
1

Chapter 12

The structure of software development thought

Michael Jackson

Independent Consultant

1 Introduction

Software developers have long aspired to a place among the ranks of respected engi-
neers. But even when they have focused consciously on that aspiration [15; 3] they
have made surprisingly little effort to understand the reality and practices of the
established engineering branches.

One notable difference between software engineering and physical engineering is
that physical engineers pay more attention to their products and less to the processes
and methods of their trade. Physical engineering has evolved into a collection of
specialisations–electrical power engineering, aeronautical engineering, chemical
engineering, civil engineering, automobile engineering, and several others. Within
each specialisation the practitioners are chiefly engaged in normal design [18]. In the
practice of normal design, the engineer

... knows at the outset how the device in question works, what are its
customary features, and that, if properly designed along such lines, it has a
good likelihood of accomplishing the desired task.

The design decisions to be made in this context are, to a large extent, relatively
small adjustments to established customary designs that have evolved over a long
period of successful product development and are known to work well. The calcula-
tions involved most often take the form of fitting argument values into a standard
formula to instantiate a standard product configuration; they are rarely concerned
with determining choices in an innovative design. Inevitably the processes and
methods of design demand less attention because they are largely fixed: their scale is
small, they are sharply focused, and their outcomes are tightly constrained by normal
practice.

Software engineering, or, more generally, the development of software-intensive
systems, has not yet evolved into adequately differentiated specialisations, and has
therefore not yet established normal design practices. There are, of course, excep-
tional specialised areas such as the design of compilers, file systems, and operating

2

systems. But a large part of the development of software-intensive systems is char-
acterised by what Vincenti [18] calls radical design:

In radical design, how the device should be arranged or even how it works is
largely unknown. The designer has never seen such a device before and has
no presumption of success. The problem is to design something that will
function well enough to warrant further development

Developers compelled to engage in radical design are, by definition, confronted
by a problem for which no established solution–or even solution method–commands
conformity. In some cases the problem has no clearly applicable precedent; in some
cases there are precedents, but they lack the authority of a long history of success.
Naturally attention turns to the question “How should we tackle this problem?”.
Many widely varying methods and approaches are proposed, and advocated with
great confidence.

1.1 Intellectual structure

Some of these methods and approaches are chiefly concerned with managerial as-
pects of development: for example, application of industrial quality control tech-
niques, or the use of team communication practices such as stand-up meetings, open-
plan offices and pair programming. But software development has an inescapable
intellectual content. Whether they wish to or not, developers of software-intensive
systems inevitably separate concerns–well or badly–if only because it is not humanly
possible to consider everything at once. They direct their attention to one part of the
world and not to another. Some information they record explicitly, and other infor-
mation is left implicit and unrecorded. Consciously or unconsciously they reason
about the subject matter and about the product of their development, convincing
themselves, well enough to allay discomfort, that what they are doing is appropriate
to their purposes. In short, development work is performed within some intellectual
structure of investigation, description and reasoning. In the small this structure sets
the context of each task; in the large it gives grounds for believing that the system
produced will be satisfactory.

This intellectual structure is the topic of the present chapter. The emphasis will be
chiefly on the understanding of requirements and the development of specifications,
rather than the design of program code. Among requirements the focus will be on
functional requirements–including safety and reliability–rather than on non-
functional requirements such as maintainability or the cost of development. The
intellectual structure is, necessarily, a structure of descriptions of parts and proper-
ties, given and required, of the whole system, and of their creation and their use in
reasoning. Because we aim at brevity and a clear focus on the structure rather than
on its elements, we will present few full formal descriptions: most will be roughly
summarised to indicate their content and scope. A small example, more formally
treated elsewhere [8], will be used as illustration; its limitations are briefly discussed
in a concluding section.

The structure is not offered as yet another competing method. An effective
method should be an expression of a normal design discipline, closely tailored to a

3

narrowly identified class of problem and product. The structure presented here aims
at a significant degree of generality, although of course it does not pretend to univer-
sality. An effective method is also inherently temporal: it is a chosen path or way
through an ordered structure of tasks. But the intellectual structure can be traversed,
and its contents used, in many ways. For example, given adequate notions of re-
quirements and software design, and of their relationships, a methodologist will be
primarily interested in the question “By what development process can we capture
these requirements and make a software design to satisfy them?” But a broader con-
sideration of the structure in itself also allows us to ask and answer the questions
“What other requirements can be satisfied by this design?”, “What other designs
could satisfy these requirements?”, “Why are we convinced that this design satisfies
these requirements?”, “Why are we doing this?”, and “How else could these descrip-
tions be usefully arranged or structured?”.

2 The Sluice Gate–1: the problem and its world

A small example problem [8] provides a grounding for discussion. Although it is
both too narrow and too simple to stand as a full representative of development
problems in general, it allows us to pin our discussion to something specific.

2.1 The problem

The problem concerns an agricultural irrigation system. Our customer is the farmer,
whose fields are irrigated by a network of water channels. The farmer has purchased
an electrically-driven sluice gate, and installed it at an appropriate place on his net-
work of irrigation channels. A simple irrigation schedule has been chosen for this
part of the network: in each period of the schedule a specified volume of water
should flow through the gate into the downstream side of the channel. A computer is
to control the gate, ensuring that the schedule is adhered to. Our task is to program
the control computer to satisfy the farmer’s requirement.

According to one engineer’s definition [17], this is a classic engineering task:

Engineering ... [is] the practice of organizing the design and construction of
any artifice which transforms the physical world around us to meet some
recognized need.

The farmer’s recognised need is for scheduled irrigation; the physical world around
us is the sluice gate and the irrigation channel; and the artifice we are to design and
construct is the working control computer. The computer hardware, we will suppose,
is already available; our task is only to program it appropriately, thus endowing it
with a behaviour that will cause the recognised need to be met. Figure 1 depicts these
elements of the problem and connections between them.

4

Fig. 1. A problem diagram

The striped rectangle represents the machine domain: that is, the hard-
ware/software device that we must construct. The plain rectangle represents the
problem world–the physical world where the recognized need is located, and where
its satisfaction will be evaluated. The dashed oval represents the customer’s re-
quirement. The plain line marked a, joining the machine domain to the problem
world, represents the interface of physical phenomena between them–control signals
and states shared between the computer and the sensors and actuators, by which the
machine can monitor and control the state of the sluice gate equipment. The dashed
line with an arrowhead, marked b, joining the requirement to the problem world,
represents the phenomena to which the requirement makes reference–the channel
and the desired water flow.

These three main elements of the problem, and the relationships among them, are
fundamental to the intellectual structure presented here. The requirement is a condi-
tion on the problem world, not on the machine domain: no water flows at the ma-
chine’s interface with the sluice gate equipment. Nonetheless, the machine can, if
appropriately constructed, ensure satisfaction of the requirement by its interaction
with the sluice gate at interface a. This is possible only because the problem world
has certain physical properties that hold regardless of the presence or behaviour of
the machine: the gate is operated by an electric motor driving two vertical screws
which move the gate up and down between its open and closed positions; if the gate
motor is set to upwards and switched on, then the motor will turn the screws and the
gate will open; when the gate is open (and the water level is high enough) water will
flow through the channel, and when the gate is closed again the flow will cease.
These are the properties we must exploit in our solution.

For some well-designed behaviour of the machine, the resulting openings and
closings of the gate will ensure the required irrigation pattern. To demonstrate even-
tually that this is so we must offer an adequacy argument. That is, we must show that

machine ∧ problem domain ⇒ requirement

We may regard the problem as a challenge [7] to the developers: given the prob-
lem domain and the requirement, devise and build a machine for which the adequacy
argument will go through and the implication will hold. For the problem in hand the
specific implication is:

Control Computer ∧ Sluice Gate, Irrigation Channel etc
⇒ Irrigation Schedule

Although informally stated, this is the essence of what it will mean to satisfy the
customer’s requirement.

a b
Control

Computer

Sluice Gate,
Irrigation

Channel, etc

Irrigation
Schedule

5

2.2 Problem phenomena and the requirement

A prerequisite for making the problem statement more exact is to identify the phe-
nomena in the problem diagram of Fig. 1–that is, the phenomena a and the phenom-
ena b.

The gate equipment provides an interface to the control computer that has these
components:

• motor_switch: on | off; the motor can be set on or off;
• direction: up | down; the motor direction can be set for upwards or

downwards gate travel;
• motor_temp: [-50 ..+200]; the motor temperature in degrees C;
• top: boolean; the sensor detecting that the gate is open at the top of its travel;
• bottom: boolean; the sensor detecting that the gate is closed at the bottom of

its travel.
Of these phenomena the first two–motor_switch and direction–are controlled by the
machine, and the last three by the problem domain. We will regard them all as
shared phenomena. For example, we identify the Control Computer state values

signal_line_1: high | low

with those of the Sluice Gate state

motor_switch: on | off

respectively. This is, of course, a conscious abstraction from the reality of the imper-
fect electrical connection. There are in reality many links in the causal chain between
setting signal_line_1 and switching the motor on or off, but we choose to assume
that these links are so fast and reliable that we can abstract away the whole chain and
regard a state change at one end and the consequent change at the other end as a
single event. Some such abstraction is unavoidable: if we were to take explicit ac-
count of the causal chain we would still require a similar abstraction at each end.

The dashed line marked b joining the requirement to the problem world repre-
sents the requirement’s references to phenomena of the problem world. For example:

• channel_water_flow: [0..300]; water flow in the channel downstream of the
sluice gate, expressed in litres per minute.

These phenomena are the ground terms in which the requirement is expressed. There
is no reason to regard these as shared phenomena between distinct domains. In prin-
ciple, however, they must be observable by the customer, who will judge in due
course whether the requirement has been satisfied. The requirement is:

• irrigation_schedule: the average value of channel_water_flow over each
period of 24 hours is approximately 25 ltr/min, equivalent to a total flow of
36,000 ltr in the 24 hours; the flow is roughly evenly distributed over the 24
hours.

For brevity we are making some simplifications and elisions here. For example,
we are not treating time explicitly; nor are we elaborating the identification of the
phenomena at b to include a consideration of channels other than that in which the
sluice gate has been sited. But the approximation in the requirement is unavoidable:

6

given the nature of the irrigation network and of the sluice gate equipment, greater
precision is neither desirable nor possible.

2.3 Problem world decomposition

For the adequacy argument we must appeal to the properties of the problem world.
Almost always–and this tiny problem is no exception–the problem world is suffi-
ciently complex or heterogeneous to demand decomposition into distinct but inter-
acting problem domains if we are to understand and analyse its properties. An obvi-
ously appropriate decomposition of the Sluice Gate problem world is to separate the
gate equipment domain from the irrigation channel domain, as shown in Fig. 2. This
allows us to consider the properties and behaviour of the gate equipment, separately
from those of the irrigation channel.

Fig. 2. Decomposing the problem world in a problem diagram

The requirement is unchanged from Fig. 1, and the same Control Computer will
ensure its satisfaction. The interface of shared phenomena a is unchanged, and so is
the set of phenomena b in terms of which the requirement is expressed. The decom-
position of the problem world has introduced a new interface, marked c, of phenom-
ena shared between the sluice gate equipment and the irrigation channel. The shared
phenomena at c are essentially the gate positions and associated potential or actual
water flows:

• gate_height: [0..30]; the height of the lower edge of the gate above the lower
travel stop in cm; gate is fully open (≈30), fully closed (≈0), or in an
intermediate position.

It is convenient to give definitions of the terms open and closed:

open gate_height = 29.5 ± 0.5

closed gate_height = 0.5 ± 0.5

From the point of view of the irrigation channel, the values of gate_height as
shared phenomena are seen (when multiplied by the constant gate width G) as the
sizes of the aperture through which water can flow. That is to say: just as at interface
a we identified the values of signal_line_1 with the values of motor_switch, so at
interface c we identify

gate_height = h

with

aperture_area = h*G

a bControl
Computer

Irrigation
Channel

Irrigation
Schedule

Sluice
Gate

Equipment

c

7

Evidently, there is a lot of approximation here, as there is in the requirement.
Having identified the gate equipment and the irrigation channel as separate

problem domains we can consider their properties separately.

2.4 Gate equipment properties

The relevant properties of the sluice gate equipment are those that relate the phe-
nomena at interface a to those at interface c. Our investigation of the equipment and
its accompanying manual reveals properties of interest in three groups:

• gate_movement describes the behaviour of the equipment in the different
motor states:
• movement of the gate much above the open or below the closed position

is prevented by stops; and
• if the gate is not touching the upper stop, and the motor is on and

direction is up, the gate is rising (moving in the direction from closed to
open); and

• if the gate is not touching the lower stop, and the motor is on and
direction is down, the gate is falling (moving in the direction from open
to closed); and

• if the motor is off, the gate is stationary; and
• the gate takes rise_time ± rise_tolerance to rise from closed to open;

and
• the gate takes fall_time ± fall_tolerance to fall from open to closed.

• sensor_settings describes the behaviour of the top and bottom sensors:
• open ⇔ top; the top sensor is on iff the gate is open; and
• closed ⇔ bottom; the bottom sensor is on iff the gate is closed.

• motor_thermal describes the thermal behaviour of the motor:
• the motor is rated to run at motor_temp values up to 120°C; and
• at 150% load the motor_temp value rises sharply by 2°C per second.

2.5 Irrigation channel properties

For the irrigation channel the properties relevant, or potentially relevant, to the
problem in hand are those that determine the water flow at any particular time for
any particular value of gate_height. We investigate the value of channel_water_flow
for each pair of values of (water_level, gate_height). Given an adequate water level,
the aperture provided by a fully open sluice gate will cause a water flow in the chan-
nel of approximately 240 ltr/min.

It may be that the water level is not always predictable. For example, weather
conditions, interruption of the water source, or greedy use of water by neighbouring
farmers may cause unpredictable water levels and hence unpredictable flow rates at
certain times. However, our investigation actually shows that the irrigation channel is

8

fed from a reliable reservoir that maintains an almost constant water level in the
channel upstream of the sluice gate.

• channel_properties describes the properties of the channel:
• water_level upstream of the gate is approximately constant, with value

W; and
• water flow through the gate is therefore given by the function F (not

detailed here):

channel_water_flow = F (gate_height, water_level); and

• specifically, F (open, W) = 240 ltr/min.

3 The Sluice Gate–2: a machine specification

Given the problem domain and the requirement, we must devise and build a machine
for which the adequacy argument will go through. Drawing on our decomposition
and investigation of the problem world the adequacy argument is now:

Control Computer ∧
 gate_movement ∧ sensor_settings ∧ motor_thermal ∧
 channel_properties
⇒ irrigation_schedule

3.1 The purpose of a machine specification

We might perhaps consider that the adequacy argument we have formulated, to-
gether with the problem diagram, the careful identification of the interface and re-
quirement phenomena, the irrigation_schedule requirement and the problem domain
properties, can serve as a specification of the machine to be developed. But this
would be a mistake. In Dijkstra’s words [4]:

The choice of functional specifications–and of the notation to write them
down in–may be far from obvious, but their role is clear: it is to act as a
logical ‘firewall’ between two different concerns. The one is the ‘pleasantness
problem,’ ie the question of whether an engine meeting the specification is the
engine we would like to have; the other one is the ‘correctness problem,’ ie
the question of how to design an engine meeting the specification. ... the two
problems are most effectively tackled by ... psychology and experimentation
for the pleasantness problem and symbol manipulation for the correctness
problem.

The machine specification is the meeting point of the computer–engineered to pro-
vide a domain in which formal description and reasoning suffice–with the physical
and human problem world–where formal description and reasoning are inevitably
only approximate. The separation provided by the specification firewall is in part a

9

separation between people: between the problem world expert and the computing
expert. It remains valuable even if these are two roles filled by the same person.

3.2 Problem reduction

One way of thinking about the problem world is as a set of layers, each containing
one or more problem domains. The problem domains of the innermost layer interact
directly with the machine. The next layer do not interact directly with the machine
but interact directly with domains in the innermost layer, and so on. In the Sluice
Gate problem there are just two layers, with one domain in each layer, and the re-
quirement refers only to the irrigation channel in the outermost layer.

In this layered view, the development of a machine specification can be seen as a
process of problem reduction. Starting at the outermost, successive layers are peeled
away until only the machine domain is left. At each step the domain properties of the
domains to be removed are exploited to translate the requirement into a reduced
requirement referring only to phenomena of other, remaining, domains. So, for ex-
ample, we may remove the Irrigation Channel domain from consideration by the
following reduction from the irrigation_schedule requirement on the channel to a
gate_schedule requirement on the gate equipment alone:

The irrigation_schedule stipulates a daily flow of 36,000 ltr. From
channel_properties we know that water_level has the approximately constant
value W, and that at this level water flow through the fully open gate is
approximately 240 ltr/min. A regular flow, roughly distributed over the whole
24 hours of each day, is required. We therefore choose to divide the necessary
150 minutes of fully open flow equally among 24 hourly periods. The
resulting gate_schedule regime, roughly stated, specifies 6m15s per hour fully
open and otherwise fully closed.

It now appears that we need only perform one more reduction of a similar kind to
eliminate the Sluice Gate Equipment domain from consideration and so arrive at a
machine specification.

3.3 A specification difficulty

Reduction to the gate_schedule requirement on the Sluice Gate Equipment has now
eliminated the Irrigation Channel completely from further consideration. The
gate_schedule is specified purely in terms of phenomena of the Sluice Gate Equip-
ment domain. The phenomena shared between the Irrigation Channel and the Sluice
Gate Equipment are viewed as phenomena of the Sluice Gate Equipment only, with
no mention of water levels or flows; the gate_schedule requirement is understand-
able in terms of the behaviour of the physical gate mechanism, without considering
the channel or the water flow. In the same way we might expect to eliminate the
Sluice Gate Equipment domain equally thoroughly in a reduction to a machine speci-
fication, producing a specification expressed purely in terms of phenomena of the
machine. However, this complete elimination is not practicable.

10

The obstacle lies in the inherently general nature of the computing machine. The
phenomena on the machine side of the interface a are such phenomena as “sig-
nal_line_1 = high” for the motor controls and top and bottom sensors, and “regis-
ter_5” for the digital value of the motor temperature: they are the general-purpose
phenomena of a general-purpose computer. A behavioural specification written in
terms of these phenomena could be perfectly intelligible if the problem were, for
example, the management of input-output interrupts in the computer. But it can not
be intelligible when the problem is operation of a sluice gate. The rationale for the
desired machine behaviour lies in the configuration and properties of the sluice gate
equipment; a specification in which that rationale is hidden from the reader may be
formally correct, but will surely appear arbitrary and inexplicable. Arbitrary and
inexplicable specifications are unlikely to be implemented correctly. It seems there-
fore that we must either abandon the problem reduction or produce an unintelligible
specification.

One common approach to overcoming this obstacle is to perform the full reduc-
tion, but express the resulting specification chiefly in terms of the problem domain
phenomena. The equivalences afforded by the shared phenomena are explicitly
stated, so that the reader of the specification knows that “switch the motor on” is to
be implemented by “set signal_line_1 to high”. Additional explanation about the
problem domain is provided informally, so that a specification phrase such as “until
the top sensor is on” can make some sense. One disadvantage of this approach is that
it becomes hard for the reader to know how much weight to place on the informal
parts: are they mere hints to help interpretation of the formal parts, or are they
authoritative? Another disadvantage is that it is hard to avoid an explicit specifica-
tion that is too procedural and too detailed: the introduction and use of ‘specification
variables’ easily strays into fixing the design of the machine.

Could we consider abandoning the reduction process when we have reached the
innermost layer of problem domains? That is, could we provide the machine specifi-
cation in the form of the gate_schedule resulting from the preceding reduction step,
along with the identification of the phenomena and statements of the Sluice Gate
Equipment domain properties? No, we could not. Such a specification would com-
pletely frustrate the desirable separation of concerns of which Dijkstra wrote. In
particular, it would give the programmer far too much discretion in choosing how to
operate the gate. The choices that are possible in principle include some that should
certainly be excluded. For example: relying on dead-reckoning timing to detect the
open and closed positions; relying on the sharp increase in motor temperature caused
by driving the gate against the stops; and choosing to cause gratuitous small gate
movements while remaining in the open or closed position. Essentially, the com-
paratively rich description of domain properties provides some bad options that must
be excluded.

3.4 Specification by rely and guarantee conditions

Another, more effective, approach is to construct the specification in terms of prop-
erties of the sluice gate, but to express those properties in a carefully designed ab-
stract description. The specification states rely and guarantee conditions [10; 11; 1]
for the machine. The rely condition captures the properties of the sluice gate on

11

which the machine may rely; the guarantee condition captures the properties with
which the machine must endow the sluice gate. The intention of a specification of
this form is close to the common approach mentioned in the preceding section: it is
to express the desired machine behaviour in terms of the interacting problem domain,
while avoiding informality and–so far as possible–excluding implementation choices
that are undesirable for reasons of unexpressed, tacit knowledge in the possession of
the domain expert.

First we must describe the gate_schedule more exactly, bearing in mind the in-
evitable approximations involved and the time needed for gate travel between open
and closed. We use a notion of intervals borrowed from [14]. The expression ‘C over
interval I’ means that condition C holds throughout the interval I; ‘interval I adjoins
interval J’ means that the supremum of I is equal to the infimum of J.

• gate_schedule: each successive time interval In of length 60 minutes
(n = 0,1,2, ..), beginning 60n minutes after the start of system operation,
consists exactly of five adjoining subintervals Jn, Kn, Ln, Mn, Nn, in that
order, such that:
• the gate is closed over subinterval Jn; and
• over subinterval Kn the gate is moving uninterruptedly from closed to

open; and
• the gate is open over subinterval Ln, and the length of Ln is not less than

6 minutes; and
• over subinterval Mn the gate is moving uninterruptedly from open to

closed; and
• the gate is closed over subinterval Nn and the length of Nn is not less

than 52 minutes.
The length of each subinterval Ln is not specified for the full 6m15s, because some
water will flow during the opening and closing in subintervals Kn and Mn.

To guarantee gate_schedule the machine must rely on the gate_movement prop-
erty. However, this property includes the rise and fall times and their tolerances, and
we do not want the programmer to detect the open and closed positions by dead
reckoning of the timing. We therefore use the weaker property gate_movement_1, in
which rise and fall times are given only as maxima:

• gate_movement_1 describes the properties on which the machine
specification relies:
• if the motor is off the gate is stationary; and
• if the gate is not touching the upper stop, and the motor is on and

direction is up, the gate is rising from closed towards open; and
• if the gate is not touching the lower stop, and the motor is on and

direction is down, the gate is falling from open towards closed; and
• the gate takes no more than max_rise_time to rise from closed to open if

the motor is continuously on; and
• the gate takes no more than max_fall_time to fall from open to closed if

the motor is continuously on.
The timing information in the last two clauses can not be altogether excluded be-
cause we want the specification to carry the evidence of its own feasibility: if the

12

gate takes too long to rise or fall the gate_schedule will not be satisfiable by any
machine.

The machine must also rely on sensor_settings, to detect the open and closed po-
sitions. The resulting tentative specification is:

Control_Computer_1 {
 output motor_switch, direction;
 input top, bottom;
 rely sensor_settings, gate_movement_1;
 guarantee gate_schedule
}

By excluding motor_temp from the inputs to the machine we have forestalled the
possibility that a perverse programmer might try to use sudden motor overheating as
the means to detect open and closed. The machine must, of course, be used in com-
bination with a sluice gate satisfying the description on which the machine relies:

SGE_Domain_1 {
 input motor_switch, direction;
 output gate_posn, top, bottom;
 guarantee sensor_settings, gate_movement_1

The specification is tentative because we have not yet considered certain concerns
that may demand attention. We will address two of them in the next sections.

3.5 The breakage concern

The description SGE_Domain_1 asserts that the sluice gate equipment guarantees
gate_movement_1. But in reality this guarantee is not unconditional. If an inappro-
priate sequence of commands is issued by the machine the gate equipment’s re-
sponse may be unspecified; or, worse, the mechanism may be strained or may even
break–for example, if the motor is reversed while running, or the motor is kept run-
ning for too long after the gate has reached the limit of its travel.

We can imagine that our earlier investigation of the sluice gate mechanism, fo-
cusing chiefly on its states, somehow failed to consider all possible state transitions.
Or that we conscientiously described its behaviours in response to all sequences of
state transitions, including those that may damage it (to which the response is likely
to be ‘unspecified’ or ‘the mechanism is broken’). In either case we now want to
constrain the machine to evoke only the smaller set of behaviours in which we can be
confident that the sluice gate satisfies gate_movement_1.

• careful_operation describes the behaviours that do not invalidate
gate_movement_1:
• if I, J, and K are any adjacent time intervals, and the motor is on over I

and K, and off over J, J is of length at least min_rest_time; and
• if the motor is on over distinct intervals I and K, and the direction over I

is different from the direction over K, then I and K are separated by an
interval J of length at least min_reverse_time and the motor is off over J;
and

13

• if over any time interval I open holds and motor is on and direction up,
then the length of I must not exceed max_open_rise_time; and

• if over any time interval I closed holds and motor is on and direction
down, then the length of I must not exceed max_closed_fall_time; and

• if open holds over adjacent time intervals I, J, and K, and the motor is
on over I and K, and off over J, then direction must be up over I and
down over K; and

• if closed holds over adjacent time intervals I, J, and K, and the motor is
on over I and K, and off over J, then direction must be down over I and
up over K.

The first condition specifies a required delay between consecutive periods of
running the motor; the second specifies the longer delay required between running in
different directions. The two middle conditions prevent the gate from running under
power into the stops; the last two conditions prevent gratuitous oscillation of the gate
in the open or closed position. Note that the last four conditions are expressed in
terms of open and closed, not of top and bottom. Using top and bottom would mis-
represent the conditions: the danger of breakage arises at the limits of gate travel,
regardless of the desirable property sensor_settings.

We can now give a more exact description of the Sluice Gate Equipment domain
by adding a rely clause:

SGE_Domain_2 {
 input motor_switch, direction;
 output gate_posn, top, bottom;
 rely careful_operation;
 guarantee sensor_settings, gate_movement_1
}

and add the corresponding guarantee condition to the machine specification:

Control_Computer_2 {
 input top, bottom;
 output motor_switch, direction;
 rely sensor_settings, gate_movement_1;
 guarantee gate_schedule, careful_operation
}

The adequacy argument, for the reduced problem from which the Irrigation
Channel has been eliminated, is essentially embodied in the rely and guarantee con-
ditions of the two domains.

3.6 The initialisation concern

Interaction of the machine with the sluice gate equipment will begin when the signal
lines are connected, power is supplied, and the control program is started in the ma-
chine. The gate_schedule requirement rests on an implicit assumption that at that
moment the gate will be closed. The programmer may even add further assumptions–
for example, that initially the motor is off and the direction is up. In short, we have
ignored the initialisation concern–the obligation to ensure that the machine and the
problem world are in appropriately corresponding initial states at system start-up.

14

The initialisation concern is easily forgotten by software developers, perhaps because
initialisation of program state is so easily achieved; initialisation of the physical
problem world may be harder.

Possible approaches to the initialisation concern depend on the characteristics of
the problem world. One is to specify the machine so that it makes no assumptions
about the initial state of the problem world and so can ensure satisfaction of the re-
quirement regardless of the initial problem world state. A second approach is to
introduce an initialisation phase in which the machine brings the problem world into
the initial state assumed by the following operational phase. A third approach is to
detect the current state of the problem world and bring the machine into a corre-
sponding state before operation proper begins. A fourth–usually the least desirable,
but sometimes the only feasible, approach–is to stipulate a manual initialisation
procedure to be executed by the system’s operators, or by an engineer, before the
computer system is started.

For the Sluice Gate problem the second approach is surely feasible. The unre-
duced domain description of the problem world is already made. Examining the
specification of Control_Computer_2 we determine that for the initialisation sub-
problem the requirement is to bring the gate from any arbitrary state into the desired
initial state init_state:

init_state closed ∧ motor_switch = off ∧ direction = up.

The specification of the initialisation machine will rely on sensor_settings and
gate_movement_1, and must guarantee both careful_operation and a post-state in
which init_state holds.

3.7 Combining machines

Making the initialisation explicit we now have these specifications of the initialisa-
tion machine and Control Computer:

Control_Computer_3 {
 input top, bottom;
 output motor_switch, direction;
 pre init_state
 rely sensor_settings, gate_movement_1;
 guarantee gate_schedule, careful_operation
}

Initial_1 {
 input bottom;
 output motor_switch, direction;
 post init_state;
 rely sensor_settings, gate_movement_1;
 guarantee careful_operation
}

Clearly, Initial_1 must be run to completion, followed by Control_Computer_3. But
there are some further points to consider.

15

First, the gate_schedule requirement will not, in general, be satisfied during exe-
cution of Initial_1, because initially the gate may not be closed. The gate_schedule
and irrigation_schedule requirements can therefore apply only to the phase in which
Control_Computer_3 is executing.

Second, it is not enough to ensure that careful_operation holds during execution
of each subproblem machine: it must also hold for their concatenation. We specified
gate_schedule to assume an initial state closed (in subinterval J0), and to begin with
an open phase (subinterval K0). The condition careful_operation might therefore not
hold in the changeover from initialisation: Initial_1 would terminate upon closing the
gate, and Control_Computer_3 could almost immediately begin opening it, failing to
observe the min_reverse_time condition of careful_operation.

Both of these points may be addressable by careful treatment in the separate sub-
problems. If the gate_schedule requirement has enough slack to fit initialisation into
the first interval I0, the requirement can be adjusted so that it can hold over the com-
bined execution. An idle interval of length min_reverse_time can be specified at the
end of Initial_1 execution or at the start of Control_Computer_3.

An alternative approach is much preferable, in which the combination of the two
subproblems is considered as a separable design task in its own right. Satisfaction of
careful_operation must then be guaranteed by the combination; and satisfaction of
gate_schedule is explicitly recognised to be guaranteed only during execution of
Control_Computer_3. Roughly:

Combined {
 input top, bottom;
 output motor_switch, direction;
 guarantee (Initial_1 then init_state then
 Control_Computer_3),
 careful_operation
}

The Combined machine is a distinct machine in its own right. The specifications
of Initial_1 and Control_Computer_3 must be separately examined to reveal the rely
and guarantee conditions of their executions: satisfaction of the Irrigation require-
ment, for example, is a guarantee condition of Control_Computer_3 but not explic-
itly of Combined. Putting the point informally, we are thinking of Combined not as
encapsulating the two other machines but as interacting with them.

4 The Sluice Gate–3: problem decomposition

In general, a problem of realistic complexity and size must be decomposed into sev-
eral subproblems, each with its own machine. The composition needed to give a
coherent system then becomes an explicit task in its own right, as we saw on a tiny
scale in the composition of the initialisation and irrigation subproblems. Here we
discuss a further decomposition of the Sluice Gate problem, again motivated by the
need to address a concern arising in the basic functionality of the system.

16

4.1 The domain reliability concern

A potent source of failure in many systems is a mismatch between the physical prop-
erties of a problem domain and the descriptions on which the design and develop-
ment has been based. A famous example in structural engineering is the collapse of
the space-frame roof of the Hartford Civic Center Arena in 1978. The mathematical
model of the structure, on which the calculations were based, ignored the actual off-
centre placing of the diagonal braces by the fabricator, and also took no account of
the weaker configuration of the space frame bracing at its edges [13]. These discrep-
ancies were a major factor in the failure of the structure. In software-intensive sys-
tems the adequacy argument relies on descriptions–whether explicit or implicit–of
the problem domain properties. The developers’ task is always to construct and use
descriptions that match the reality well enough for the problem in hand and for the
desired degree of dependability.

Any formal description of a physical reality–at the scale that concerns us–can be
contradicted by circumstances. The irrigation water source may dry up, or the water
flow may be diverted by an industrial development nearby. The sluice gate equip-
ment may fail in many different ways. For example:

• a log becomes jammed under the gate;
• a sensor develops an open circuit fault (fails false);
• a sensor develops a short circuit fault (fails true);
• the screw mechanism becomes rusty and the gate jams;
• a drifting piece of rubbish causes the gate to jam in its vertical guides;
• the screw mechanism breaks, allowing the gate to fall freely;
• the direction control cable is cut by a spade;
• the motor speed is reduced by deterioration of the bearings;
• the motor overheats and burns out.
These failures are not completely independent: for example, if the gate becomes

wholly or partly jammed the motor is likely to become overheated. Their probabili-
ties of occurrence depend on external factors: for example, a daily inspection and
cleaning, with regular periodic maintenance, will reduce the probability of deteriora-
tion or jamming of the mechanism.

Identifying the possible failures is inevitably difficult: the gate equipment can fail
in more ways than we can anticipate1. The identification and treatment of the failures
is determined by a judgement that tries to take account of their probabilities and
costs. It is also tightly constrained by the information available to the machine at
interface a. The most ambitious treatment might perhaps attempt to satisfy the irri-
gation requirement as well as possible by reducing the loading on an apparently
failing motor: a two-hour cycle would halve the number of gate motions; a regime of
pausing halfway through each rising or falling journey could allow an overheated
motor time to cool; and so on. Similarly, if there is evidence that a sensor has failed
it may be possible to continue operation by using the previously rejected dead-
reckoning method based on gate rise and fall times. These treatments would be worth

1 A normal design process embodies knowledge of possible and likely failures and of cost-

effective treatments for them: this is one of its crucial benefits.

17

considering only if a high value is placed on satisfying at least an approximation to
the gate_schedule requirement for as long as possible. Less ambitiously, we might
decide that when any significant failure, or impending failure, is detected the essen-
tial requirement is to safeguard the equipment: to avoid burnout, the motor should be
switched off and held off, and an alarm sounded to alert the farmer to the failure.

Whatever choice we make, we can regard the treatment of Sluice Gate Equip-
ment failure as a separate subproblem. For our unambitious version the problem
diagram is shown in Fig. 3.

Fig. 3. Problem diagram for equipment safety on failure

The Irrigation Channel does not appear because it is not relevant to this subproblem.
The phenomenon d at the machine interface is the alarm on/off control. The phenom-
ena a are unchanged from the original problem diagram, but will be handled differ-
ently in some respects: the motor temperature will no longer be ignored; the direction
up/down is now regarded as being controlled by the Sluice Gate Equipment; and the
motor on/off is controlled both by the Sluice Gate Equipment and by the Safety Ma-
chine. (The dual control of the motor raises a concern that we will return to later.)

The requirement Equipment_Safety refers to sounding the alarm in the farmer’s
house (phenomenon f), to the motor on/off setting, and to failure or impending failure
of the Sluice Gate Equipment (phenomena e). The Farmer’s Alarm domain–we will
suppose–is simple: the alarm sounds in the farmer’s house when the alarm control is
on and not otherwise. We plan to rely on this domain property:

Farmer’s_Alarm {
 input alarm_control_on;
 output alarm_sound;
 guarantee alarm_sound ⇔ alarm_control_on
}

The phenomena e of the Sluice Gate Equipment domain, to which the require-
ment refers, are less simple and obvious, and so are the properties that relate them to
the phenomena a.

4.2 Defining and diagnosing equipment failure

In a safety-critical system it would be appropriate to make a careful analysis of the
failure modes of the Sluice Gate Equipment, and of the evidence that would show in

a e

Safety
Machine

Farmer’s
Alarm

Equipment
Safety

Sluice
Gate

Equipment

d f

18

the phenomena a for detection by the machine2. The phenomena f would then be the
specific failures to be detected, in the form of a systematic classification of sensor,
motor and mechanism failures. This careful analysis would be necessary for the
ambitious treatment of failure mentioned earlier, in which the residual capacity for
adequate operation is fully exploited.

Here, less ambitiously, we will merely give a rough verbal definition of the con-
dition to be detected by the Safety Machine:

• equipment_failed: the motor has failed or overheated, or a sensor has failed
in some way, or the mechanism is broken or jammed, or the gate is
obstructed, or the equipment is becoming worn out.

We will not attempt to determine the truth of each disjunct separately, but only the
truth of the whole informal disjunction. The alarm_state to be entered is defined as:

• alarm_state alarm_sound ∧ motor_switch = off
The requirement, Equipment_Safety, is now to maintain the alarm state perma-

nently whenever the equipment has failed:
• Equipment_Safety

 for all time intervals I • (alarm_state over I ⇔
 for some interval J • J adjoins I ∧ equipment_failed over J).

We have not specified the length of interval J. Choosing a minimum value for the
length of J–or, imaginably, a different minimum for each disjunct–is only one of the
difficulties that confront the developer in this subproblem, and we return to it later.
Following the same development structure as we used in the irrigation subproblem,
we aim at a machine specification of the form:

Planned_Safety_Machine {
 input motor_switch, direction, top, bottom;
 output motor_switch, alarm_control;
 rely gate_failure_properties;
 guarantee equipment_safety
}

The gate_failure_properties are those domain properties of the Sluice Gate Equip-
ment that relate the phenomena at a to the condition equipment_failed. A meticulous
description of those properties would trace the consequences observable at a to each
combination of disjuncts of equipment_failed. Here, less conscientiously, we will
merely enumerate the observable conditions that separately or in combination indi-
cate that there has been a failure:

• failure_indicated captures the evidence of failure at interface a:
• top remains false when the motor has been on and up for longer than

max_rise_time; or
• bottom remains false when the motor has been on and down for longer

than max_fall_time; or

2 For example, if the bottom sensor is not on after the gate has been falling for

max_fall_time, the cause may be a log jammed in the gate, motor burn-out, or a failed sensor;
these cases might perhaps be distinguished by different accompanying time patterns of the
motor temperature value.

19

• top remains true when the motor has been on and down for longer than
top_off_time; or

• bottom remains true when the motor has been on and up for longer than
bottom_off_time; or

• top changes value when the motor is off; or
• bottom changes value when the motor is off; or
• top and bottom are simultaneously true; or
• motor_temp exceeds max_motor_temp.

The necessary domain property is, then:

• gate_failure_properties equipment_failed ⇔ failure_indicated
In defining gate_failure_properties we have exercised both knowledge of the

Sluice Gate Equipment domain and judgement about the cost-benefit ratios of alter-
native schemes of failure detection. It is important to note that our chosen definition
of gate_failure_properties is not equal to the negation of the property sen-
sor_settings ∧ gate_movement_1 on which we relied earlier. A failing gate might
still–at least for the moment–satisfy sensor_settings ∧ gate_movement_1. However,
we do demand that in the absence of failure the Combined machine can satisfy its
requirement. That is:

(¬ equipment_failed) ⇒ (sensor_settings ∧ gate_movement_1)

This property captures the physical basis for fault-free behaviour of the gate.
Finally, we must observe that the Safety_Machine has its own initialisation con-

cern, but this time it is not conveniently soluble. If the machine execution begins in a
state in which the motor has already been on and up for some significant time, the
machine can not be expected to detect an immediate infraction of the max_rise_time
limit correctly. We are therefore compelled to rely in part on the least attractive ap-
proach to an initialisation concern: we will insist on a manual procedure to ensure
that the motor is off when execution of the Safety_Machine is started:

Safety_Machine {
 input motor_switch, direction, top, bottom;
 output motor_switch, alarm_control;
 pre motor_switch = off;
 rely gate-failure_properties;
 guarantee equipment_safety
}

4.3 The approximation concern

The choice of a minimum value for the length of the interval J in which equip-
ment_failed is to be detected is only the tip of a large iceberg. Several factors con-
tribute to the approximate nature of failure detection for the Sluice Gate Equipment,
including: physical variability in the manufacture of the gate equipment; variability

20

in operating conditions; and the existence of transient faults that may pass unde-
tected3.

Here we will address only the possibility of transient faults. For example, the top
sensor may be slightly sticky, and on one occasion it may take a little longer than it
should to change from true to false when the gate moves down from the open posi-
tion. Or a piece of floating debris may set the bottom sensor momentarily to true
while the gate is in the open or intermediate position. But these faults will remain
undetected if the machine happens not to sample the sensor value at the critical mo-
ment.

In some cases the approximation concern can be addressed by implicit non-
determinacy in the descriptions and the specification they lead to. The gate_schedule
requirement, for example, stipulated that in each hour the gate should be open for at
least 6 minutes and closed for at least 52 minutes. The remaining 2 minutes accom-
modates the gate’s rise and fall times and provides sufficient tolerance for other
uncertainties in the implementation of the machine specification: the specification is
non-deterministic with respect to behaviour in this remaining 2 minutes.

We may introduce a similar non-determinacy into the machine’s monitoring of
failure_indicated, but this time we make it explicit. To simplify the matter we distin-
guish the following cases:

• no_failure: failure_indicated holds over no interval;
• failure_occurs: failure_indicated holds over at least one interval of non-zero

length;
• persistent_failure: failure_indicated holds over at least one interval of length

exceeding f (where f is chosen to be appropriate for the sluice gate equipment
properties and for the possible periodicity of the machine’s monitoring
cycle).

These cases are related logically:

persistent_failure ⇒ failure_occurs ⇔ ¬ no_failure

We may specify a reduced and non-deterministic machine specification to satisfy
the Equipment_Safety requirement guaranteed by the Safety_Machine. Essentially:

 Equipment_Safety
 (persistent_failure ⇒ alarm_state) ∧ (alarm_state ⇒ failure_occurs)

In other words, the alarm_state must be entered if there is a persistent failure, and
it must not be entered unless there is at least a transient failure. If there is a transient
failure, but not a persistent failure, entry to the alarm_state is permitted but not re-
quired.

3 To these sources of variation the computer adds others such as the finite representation

of reals, discrete sampling of continuous time-varying phenomena, and uncertainties in
process scheduling.

21

4.4 Combining the safety and irrigation requirements

The relationships between the Equipment Safety and Irrigation (including Initialisa-
tion) subproblems are more complex than those between the Irrigation Schedule and
the Initialisation:

• They are concerned with different subsets of the complete problem world’s
phenomena: the Irrigation Schedule is not concerned with the alarm or the
motor_temp sensor.

• They are based on different descriptions of the Sluice Gate Equipment
domain properties: the Equipment Safety subproblem explicitly
accommodates state component values such as top and bottom holding
simultaneously, while the Irrigation subproblem explicitly excludes them by
its reliance on sensor_settings.

• Their requirements will, in some circumstances, be in direct conflict. When
equipment_failed is true the Irrigation requirement may at some time
stipulate that the gate should move from closed to open, while the Safety
requirement stipulates that the motor_switch should be held off.

• Their machines must execute concurrently. While the Irrigation machine is
running (including Initialisation), at least that part of the safety machine that
is responsible for fault detection must be running concurrently.

We will not address all of these matters here, but will restrict ourselves to the re-
quirements conflict alone. In the presence of irreducibly conflicting requirements the
fundamental need is to determine their precedence: which requirement will be satis-
fied? In the present case the answer is simple and clear: Equipment Safety will take
precedence over Irrigation. To express this formally, given only the existing sub-
problem diagrams, is cumbersome. It can be effective to treat the composition itself
as a fresh subproblem in the manner briefly mentioned in [9] and elaborated in [12]
and shown in Fig. 4.

Fig. 4. Composing the irrigation and safety subproblems

a

Compos’n
Machine

Compose
Subproblems

Sluice
Gate

Equipment

Irrigation
& Initialis’n

Machine

Farmer’s
Alarm

Safety
Machine

aI

aS

22

The Safety and Irrigation machines are now regarded as problem domains, along
with the Sluice Gate Equipment and the Farmer’s Alarm. The presence or absence of
an arrowhead on a dashed line from the requirement to a problem domain indicates
respectively that the machine is, or is not, required to constrain the domain’s behav-
iour.

In this composition, the Safety and Irrigation machines are now connected only
indirectly to the other problem domains, their connections being mediated by the
Composition machine, which is itself directly connected to those problem domains.
This reconfiguration makes explicit the distinction between the direct phenomena of
the Sluice Gate Equipment at interface a, and their indirect surrogates at aI and aS,
and allows the Composition machine to control precedence in respect of those phe-
nomena. It is worth observing that a formal treatment of the reconfiguration would
necessitate renaming the specifications of the Safety and Irrigation machines.

The Compose Subproblems requirement is, of course, to enable the several sub-
problem machines to satisfy their respective requirements while imposing the neces-
sary precedence between them in the event of conflict. We will not detail the deriva-
tion of the machine specification here.

5 A recapitulation of principles

In this final section we recapitulate some principles that have already been stated,
and briefly present some others that have so far been only implicit.

5.1 The primacy of normal design

An overarching principle must always be borne in mind: by far the surest guarantee
of development success is normal design practice developed over a long history of
successful products in a specialised application area. Even in a small problem there
are many imponderables to consider in understanding the properties of the physical
problem world. Which failures of the Sluice Gate Equipment are most likely to oc-
cur? How far is the equipment likely to stray from its designed performance in nor-
mal operation over its working life? Which normal operation regimes place least
strain on the equipment? Which degraded operation modes are really useful for
staving off impending failures? What is the best way to separate and then to compose
the subproblems? What are the best choices to make in each stage of problem reduc-
tion?

An established normal design practice does more than provide explicit tested an-
swers to these difficult questions. It also provides the assurance of successful experi-
ence that all the important concerns have been addressed. A normal design practice
does not address all conceivably relevant concerns explicitly: it embodies the lessons
of experience that has shown that some concerns which might, a priori, appear sig-
nificant are in fact not significant and can be neglected without risk of serious system
failure, while others, apparently unimportant, are essential. This assurance is of cru-
cial practical importance. The natural world is unbounded, in the sense that all the
concerns that may conceivably be important can not be exhaustively enumerated.
The designer starting from first principles, however sound they may be, cannot hope

23

to address all the important concerns and only those. This is why the radical de-
signer, in Vincenti’s words [18], “has no presumption of success”, and can hope only
to “design something that will function well enough to warrant further develop-
ment.” Many of the system failures catalogued in the Risks Forum [16] arise from
errors that are perfectly obvious–but obvious only after they have been highlighted
by the failure.

5.2 Software developers and the problem world

The distinction between the machine and the problem world is fundamental. It is a
distinction between what the programmer sees and what the customer or sponsor
sees; between what is to be constructed and what is, essentially, given. It is not a
distinction between computers and everything else in the world: in Fig.4 the Irriga-
tion and Safety machines are treated as problem domains although each one is cer-
tainly to be realised as software executing on a general-purpose computer–probably
sharing the same hardware with each other and with the Composition machine.

Our discussion of the development has focused entirely on the problem world in
the sense that all the phenomena of interest–including those shared with the ma-
chine–are phenomena of the problem world. The requirements, the problem domain
properties, and even the machine specifications, are expressed in terms of problem
world phenomena. We have stayed resolutely on the problem side of Dijkstra’s
firewall.

It may reasonably be asked whether in our role as software developers we should
be so concerned with the problem world. We may be more comfortably at home in
an abstract mathematical problem world, in which the problem is one of pure graph
theory or number theory; or in an abstract computer science problem world, devel-
oping a theorem prover or a model checker. But what business have we with irriga-
tion networks and the electro-mechanical properties of sluice gates?

The answer can be found in the distinction between the earlier, richer, descrip-
tions of the problem world properties–all of them contingent and approximate–and
the later, formal and more abstract descriptions of the rely and guarantee conditions
used in the machine specifications. The later descriptions must be formal enough and
exact enough to support a notion of formal program correctness with respect to the
specifications. Constructing them from the richer descriptions must be a task for
software developers, even if responsibility for the richer descriptions and for the
choice of the properties reliable enough to to be formalised may often–perhaps al-
most always–lie elsewhere. The domain expert and the software expert must work
together here.

5.3 Deferring subproblem composition

In the preceding sections we followed the principle that subproblems should be
identified and their machines specified before the task of composing or recombining
them is addressed. The composition of the Initialisation and Irrigation subproblems
was considered only after each had been examined in some depth; and the further
composition of these subproblems with the Safety subproblem was similarly de-
ferred.

24

This postponement of subproblem composition is not, by and large, the common
practice in software development. More usually consideration of each subproblem
includes consideration of how it must interact, and how it is to be composed, with the
others. The apparent advantage of this more usual approach is that subproblem com-
position ceases to be a separate task: effort appears to be saved, not least because
subproblems will not need reworking to fit in with the postponed composition.

The advantage of the common practice, however, is more apparent than real, be-
cause it involves a serious loss of separation of concerns. When composition is post-
poned, subproblems can be seen in their simplest forms, in which they are not adul-
terated by the needs of composition. Sometimes the simplest form of a subproblem
can be recognised as an instance of a well-known class, and treated accordingly: the
subproblem, considered in isolation, may even be the object of an established normal
design practice. If all the subproblems can be treated in this way, the radical design
task becomes radical only in respect of the subproblem composition. Whether the
subproblems are well known or not, postponed composition is itself easier, simply
because the subproblems to be composed have already been analysed and under-
stood. By contrast, when composition is considered as an integral part of each sub-
problem, the composition concerns–for example, subproblem scheduling and prece-
dence with respect to requirement conflicts–must be dealt with piecemeal in a
distributed fashion, which makes them harder to consider coherently.

5.4 Separating the error and normal treatments

Separating the development of normal operation of the sluice gate from the detection
and handling of problem domain failures led to two distinct descriptions of problem
domain properties. The properties of the correctly functioning equipment are cap-
tured in the gate_movement and sensor_settings (and also gate_movement_1) de-
scriptions; its properties when it is failing are captured in the gate_failure_properties
description. The two descriptions capture different and conflicting views of the do-
main, useful for different purposes.

This separation is salutary for the usual reasons that justify a separation of con-
cerns. Each description separately is much simpler than they can be in combination;
and each contains what is needed to carry through the part of the adequacy argument
that relates to its associated subproblem.

It is worth observing that this kind of separation is hard to make in a traditional
object-oriented style of development. The original basic premise of object orientation
is that software objects represent entities of the problem world, and each one should
encapsulate all the significant properties of the entity that it represents. Adopting this
premise requires the developer to combine every view of the entity, in all circum-
stances and operating modes, in one description. However, the patterns movement
[6; 2; 5], showing a more insightful approach, has been busily working to discard
this restriction by recognising the value of decorator and other such patterns.

5.5 Problem scope and problem domains

We have assumed until now, as the basis of our discussion, that the farmer has cho-
sen an irrigation schedule and accepted that this is the requirement to be satisfied by

25

the development. Why should we not instead investigate the farmer’s larger purpose,
which is, probably, to grow certain crops successfully? And, beyond that, to run the
farm profitably? And, going even further, to provide eventually for a financially
secure retirement? In short, how can we know where to place the outer boundary of
the problem? The inner boundary, at the machine interface, is fixed for us in our role
as software developers: we undertake to develop software, but not to assemble the
computer hardware or to devise new chip architectures or disk drives. But the outer
boundary in the problem world is harder to fix. What, so far as the developers are
concerned, is the overall requirement–that is, the ‘real problem’? How much of the
problem world do we have to include?

The outer boundary is restricted by the responsibilities and authority of the cus-
tomer4 for the system. If our customer were the company that manufactures the sluice
gate equipment, we would probably be concerned only with operating the gate ac-
cording to a given schedule, and not at all with the irrigation channel. Sometimes the
customer chooses to present the developers with a problem that has already been
reduced: our customer the farmer, we supposed, had already performed at least one
reduction step by eliminating consideration of the crops to be irrigated. Whenever
such a prior reduction has taken place, we can, of course, deal only with the corre-
sponding reduced requirement: if the requirement is expressed in terms of crop
growth, then the crops must appear explicitly as a domain in our problem world.

References

 [1] Broy M, Stølen K (2001) Specification and Development of Interactive Systems,
Springer-Verlag

 [2] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stahl M (1996) Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley

 [3] Buxton JN, Randell B (eds) (1970) Software Engineering Techniques, Report on a
conference sponsored by the NATO SCIENCE COMMITTEE, Rome, Italy, 27th to 31st
October 1969, NATO

 [4] Dijkstra EW (1989) On the Cruelty of Really Teaching Computing Science,
Communications of the ACM 32:12, pp 1398-1404

 [5] Martin Fowler M (1996) Analysis Patterns: Reusable Object Models, Addison-Wesley
 [6] Gamma E, Helm R, Johnson R, Vlissides J (1994) Design Patterns: Elements of Object-
Oriented Software, Addison-Wesley

 [7] Hall JG, Rapanotti L, Jackson M (2005) Problem Frame semantics for software
development, Software and Systems Modeling, 4:2, pp189-198

 [8] Hayes IJ, Jackson MA, Jones CB (2003) Determining the specification of a control
system from that of its environment. In: Araki K, Gnesi S, Mandrioli D eds, Formal
Methods: Proceedings of FME2003, Springer Verlag, Lecture Notes in Computer Science
2805, pp154-169

 [9] Jackson M (2003) Why Program Writing Is Difficult and Will Remain So. In Information
Processing Letters 88 (proceedings of “Structured Programming: The Hard Core of

4 We use the term ‘customer’ as a convenient shorthand for the people whose purposes and

needs determine the requirement: that is, for those who are often called ‘the stakeholders’.

26

Software Engineering”, a symposium celebrating the 65th birthday of Wladyslaw M
Turski, Warsaw 6 April 2003), pp13-25

 [10] Jones CB (1981) Development Methods for Computer Programs Including a Notion of
Interference, PhD thesis, Oxford University, June 1981: Programming Research Group,
Technical Monograph 25

 [11] Jones CB (1983) Specification and design of (parallel) programs, IFIP’83 Proceedings,
North-Holland, pp321–332

 [12] Laney R, Barroca L, Jackson M, NuseibehB (2004) Composing Requirements Using
Problem Frames. In: Proceedings of the 2004 International Conference on Requirements
Engineering RE’04, IEEE CS Press

 [13] Levy M, Salvadori M (1994) Why Buildings Fall Down: How Structures Fail, W W
Norton and Co

 [14] Mahony BP, Hayes IJ (1991) Using continuous real functions to model timed histories.
In: Proceedings of the 6th Australian Software Engineering Conference (ASWEC91),
Australian Computer Society, pp257-270

 [15] Naur P, Randell R eds (1969) Software Engineering: Report on a conference sponsored
by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7th to 11th October 1968,
NATO

 [16] Neumann PG, moderator, Forum On Risks To The Public In Computers And Related
Systems, http://catless.ncl.ac.uk/Risks

 [17] Rogers GFC (1983), The Nature of Engineering: A Philosophy of Technology, Palgrave
Macmillan

 [18] Vincenti WG (1993) What Engineers Know and How They Know It: Analytical Studies
from Aeronautical History, paperback edition, The Johns Hopkins University Press,
Baltimore

Structure for Dependability: Computer-Based Systems from an
Interdisciplinary Perspective, Besnard D, Gacek C and Jones CB
eds, pages 228-253, Springer, ISBN 1-84628-110-5, 2006

