-
sary to consider these and other possibilities:  

• When m is called, it may, or may not, call n before returning to its caller.  
• When m is called, it always calls n before returning to its caller.  
• When m is called, it always calls n before returning to its caller, but m does not use 

any result of the call (for example, n simply logs the call).  
• For some calls of n, n fails to satisfy its specification, but none of the calls for 

which it fails can be a call by m.  
• n calls m, and m can satisfy its specification only if n executes an appropriate se-

quence of calls with appropriate arguments (for example, m is an output module 
encapsulating a file and requiring the sequence of calls 

<m(‘open’); m(‘write’,v)*; m(‘close’)> ). 

• m and n both call a third module q, and q can satisfy its specification only if it is 
called by an appropriate sequence of calls with appropriate arguments, calls by m 
and calls by n being interleaved. 

It may be possible—or impossible—to provide a clear designation of depends(m,n) in 
the particular subject to be modelled. If it is impossible, there is no point is building 
an edifice of formal reasoning on such shaky foundations. It is not required that every 
useful model be formal and exact; but the writer and reader of a vague or informal 
model should avoid the mistake of treating it as a basis for formal reasoning.  
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15   Summary 

These notes have briefly discussed several aspects of models and modelling in the 
context of software development. Their unifying theme is a pair of relationships in 
which any model must participate. One relates the overt model to the human under-
standing—that is, to the mental model—that it seeks to express or evoke. The other 
relates the overt model to its subject matter in the physical and human world. In  
effect, these two relationships unite to form a bridge between the world and our un-
derstanding of it. An effective practice of modelling must seek to create a bridge that 
is strong at both ends: it must find abstractions of reality that are adequate for the pur-
pose in hand and its context; and it must express and convey those abstractions in 
ways that serve the goal of human understanding as well as possible.  

Because computer programs are, in effect, formal and exact processes, they admit 
no vagueness in their execution. We must therefore be doubly confident in the formal 
models of the world on which we base our software development. As John von Neu-
mann pointed out [6]: 

“There is no point in using exact methods where there is no clarity in the concepts 
and issues to which they are to be applied.” 
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