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Abstract. The phrase ‘software engineering’ has many meanings. One central 
meaning is the reliable development of dependable computer-based systems, 
especially those for critical applications. This is not a solved problem. Failures 
in software development have played a large part in many fatalities and in huge 
economic losses. While some of these failures may be attributable to 
programming errors in the narrowest sense—a program’s failure to satisfy a 
given formal specification—there is good reason to think that most of them 
have other roots. These roots are located in the problem of software engineering 
rather than in the problem of program correctness. The famous 1968 conference 
was motivated by the belief that software development should be based on “the 
types of theoretical foundations and practical disciplines that are traditional in 
the established branches of engineering.” Yet after forty years of currency the 
phrase ‘software engineering’ still denotes no more than a vague and largely 
unfulfilled aspiration. Two major causes of this disappointment are immediately 
clear. First, too many areas of software development are inadequately 
specialised, and consequently have not developed the repertoires of normal 
designs that are the indispensable basis of reliable engineering success. Second, 
the relationship between structural design and formal analytical techniques for 
software has rarely been one of fruitful synergy: too often it has defined a 
boundary between competing dogmas, at which mutual distrust and 
incomprehension deprive both sides of advantages that should be within their 
grasp. This paper discusses these causes and their effects. Whether the common 
practice of software development will eventually satisfy the broad aspiration of 
1968 is hard to predict; but an understanding of past failure is surely a 
prerequisite of future success.  

Keywords: artifact, component, computer-based system, contrivance, feature, 
formal analysis, normal, operational principle, radical, specialisation, structure.  

1.   Software Engineering Is About Dependability 

The aspiration to ‘software engineering’ expresses a widely held belief that software 
development practices and theoretical foundations should be modelled on those of the 
established engineering branches. Certainly the record of those branches is far from 
perfect: the loss of the space shuttle Challenger, the collapse of the Tacoma Narrows 
bridge, and the Comet 1 crashes due to metal fatigue are merely the most notorious of 
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many engineering failures. But—rightly or wrongly—these failures are seen as local 
blemishes on a long record of consistently improving success. Failures of software 
projects and products seem to be the rule rather than the exception. Sardonically, we 
compare the frustrations of using Windows with the confident satisfactions of using a 
reliable modern car. At a more serious level, software engineering defects often play a 
large part in critical system failures. A nuclear power station control system shut 
down the reactor when a software update was installed on a connected data 
acquisition system [Krebs 08]. In the years 1985–1987, software defects of the 
Therac-25 radiotherapy machine caused massive radiation overdoses of several 
patients with horrendous results [Leveson 93]. Nearly twenty five years later, more 
modern radiation therapy machines were involved in a much larger number of very 
similar incidents [Bogdanich 10]. Software defects, of the kind that were responsible 
for the Therac disasters, were a major contributory factor in many of these 
contemporary incidents.  

These and the multitudinous similar failures reported in the Risks Forum [Risks 
Digest] are evidence, above all, of the lack of dependability [JacksonD 07] in the 
products of software engineering. Regrettably, we are not astounded—perhaps we are 
no longer even surprised—by these failures. As software engineers we should place 
dependability foremost among our ambitions.  

2.   A Software Engineer’s Product Is Not the Software 

A common usage speaks of the physical and human world as the ‘environment’ of a 
computer-based system. This usage is seriously misleading. The word ‘environment’ 
suggests that ideally the surrounding physical and human world affects the proper 
functioning of the software either benignly or not at all. If the environment provides 
the right temperature and humidity, and no earthquakes occur, the software can get on 
with its business independently, without interference from the world.  

This is far from the truth. Dijkstra observed [Dijkstra 68] that the true subject 
matter of a programmer is the computation evoked by the program and performed by 
the computer. In a computer-based system, in which the computer interacts with the 
physical and human world, we must go further. For such a system, the true subject 
matter of the software engineer is the behaviour evoked by the software in the world 
outside the computer. The system’s purpose is firmly located in its problem world: 
that is, in those parts of the physical and human world with which it interacts directly 
or indirectly. Software engineers must be intimately concerned with the problem 
world of the system whose software they are developing, because it is that problem 
world, enacting the behaviour evoked and controlled by the software, that is their true 
product. The success or failure of a radiotherapy system must be judged not by 
examining the software, but by observing and evaluating its effects outside the 
computer. Do the patients receive their prescribed doses of radiation, directed exactly 
at the prescribed locations? Are individual patients dependably identified or are there 
occasional confusions? Is the equipment efficiently used? So developers of a 
radiotherapy system must be concerned with the detailed properties and behaviour of 
every part of the therapy machine equipment, with the positioning and restraint of 
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patients undergoing treatment, with the radiologist’s procedures, the oncologist’s 
prescriptions, the patients’ behaviours, needs and vulnerabilities, and with everything 
else that contributes substantially to the whole system.  

3.   The Software and Its Problem World Are Inseparable 

Twenty years ago Dijkstra [Dijkstra 89] argued that the intimate relationship between 
the software and its problem world could—and should—be dissolved by interposing a 
formal program specification between them: 

“The choice of functional specifications—and of the notation to write them 
down in—may be far from obvious, but their role is clear: it is to act as a 
logical ‘firewall’ between two different concerns. The one is the ‘pleasantness 
problem,’ i.e. the question of whether an engine meeting the specification is 
the engine we would like to have; the other one is the ‘correctness problem,’ ie 
the question of how to design an engine meeting the specification. [...] the two 
problems are most effectively tackled by [...] psychology and experimentation 
for the pleasantness problem and symbol manipulation for the correctness 
problem.” 

The argument, attractive at first sight, does not hold up under examination. Even for 
such problems as GCD, the sieve of Eratosthenes, and the convex hull of a set of 
points in three-dimensional space, the desired firewall is more apparent than real. The 
knowledge and skill demanded of the software developer are not restricted to the 
formal symbol manipulations foreseen in the programming language semantics: they 
must also include familiarity with the relevant mathematical problem world and with 
a sufficient body of theorems. A candidate developer of a program to “print the first 
thousand prime numbers” would be conclusively disqualified by ignorance of the 
notion of a prime number, of integer multiplication and division, and of the integers 
themselves. Far from acting as a firewall between the program and its problem world, 
the program specification is inescapably interwoven with the relevant part of the 
problem world, and tacitly relies on the programmer’s presumed prior knowledge of 
that world.  

The firewall notion fails even more obviously for computer-based systems whose 
chief purposes lie in their interactions with the physical world. The problem world for 
each such system is a specific heterogeneous assemblage of non-formal problem 
domains. In any feasible design for the software of such a system the behaviours of 
the software components and problem world domains are closely intertwined. The 
locus of execution control in the system moves to and fro among them all, at every 
level and every granularity. The software components interact with each other at 
software interfaces within the computer; but they also interact through the problem 
world. A software component must take account not only of the values of program  
variables, but also of the states of problem domains outside the computer. The 
problem domains, therefore, effectively act as shared variables, introducing additional 
interaction paths between software components. An intelligible formal specification 
of the system, cleanly separating the behaviour of the software from the behaviour of 
the problem domains, is simply impossible.  
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4.   A Computer-Based System Is a Contrivance In the World 

The products of the traditional  branches of engineering are examples of what the 
physical chemist and philosopher Michael Polanyi calls [Polanyi 58] ‘contrivances’. 
A device or machine such as a motor car, a pendulum clock, or a suspension bridge is 
a particular kind of contrivance—a physical artifact designed and built to achieve a 
specific human purpose in a restricted context in the world. A computer-based system 
is a contrivance in exactly the same sense.  

A contrivance has a configuration of characteristic components, each with its own 
properties and behaviour. In a computer-based system these characteristic 
components are the problem world domains, interacting under the control of the 
software. The components are configured so that their interactions fulfil the purpose 
of the contrivance. The way in which the purpose is fulfilled by the components is the 
‘operational principle’ of the contrivance: that is, the explanation of how it works. In 
a pendulum clock, for example, gravity acting on the weight causes a rotational force 
on the barrel; this force is transmitted by the gear train to the hands, causing them to 
turn; it is also transmitted to the escapement wheel, which rotates by one tooth for 
each swing of the pendulum; the rotation of the hands is therefore proportional to the 
number of pendulum swings; since the pendulum swings at an almost constant rate, 
the changing angular position of the hands indicates how much time has elapsed since 
they were set to a chosen reference point.  

The design and the operational principle of such a machine reflect what Polanyi 
calls ‘the logic of contrivance’. This is something different from, and not reducible to, 
physics or mathematics: it is the comprehension of a human purpose and the 
accompanying intuitive grasp of how that purpose can be achieved by the designed 
contrivance. It is, above all, the exercise of invention, supported by the human 
faculties of visualisation and embodied imagination. It is not in itself formal, although 
it can be applied to a formal subject matter—for instance in the conception of a 
mathematical theorem or the understanding of a physical process. Natasha Myers 
gives an account [Myers09] of how a brilliant teacher of chemistry explained and 
illustrated the folding of a protein to students by physically enacting the folding 
process with his arms and hands. “In this process,” she writes, “scientists’ bodies 
become instruments for learning and communicating their knowledge to others.” The 
knowledge here is, essentially the ‘feel’ for how the protein folding works.  

5.   General Laws and Specific Contrivances 

The important distinction between engineering and natural science is reflected in the 
difference between the logic of contrivance and the laws of nature.  

The scientist’s ambition is to discover laws of a universal—or, at least, very 
general—nature. Experiments are designed to test a putative law by excluding, as 
rigorously as possible, all complexities that are not pertinent to the law as formulated. 
The generality, and hence the value, of the experimental result depends on this 
isolation from everything regarded as irrelevant. In a chemical experiment the 
apparatus must be perfectly clean and the chemicals used must be as pure as possible. 
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In an electrical experiment extraordinary measures may be taken to exclude stray 
capacitance or inductance. Ideally, only the effect of the putative law that is the 
subject of the experiment is to be observed: the effects of all other laws must be in 
some sense cancelled out or held constant.  

An engineered contrivance, by contrast, is designed to work only in a restricted 
context implied by the engineer’s mandate. The pendulum clock cannot work where 
there is no gravitational field of appropriate strength. It cannot work on a ship at sea, 
because it must maintain an upright position relative to the gravitational force and 
must not as a whole be subject to acceleration. It cannot work submerged in oil or 
water, because the resistance to pendulum motion would be too great, and the effect 
of the weight would be too far diminished by the upward thrust of the liquid in which 
it is submerged. The chosen context—albeit restricted—must then be accepted for 
what it is. The contrivance is intended for practical use, and must work well enough in 
the reality of its chosen context. The design may be frustrated by the operation of 
some previously unknown natural law or some phenomenon whose effects have been 
neglected or underestimated. These inconveniences cannot be wished away or judged 
irrelevant: when a failure or deficiency is revealed, the engineer must find a way to 
resolve the problem by improving the design. Legislating a further restriction in the 
context is rarely possible and never desirable. For example, when it became evident 
that early pendulum clocks ran faster in winter and slower in summer, it was certainly 
not a possible option to restrict their use to one season of the year. An engineering 
solution was necessary, and was found in the temperature-compensated pendulum, 
which maintains a constant distance between the pendulum’s centre of gravity and the 
axis on which it swings.  

Of course, the contrivance and its component parts cannot flout the laws of nature; 
but the laws of nature provide only the outermost layer of constraint on the 
contrivance’s behaviour. Within this outermost layer is an inner layer of constraint 
due to the restricted context of use. The laws of nature would perhaps allow the 
engineer to predict by calculation how the clock would behave on the moon, but the 
prediction is pointless because the clock is not intended for operation on the moon. 
Within the constraints of the restricted context there is the further layer of constraint 
due to the engineer’s design of the contrivance. The parts and their interactions are 
shaped by the engineer, within the boundaries left undetermined by the laws of nature 
as they apply within the restricted context, specifically to embody the operational 
principle of the contrivance.  

It is the specific human purpose, the restriction of the context, and the engineer’s 
shaping of the contrivance to take advantage of the context to fulfil the purpose, that 
make engineering more than science. It is a mistake to characterise engineering as an 
application of natural science. If it were, we would look to eminent physicists to 
design bridges and tunnels. We do not, because engineering is not reducible to 
physics. In Polanyi’s words [Polanyi 66, p.39]:  

“Engineering and physics are two different sciences. Engineering includes the 
operational principles of machines and some knowledge of physics bearing on 
those principles. Physics and chemistry, on the other hand, include no knowledge 
of the operational principles of machines. Hence a complete physical and 
chemical topography of an object would not tell us whether it is a machine, and 
if so, how it works, and for what purpose. Physical and chemical investigations 
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of a machine are meaningless, unless undertaken with a bearing on the 
previously established operational principles of the machine.” 

6.   The Lesson Of the Established Branches 

Over forty years ago there was much dissatisfaction with the progress and 
achievements of software development, and much talk of a ‘software crisis’. Although 
in those days the primary and central role of the physical problem world in a 
computer-based system had not yet become a direct focus of interest, many people 
nonetheless looked to the established engineering branches as a model to emulate. 
This was the explicit motivation of the famous NATO software engineering 
conferences [Naur 69, Buxton 70] of 1968 and 1969: 

“In late 1967 the Study Group recommended the holding of a working 
conference on  Software Engineering. The phrase ‘Software Engineering’ was 
deliberately chosen as being provocative, in implying the need for software 
manufacture to be based on the types of theoretical foundations and practical 
disciplines, that are traditional in the established branches of engineering.” 

Certainly, the participants were not complacent. At the 1968 meeting Dijkstra said in 
discussion:  

“The general admission of the existence of the software failure in this group of 
responsible people is the most refreshing experience I have had in a number of 
years, because the admission of shortcomings is the primary condition for  
improvement.” 

Yet somehow the explicit motivation of the Study Group played little part in the 
presentations and discussions. An invited talk by M D McIlroy [Naur 69, pp. 138–
155] was perhaps a lone exception. McIlroy argued the need for a components 
industry that would offer catalogues of software components for input and output, 
trigonometric functions, or symbol tables for use in compilers; but this suggestion 
stimulated no broader discussion beyond the single session in which it was made.  

The conference participants did not explore the practice and theory that they were 
invited to emulate. Had they made even a modest start in this direction, they would 
surely have recognised the broadest, simplest and most conspicuous lesson to be 
learned from the established branches. From their mere plurality—they are ‘the 
established branches’, not ‘the established branch’—it can be seen at once that they 
are specialised. Civil engineers do not design motor cars, electrical power engineers 
do not design bridges, and aeronautical engineers do not design chemical plants. Our 
historical failure to learn and apply this lesson fully is epitomized by the persistence 
of the phrase ‘software engineering’. Software engineering can be a single discipline 
only on the assumption, by analogy, that the established branches constitute a single 
discipline of ‘tangible engineering’. On the contrary: they do not. The very successes 
that we hoped to emulate depend above all on their specialisation into distinct 
branches.  
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7.   Specialisation Has Many Dimensions 

Specialisation, in the sense that matters here, is not the concentrated focus of one 
individual on a single personal goal. It is the focus of an enduring community over an 
extended period, developing, preserving, exploiting and enlarging their shared 
knowledge of a particular field of technical or scientific endeavour.  

Specialisations emerge and evolve in response to changing needs and 
opportunities, and focus on many different interlocking and cross-cutting aspects and 
dimensions of a field. The established branches of engineering illustrate this process 
in a very high degree. There are specialisations by engineering artifact—automobile, 
aeronautical, naval and chemical engineering; by problem world—civil and mining 
engineering; and by requirement—production engineering, industrial and 
transportation engineering. There are specialisations in theoretical foundations—
control and structural engineering; in techniques for solving mathematical problems 
that arise in the analysis of engineering products—finite-element analysis and control-
volume analysis; in engineered components for use in larger systems—electric 
motors, internal combustion engines, and TFT screens; in technology and materials—
welding, reinforced concrete, conductive plastics; and in other dimensions too.  

These specialisations do not fall into any simple hierarchical structure. They focus, 
in their many dimensions, on overlapping areas at every granularity, and on every 
concern from the most pragmatic to the most theoretical, from the kind of engineering 
practice that is almost a traditional craft to such theoretical topics as the advances in 
thermodynamics that provided the scientific basis for eliminating boiler explosions in 
the high-pressure steam engines of the first half of the nineteenth century.  

8.   The Key to Dependability Is Artifact Specialisation  

In choosing whom among the established engineers we ought to emulate, there is no 
reason to exclude any of the many dimensions of specialisation that they exhibit; but 
there is a very practical reason to regard one dimension of engineering specialisation 
as fundamental and indispensable. This is what we may call ‘artifact specialisation’: 
that is, specialisation in the design and construction of artifacts of a particular class. 
Because a component in one engineer’s design may itself be the artifact in which 
another engineer specialises, and the same artifacts may appear as components in 
different containing artifact classes, there is a potentially complex structure of artifact 
specialisations. Within this structure an artifact specialisation can be identified 
wherever an adequately specialised engineering group exists for whom that artifact is 
their group product, designed for delivery to customers outside the group. The 
specialist artifact engineer is responsible for the completed artifact, and for the total of 
the value, experience and affordances it offers its users and everyone affected by it. 
There are no loopholes and no escape clause. This is the essence of engineering 
responsibility—a responsibility which is both the criterion and the stimulus of artifact 
specialisation.  

Effective artifact specialisation is not an easy option. In its most successful forms it 
demands intensive and sustained research efforts by individuals and groups within the 
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specialist community. Walter Vincenti, in his book What Engineers Know and How 
they Know It [Vincenti 93], describes three remarkable examples in aeronautical 
engineering of the years from 1915 to 1945.  

The first example addressed the problem of propeller design. Most early aircraft 
were driven by two-bladed propellers. The design of such a propeller is 
aerodynamically more complex than the design of an aircraft wing, because the 
propeller blades are not only moving in the direction in which the aircraft is flying but 
are also rotating about the propeller’s axis. To address this problem, W F Durand and 
E P Lesley carried out detailed analytical studies and wind-tunnel tests on 150 
propeller designs, working together over the years 1915–1926.  

The second example concerned the problem of flush-riveting the metal skin to the 
frame of a fuselage or tailplane or fin. When metal skins first became practicable for 
aircraft they were fixed to the frames by rivets with domed heads. Soon it became 
apparent that the domed heads were reducing performance by causing significant 
aerodynamic drag: flush riveting was therefore desirable, in which the rivet head 
would have a countersunk profile and would not protrude above the skin surface. The 
skin was thin—typically, no more than 1mm thick; the necessary countersinking had 
to be achieved without weakening the skin or causing it to loosen under the stresses of 
operation. A satisfactory solution to this problem took twenty years’ cooperation 
among several aircraft manufacturers from 1930 to 1950.  

The third example has perhaps more immediately obvious counterparts in software 
engineering. By about 1918 pilots were beginning to articulate a strong desire for 
certain non-functional requirements in aircraft: they wanted aircraft with ‘good flying 
qualities—stable, responsive, unsurprising and satisfactory to fly’. The questions 
arose: What did the pilots really mean by these quality requirements? What 
behavioural properties of the designed artifacts—the aircraft—would ensure these 
qualities? How could designers achieve these behavioural properties? Specialist 
research into these questions was conducted over the following twenty years and 
more. By about 1940 the main elements of the answers had been established for 
aircraft of the normal design of the time—that is, aircraft with lateral symmetry, a 
single wing with a straight leading edge, and a horizontal tailplane and vertical fin at 
the rear. The answers were inevitably very technical. They applied to the established 
standard design; they were expressed in terms of that design; and finding them took 
the dedicated specialised effort of designers, pilots and instrument engineers over a 
quarter of a century. 

9.   Normal and Radical Design 

The fruit and direct expression of each artifact specialisation is the associated 
‘normal design’: that is, the engineering design practice that is standard in the 
specialisation, and the standard design products that it creates. Vincenti characterises 
normal design like this [Vincenti 93]:  

“[...] the engineer knows at the outset how the device in question works, what 
are its customary features, and that, if properly designed along such lines, it 
has a good likelihood of accomplishing the desired task.”  



Engineering and Software Engineering      9 

He illustrates normal design by the practice of aero engine design in the period before 
1945: 

“A designer of a normal aircraft engine prior to the turbojet, for example, took 
it for granted that the engine should be piston-driven by a gasoline-fueled, 
four-stroke, internal-combustion cycle. The arrangement of cylinders for a 
high-powered engine would also be taken as given (radial if air-cooled and in 
linear banks if liquid-cooled). So also would other, less obvious, features (e.g., 
tappet as against, say, sleeve valves). The designer was familiar with engines 
of this sort and knew they had a long tradition of success. The design 
problem—often highly demanding within its limits—was one of improvement 
in the direction of decreased weight and fuel consumption or increased power 
output or both.” 

In radical design, by contrast,  
“[…] how the device should be arranged or even how it works is largely 
unknown. The designer has never seen such a device before and has no 
presumption of success. The problem is to design something that will function 
well enough to warrant further development.” 

No design is ever completely and utterly radical in every respect, because the 
designer’s previous knowledge and experience inevitably bring something potentially 
relevant and useful to the task. Karl Benz, for example, had worked successfully on 
the design of a gasoline-fuelled engine before he applied for a patent [Benz Patent 86] 
for his first complete automobile design. Details of Benz’s design and photographs of 
exact replicas (two series of replicas were manufactured in the late twentieth century) 
are easily available on the web [Benz 86]. The car had three wheels, each with radial 
metal spokes and solid rubber tyres. The driver steered by a crank handle that turned 
the vertically pivoted front wheel through a rack-and-pinion mechanism. The car was 
powered by a single-cylinder four-stroke engine with an open crankcase, mounted 
behind the bench seat between the rear wheels, and positioned with the crankshaft 
vertical. A large open flywheel was mounted on the crankshaft, and to start the engine 
the flywheel was rotated by hand. Power was transmitted to the wheels through bevel 
gears, to a belt drive that acted also as a clutch, a differential, and finally by a chain 
drive to each rear wheel. Braking was provided by a handbrake acting on an 
intermediate shaft.  

This design incorporated many innovations and was undoubtedly a work of genius. 
As a practicable engineering artifact it satisfied Vincenti’s criterion—it worked well 
enough to warrant further development—but it had many defects. The most notable 
failure was in the design of the steering. The single front wheel made the ride unstable 
on any but the smoothest surface, and the very small radius of the crank by which the 
vehicle was steered gave the driver too little control. Control could be improved by a 
longer crank handle, but the single front wheel was a major design defect. It is 
thought that Benz adopted the single front wheel because he was unable to solve the 
problem of steering two front wheels. To ensure that the trajectory of each front wheel 
is tangential to the path of travel, the inner wheel’s turning angle must be greater than 
the outer’s. The arrangement needed to achieve this—now commonly known as 
‘Ackermann steering geometry’—had been patented some seventy years earlier by a 
builder of horse-drawn carriages and also was used ten years earlier in a steam-
powered vehicle designed in France, but neither Benz nor his contemporary Gottlieb 
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Daimler was aware of it. Five years later Benz rediscovered the principle, and  even 
succeeded in obtaining a patent in 1891. His 1893 car, the Victoria, had four wheels 
and incorporated Ackermann steering. 

10.  Artifact Specialisations In Software Engineering  

Software engineering certainly has many visible specialisations. There are many 
active specialisations in theoretical areas that may be regarded as belonging to 
computer science but have direct application to the engineering of software-based 
systems: for example, concurrency and complexity theory. There is a profusion of 
specialisations in relevant tools and technologies: for example, software verification, 
model-checking, formal specification languages, and programming languages for 
developing web applications.  

There are artifact specialisations too, but chiefly for artifacts whose problem world, 
while not being purely abstract, remains comfortingly remote from the complications 
and uncertainties of the physical and human world. Fred Brooks characterised this 
class of artifact neatly in a comment [Brooks 10, pp. 56–57] on the open source 
movement:  

“The conspicuous success of the bazaar process in the Linux community seems 
to me to derive directly from the fact that the builders are also the users. Their 
requirements flow from themselves and their work. Their desiderata, criteria 
and taste come unbidden from their own experience. The whole requirements 
determination is implicit, hence finessed. I strongly doubt if Open source 
works as well when the builders are not themselves users and have only  
secondhand knowledge of the users' needs.” 

The admirable principle “eat your own dogfood” applies well when the developers 
are also the customers, or can easily play the customer’s role with full conviction. So 
there are effective specialisations working on compilers, file systems, relational 
database management systems, SAT solvers and even spellcheckers. Use of these 
artifacts falls well within the imaginative purview of their developers, and the buzzing 
blooming confusion of the physical world is safely out of sight.  

The same can not be said of radiotherapy or automotive systems, or of systems to 
control a nuclear power station or an electricity grid. It is not yet clear to what extent 
these systems, and many other computer-based systems that are less critical but still 
important, have begin to benefit from the intensive specialisation that has marked the 
established engineering branches over their long histories. Even when a specialisation 
itself has become established the evolution of satisfactory normal design is likely to 
take many years. Karl Benz’s invention had given rise to an international industry by 
about 1905; but it was not until the 1920s that automobiles could be said to have 
become the object of normal design.   
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11.  Artifact Specialisation Needs Visible Exemplars 

There are many cultural, social and organisational obstacles to the emergence and 
development of artifact specialisations in software engineering. One obstacle is what 
may be called a preference for the general and a corresponding impatience with the 
particular. In journals and conferences descriptions of specific real systems are rarely 
found. At most a confected case study may be presented as a sketched example to 
support a general thesis. We seem to assume that there is little worth learning that can 
be learned from a detailed study of one system.   

This disdain for the specific militates strongly against the growth of effective 
artifact specialisations. In the established engineering branches practising engineers 
learn from specific real artifacts about the established normal design, their properties 
and their failures. For example, the Earthquake Engineering Research Center of UC 
Berkeley maintains a large library [Godden 10] of slides showing exemplars of real 
civil engineering structures such as bridges and large buildings of many kinds. The 
collection is arranged primarily by artifact class, and serves as a teaching resource for 
undergraduate and graduate courses. Students learn not only by acquiring knowledge 
of theory, but also by informed examination of specific real engineering examples: 
each example has its place in a rich taxonomy, and its own particular lessons to teach.  

Failures are no less—perhaps even more—important than successes. Every 
engineering undergraduate is shown the famous amateur movie that captured the 
collapse [Holloway 99] of the Tacoma Narrows Bridge in 1940. The designer, Leonid 
Moisseiff, had given too little consideration to the aerodynamic effects of wind on the 
bridge’s narrow and shallow roadway, and especially to vertical deflections. In a wind 
of only 40 mph, vertical oscillations of the  roadway built up to a magnitude that 
completely destroyed the bridge. Designers of suspension bridges learned the lesson, 
and have recognised their obligation to preserve it and hand it on to their successors. 
It is a very specific lesson. Moisseiff’s mistake will not be repeated.  

In software engineering we can be less confident that we will not repeat the 
mistakes we discover in our designs. Without artifact specialisation there may be no 
structure within which a sufficiently specific lesson can be learned. Some years after 
the Therac-25 experiences an excellent investigative paper [Leveson 93] was 
published in IEEE Computer and appeared in an improved form as an appendix to 
[Leveson 95]. The researchers studied all the available evidence, and their paper 
identified certain specific software and system errors. But the absence of a normal 
design for the software of a radiotherapy machine was clearly evidenced by the lack 
of nomenclature for the software components. The electro-mechanical equipment 
parts were given their standard names in the diagrams that appeared in the paper: the 
turntable, the flattener, the mirror, the electron scan magnet, and so on. But the 
software parts had no standard names, and were referred to, for example, as “tasks 
and subroutines in the code blamed for the Tyler accidents”, individual subroutines 
being given names taken from the program code. Inevitably, the recommendations  
offered at the end of the paper concentrated chiefly on general points about the 
development process that had been used: they focused on documentation, software 
specifications, avoidance of dangerous coding practices, audit trails, testing, formal 
analysis and similar concerns. No specific recommendations could be made about the 
software artifact itself, because there was no standard normal design to which such 
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recommendations could refer. The errors of the Therac-25 software engineers were, 
regrettably, repeated twenty five years later.  

12.  The Challenge Of Software System Structures 

Almost every realistic computer-based system is complex in many planes. This 
complexity is a major obstacle to the design of a system, and to communicating and 
explaining its structure. It is also, therefore, a major obstacle to the evolution of 
normal designs.  

More properly, we should speak of many structures, not just of one. The system 
provides many features, each one an identifiable unit of functionality that can be 
called into play according to circumstances and user demands. Each feature can be 
regarded as realised by an associated contrivance. The components of the contrivance 
are problem domains and parts or projections of the system’s software, arranged in a 
suitably designed configuration within which they interact to fulfil the functionality of 
the feature.  

The features will inevitably interact: they may share problem domains and 
software resources; several may be active in combination at any time; and their 
requirements may conflict. These interactions and combinations will itself induce a 
distinct structure, demanding careful study and analysis both in terms of the 
requirements they are expected to satisfy and in terms of the implementation. This 
feature interaction problem [Zave 04] came to prominence in the telephone systems 
of the late twentieth century, where interactions of call processing features such as 
call forwarding and call barring were seen to produce surprising and sometimes 
potentially harmful results. The structure of these interactions might be captured, for 
example, in graphs of the kind used in Distributed Feature Composition [Jackson 98]. 
The feature interaction problem hugely increased the costs and difficulties of building 
telephone system software. It soon became apparent that the same problem was 
inherent in complex systems of every kind. 

 The system as a whole, regarded as a single contrivance, will have several 
contexts of operation. For example, a system to control lifts in a building containing 
offices, shops and residential apartments must take account of the different demand 
patterns imposed from hour to hour and from day to day by this usage. There will also 
be extraordinary operational contexts such as emergency operation under control of 
the fire department, operation under test control of a representative of the licensing 
authority, and operation during periodic maintenance of the equipment. If an 
equipment fault is detected the system must take action to mitigate the fault if 
possible—for example, by isolating the faulty subset of the equipment or by executing 
emergency procedures to ensure the safety of any users currently travelling in the lift 
cars.  These contexts are not necessarily disjoint: for example, a fault may be detected 
during testing, and the safety of the test engineer must be ensured.  

The properties and behaviours of the individual problem world domains—the lift 
shafts, the floors, the doors, the lift cars, the users, the hoist motors—must be 
analysed in the development process. The design of the contrivance realising each 
feature must take account of the relevant properties and behaviours of those problem 



Engineering and Software Engineering      13 

domains that figure as components in its design. It may be necessary for the executed 
software to embody software objects that model the problem domains. A domain will 
then have a model for each feature in which it participates, and these models must be 
reconciled and in some way combined.  

The implemented software itself will have some kind of modular structure, its parts 
interacting by the mechanisms provided by the execution infrastructure and the 
features of the programming languages used. The extreme malleability of software, 
which is not shared by physical artifacts, allows the implementation structure to differ 
radically from the other structures of the system. The relationships among these 
structures may then be mediated by transformations.  

All of these structures must be somehow captured, designed, analysed, reconciled 
and combined. The task can certainly not be performed successfully by simplistic 
generalised techniques such as top-down decomposition or refinement. Nor can it be 
evaded by the kind of reductionist approach that fragments the system into a large 
collection of elements—for example, events or objects or one-sentence requirements. 
In general, this is an unsolved problem. In a normal design task a satisfactory solution 
has been evolved over a long period and is adopted by the specialist practitioners. 
Where no normal design is available, and major parts and aspects of the design task 
are unavoidably radical, the full weight of the difficulty bears down on the designer. 
This difficulty is a salient feature of the design of many computer-based systems.  

13.  Forgetting the Importance Of Structure 

In an earlier era, when computers were slower, programs were smaller and computer-
based systems had not yet begun to occupy the centre of attention in the software 
world, program structure was recognised as an important topic and object of study. 
The discipline of structured programming, as advocated [Dijkstra 68] by Dijkstra in 
the famous letter, was explicitly motivated by the belief that software developers 
should be able to understand the programs they were creating. The key benefit of the 
structure lay in a much clearer relationship between the static program text and the 
dynamic computation. A structured program provides a useful coordinate system for 
understanding the progress of the computation: the coordinates are the text pointer 
and the execution counters for any loops within which each point in the text is nested. 
Dijkstra wrote: 

“Why do we need such independent coordinates? The reason is—and this 
seems to be inherent to sequential processes—that we can interpret the value 
of a variable only with respect to the progress of the process.”  

A structured program places the successive values of each state component in a 
clearly defined context that maps in a simple way to the evolving state of the whole 
computation. The program structure tree shows at each level how each lexical 
component—elementary statement, loop, if-else, or concatenation—is positioned 
within the text. If the lexical component can be executed more than once, the 
execution counter for each enclosing loop shows how its executions are positioned 
within the whole computation. The programmer’s  understanding of each part of the 
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program is placed in a structure of nested contexts that reaches all the way to the root 
of the structure tree.  

Other structural notions beyond the control structure discipline advocated for 
structured programming—for example, layered abstractions and Naur’s discipline 
[Naur 69] of programming by action clusters—were explored, always with the 
intention of simplifying and improving program development by supporting human 
understanding. The primary need was for intelligible structure. Rigorous or formal 
proof of correctness would then be a feasible by-product, the structure of the proof 
being guided by the structure of the designed program.  

Work on the formal aspects of this plan proved brilliantly successful during the 
following years. Unfortunately, however, it was so successful that the emphasis on 
human understanding gradually faded, and many of the most creative researchers 
simply lost interest in the human aspects. It began to seem more attractive to allow the 
formal proof techniques to drive the program structuring. By 1982 Naur was 
complaining [Naur 82]:  

“Emphasis on formalization is shown to have harmful effects on program 
development, such as neglect of informal precision and simple formalizations. 
A style of specification using formalizations only to enhance intuitive 
understandability is recommended.” 

For small and simple programs it was feasible to allow a stepwise proof development 
to dictate the program structure. Typically, the purpose of the program was to 
establish a result that could easily be specified tersely and formally: the proof was 
then required to establish this result from the given precondition. But Naur’s 
complaint was justified. It is surely a sound principle that human understanding and 
intuition must be the foundation of software engineering, not a primitive scaffolding 
that can be discarded once some formal apparatus has been put in place.   

The success of the formalist enterprise has led to a seriously diminished interest in 
structural questions and concerns, and in the role of human understanding, just when 
they are becoming more important. The constantly increasing complexity of 
computer-based systems cannot be properly addressed by purely formal means. Forty 
five years ago, the apparently intractable problem of designing and understanding 
program flowcharts yielded to the introduction of structure in the service of human 
understanding. Managing and mastering the complexity of the systems being built 
now and in the future demands human understanding: formal techniques are essential, 
but they must be deployed within humanly intelligible structures.    
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