Datamation February 1968

the% forum

The Forum is offered for readers who want to express their opinion on any aspect
of information processing. Your contributions are invited.

THE
NEED FOR
IMPRECISION

The growing interest in decision tables
as a tool for programming business
dp applications is a symptom of disen-
chantment with the conventional tech-
niques—by which | mean logic flow-
charts and procedural languages. I'm
all on the side of the disenchanted;
these conventional techniques are hard-
ly ever the right ones to use in business
dp; mostly they're used because no al-
ternative is available, and because pro-
grammers are pretty conservative peo-
ple anyway. But it seems to me that we
are overlooking one of the most im-
portant disadvantages of procedural
programming, and that the benefits we
could gain by eliminating it are in dan-
ger of being missed.

The usual indictment runs like this.
Writing procedural programs is diffi-
cult, and unreasonably so. Given a spec-
ification, the programmer is required
to devise a logical structure which
is related to it in a particular, non-ob-
vious way; the complexity of this rela-
tion accounts for most of the difficul-
ties. Devising the structure is itself an
arduous activity for all but the simplest
specifications; it is easy to make mis-
takes and, in repairing them, to cause

fresh errors. The procedure defined by
the logical structure will usually have
several properties which the program-
mer did not intend; when conditions
arise which he has not foreseen, these
additional properties are likely to cause
trouble. Also, it is impossible to check
the operation of the procedure on a
particular set of input data except by
simulating the program (or actually run-
ning it); there is no analytical method
of debugging.

So far, so good; the case for finding
a better, nonprocedural technique is
well-founded. But the indictment does
not go far enough: the worst crime is
committed in our attempts to mitigate
the difficulties above. Because pro-
gramming is so difficult, we have been
driven to adopt a rigorous method-
ology. We decree that specifications
should be complete and precise; that
they should be “frozen’” while the pro-
gram is being developed; they should
be self-consistent and exhaustive, and
without redundancies. We make these
rules because without them we may not
be able to write programs at all, But
they are inherently bad rules, impos-
ing constraints that are irksome and

often unacceptable. As soon as pos-
sible, we should kick over the traces and
be free.

Unfortunately the prisoner doesn’t al-
ways notice when the door of his cell
is opened; and too often he prefers
the security of his prison to the more
demanding air of freedom. In a typical
article on decision table techniques we
read: “Tables force the analyst to make
a complete and accurate statement of
the problem logic . . . tables provide
for better optimization, since computer
programs can check tables for com-
pleteness, redundancy and contradic-
tions.” This seems to me fo be very
wrong-headed. We should be positively
looking for and developing program-
ming methods that do allow inconsis-
tency, redundancy, ambiguity and in-
completeness; we should recognize that
these seem to be vices only because
the error-prone techniques of proced-
ural programming make them so.

But allowing that we need no longer
call them vices doesn’t in itself make
them virtues. It would be ludicrous to
complicate our dp systems by wantonly
introducing confusion and inconsistency
info situations where none existed be-
fore; and we must recognize that some
problems can only be solved by ex-
treme rigor and precision. My theme is
concerned with those situations where
confusion and inconsistency are inher-
ent elements of the problem and where
we cannot hope to write successful pro-
grams unless we are able to deal prop-
erly with these factors.

Consider, first, those cases where no
specification can be agreed for the pro-
gram to be written; the most obvious
instance is machine translation of nat-
ural human languages. We know what
we are trying to achieve, but we can-
not pin it down in any but the broadest
of specifications; arguably, many of the
most sophisticated attempts to devise
systems for machine translation have
failed precisely because they have re-
lied on a detailed specification (usually
of some lexical or parsing algorithm).
When the specification proves faulty,
the techniques used allow no substan-
tial modification without complete re-
design. Programming in this fashion is
like playing golf with crazy rules—rules
which demand that if you don't hole
in one you must go back and drive
from the tee again; to play like this is
to miss the crucial point that makes golf
possible: you get to the hole by a con-
vergent series of strokes, and it doesn't



the forum

matter if you can’t see the hole from
the tee.

Consider, next, the specification that
is incomplete. In a complex payroll ap-
plication, for example, the rules deter-
mining what each employee is to be
paid will be based on legal require-
ments, on piecemeal agreements with
several labor unions, on practical dif-
ficulties, such as widely dispersed pay-
ing points, and so on. When the sys-
tems analyst tries to formulate the pro-
gramming specifications he discovers
that these rules are not easily reduced
to an ordered scheme; in particular, his
attempts to do so may reveal areas in
which the rules are simply not defined
at all. He may ask “how is gross pay
calculated for an employee on code 17
who is working on a scheduled rest-day
when that day happens also to be a
public holiday, and the total number
of hours worked is less than a normal
working day?” And there may be no
answer to this question because the
case has never been considered before.
The analyst has to put the question only
because he needs an artificially com-
plete and tidy specification.

Then consider the inconsistent speci-
fication. It is common for the rules of
a manual data processing system to
develop by allowing exceptions to the
general rules, then exceptions to the
exceptions, and so on. The systems ana-
lyst cannot represent this situation cor-
rectly by distilling out of it a firm and
consistent specification; he needs to be
able to describe the system naturally,
in its own terms.

Too often in the past computer sys-
tems have been designed in defiance
of their users’ needs and wishes. It is
too easy to castigate the user who isn’t
sure what he wants, who can’t define
his needs precisely, who seems to be
pursuing incompatible objectives. Of
course he is often just being muddle-
headed about a simple problem, or too
lazy to think it out properly; of course
he is often pursuing a confused policy
that badly needs to be rationalized. But
often he is recognizing that the com-
plexity of his task needs a more subtle
and flexible treatment than the analyst
and programmer seem able t6 provide.
One of our most important aims in mov-
ing away from procedural techniques
should be to equip ourselves to meet
this need.

—M. A. JACKSON
John Hoskyns & Co., Ltd.

Reprinted from DATAMARTION, February 1968
Copyright 1968, F. D. Thompson Publications, Inc., 35 Mason St., Greenwich, Conn. 06830



