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1. Introduction

The Railroad Crossing problem has been proposed as a benchmark for the compar-
ison of different formalisms for real-time system specification [5]. This paper uses
the problem to illustrate an approach based on the combination of Timed State-
charts [12], [11], Real Time Logic [9] and automated theorem proving techniques
with Proofpower HOL [6]. We discuss the applicability of the approach according
to a number of criteria for expressivity and usability which have been identified in
[3].

Our approach involves the derivation of axiomatisations in Real Time Logic from
Timed Statecharts; theorem proving is then used to verify that timing properties
for safety and utility follow from the axioms. Proofs are initially developed in a
“rigorous”, rather than fully formal way; that is, they are sketched on paper, with
steps which appear obvious, or which follow from the properties of arithmetic, omit-
ted. This rigorous proof is then used as a design for a proof script which provides
the missing logical detail. Having two proofs, one rigorous and readable, the other
unreadable but fully formal, enables us to make the best use of the capabilities of
the user and of the theorem proving tool. Current provers are unable to extract
rigorous arguments from their internal representation of a proof. Provers which do
a large amount of reasoning on their own do not necessarily help, since proofs often
hinge crucially on very simple pieces of logical reasoning. The “cornerstones” of a
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proof need to be brought into relief by the author of the proof, so that others can
understand it.

The Railroad Crossing problem was first proposed as an example application of
the Modechart formalism [10]. This formalism is similar to ours, though there
are important differences. In the course of the paper we make some comparisons
between our formalism and Modecharts.

Our main concern in this paper is with the specification of temporal behaviour.
System functionality is dealt with in separate parts of our formalism, which we do
not cover here.

2. Formal Approach

The principles of our approach have been reported in [1], [4] and will be briefly
reviewed here. Timing behaviour is expressed in terms of events, states, and tran-
sitions between states. State transitions are instantaneous; they can be triggered
either by the occurrence of an event, or after some time has elapsed without the
system having changed state. In the latter case, this amount of time is described
as an interval with a lower and an upper bound; the time spent in the state before
the transition is triggered is at least greater than or equal to the lower bound and
cannot exceed the upper bound.

Transitions triggered by events occur instantaneously with the event. Although
it is problematic to argue that a cause and its effect can be simultaneous, the
assumption can be understood in terms of the discrete time-base required in RTL.
We assume that the event and transition appear to occur at the same time because
the delay between them is too small (i.e. less than one time unit) to be measurable
on the given discrete time-scale.

Real Time Logic [8], [7] is a formal logic for reasoning about the timing be-
haviour of real-time systems. It deals with time quantitatively, and so has no
modal operators. RTL is used to reason about individual occurrences of events; its
basic concepts are events, actions (represented by the occurrences of start and stop
events), and state predicates. The occurrence relation θ captures the notion of time:
θ(ev , i , t) asserts that the ith occurrence of event ev happens at time t . Formulas
in RTL use the universal and existential quantifiers and first order logic.

Temporal behaviour expressed in Timed Statecharts can be translated into a set
of RTL axioms describing the properties of each state machine. Also produced are
axioms which describe how machines drive other machines through communication.
We term these axioms “progress axioms”.

The proof theory of RTL can then be employed in the validation of the global
timing constraints imposed on the system using our simple two-stage proof method.
We use Proofpower HOL [6], though any prover in which RTL can be axiomatised
is suitable. By using RTL we have adopted the event-action model of computation
as proposed by [8].

As already mentioned, the use of Timed Statecharts and RTL limits us to the
specification and verification of temporal behaviour; some other notation is needed
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for specifying the functionality of system activities. Fortunately, several suitable
formalisms already exist; we have found Z satisfactory, for example.

However, because the work reported in this paper is concerned with temporal
behaviour, activities are not covered in our example; but in brief, we associate
activities with states, and assume that they take a non-zero time to execute. Atomic
actions, such as assignments to variables, on the other hand, are associated with
transitions, rather than states, thus keeping the number of states to a minumum.
Atomic actions are assumed to be instantaneous.

In timed statecharts, communication between state machines is established through
the detection of transition events, which in turn trigger transitions in other ma-
chines. In the label of a transition we make a simple distinction between the trigger
and its effect .

The trigger may be an event, with or without a condition, or a time interval; in
other words, there is a distinction between event-triggered and non-event-triggered
transitions. Variables may be tested in the condition of a trigger.

The effect includes any events generated by the transition. In addition, events
marking the exit of the source state and the entry of the target state are generated.

Activities “residing” in states take a (non-zero) minimum amount of time to
execute, which is expressed by the lower bound on a transition out of that state.
The upper-bound is used to specify the maximum execution time.

2.1. Brief Comparison with Modecharts

Although our formalism is similar to the Modechart formalism [7], [10], it differs in
two major ways: firstly, in the way that communication between state machines is
represented, and secondly, we do not distinguish between mode and state variable.

Communication happens when the instantaneous generation of events by the ef-
fect part of a transition label in one machine triggers transitions in other machines.
In Modecharts, communication occurs through the updating and subsequent read-
ing of state variables. State variables cannot change value instantaneously. This
has several implications, the most obvious of which is that communication cannot
induce mutual cycles in Modecharts, i.e. a machine cannot drive another machine
which in turn drives it cyclically, without time progressing.

Nonetheless, the distinction between state variable and mode which is made in
Modecharts is, we feel, largely unnecessary; we have found that given the right in-
terpretation, the use of RTL state variables alone is sufficient for the representation
of the temporal behaviour captured by a state diagram. However, we have had
to alter the RTL logic slightly: we assume that it is possible for a state variable
to make an instantaneous transition from true to false or vice versa, whereas, in
ordinary RTL, state variables must hold their value for a measurable amount of
time. In Appendix A, the state transition axioms of RTL have been weakened to
allow a state variable to change state instantaneously.

This alteration enables us to model a state as a simple state variable, which is
true when the state is entered, and goes false when it is exited. Otherwise, our
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states are treated in the same way as Modecharts modes, and can be entered and
exited simultaneously.

We are therefore forced to deal with the possibility of infinite cycles occurring
within machines without time progressing. We do this by imposing constraints on
the problem, rather than on the formalism: a tractable problem must guarantee
either that a minimum amount of time is spent in a certain state, (imposing an
interval with a lower bound greater than 0 on the transitions out of the state), or
that consecutive occurrences of the same event are separated by some interval (this
is an imposition made by the model of the environment).

In section 4 we show how reasonable assumptions about the Railroad Crossing
problem can enable us to ensure that infinite cycles cannot occur.

2.2. Summary—Assumptions of the formalism

Before presenting our axiomatisations and proofs, we briefly review the assumptions
underlying our formalism:

1. Transitions are instantaneous;

2. Arcs that leave and enter the same state S (loops) may mark the occurrence
of an event, but they do not generate events of the form S := F; i.e. the state
does not change;

3. Events that trigger a transition, or that are generated by a transition, occur
instantaneously with that transition;

4. Labels on a transition are of the form:
event [condition]/actions or [l , u]/actions
Any part of the label is optional; the actions on the right side of the label can
consist of the creation of an event or represent the invocation of some operation
(typically consisting of assignment to variables).

5. Time-consuming activities are associated with a state; the start of the operation
corresponds to the transition into that state and the end of the operation cor-
responds to the exiting of that state. We assume that increasing or decreasing
the value of a variable in a transition’s action takes no measurable time.

6. The possibility that an event e which causes a transition in some state S, occurs
while the system is not in state S, is ignored. Such events have no impact on the
progress of the state machine, even though the possibility that e occurs outside
S may exist in the problem domain.

7. State variables may transit from true to false instantaneously. This makes the
transition axioms and state predicate definitions of RTL invalid. We therefore
use weaker axioms. In each transition axiom described in [9] we replace < by
≤. We also add an additional axiom stating that a variable may only be either
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true or false at time zero (though recall that it may instantaneously change its
value after that).

3. Derivation of axioms from Timed Statecharts

This section presents rules for the translation of our Timed Statecharts into RTL
theories, forming the basis for the automatic derivation. The set of derived axioms
is by no means minimal; however, systematic derivation can at least guarantee that
the theory is complete.

Each machine will have an initial state and possibly a condition set upon initial-
isation. These are translated into initial state axioms.

For each state, there will be input and output axioms for every outgoing and
incoming transition, respectively. These axioms only apply to transitions between
different states. For loops, that is, transitions where the source and the target state
are the same, the axioms will assert the effect of the labels without generating the
exit event of the state.

Progress axioms guarantee that, for each individual machine, a transition is picked
from the set of transitions which are currently enabled. Stability axioms capture
the fact that when no stimuli occur, a machine remains in its current configura-
tion. Thus stability and progress axioms capture our semantics for the firing of
transitions.

3.1. A syntax for the definition of Statemachines

Each individual statemachine has an initial state associated with an initial condi-
tion.

Machine :: initial : StateName
initialcond : Condition

states : PState
State :: input : P(Source × Label)

name : StateName
output : P(Target × Label)

Source = StateName
Target = StateName

A label will have a trigger and an effect. The trigger will be either an enabling
condition or a delay. We disallow the use of an enabling condition and a delay in
the same label. We have not come across any example where such a combination
is necessary and the translation rules for it would be unnecessarily complex. The
effect of a transition will be the generation of one or more events. Atomic actions
such as assignments are treated as such events.

Triggers can therefore be divided into immediate, for transitions which are taken
when an event occurs if a certain condition is true, and delayed. The latter transi-
tions are taken within an interval relative to the time the source state was entered.
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Label :: trigger : ITrigger | DTrigger
effect : EventName∗

ITrigger :: event : EventName
condition : Condition

DTrigger :: l : N

u : N | ∞
A semantic constraint is that l has to be less or equal than u.

3.2. Translation Rules

The rules defined below apply to single state machines; where several state machines
are specified this set of rules has to be applied to each individually. This assumes
that the states of each machine are unique, and form disjoint sets.

In the rule schematas below (see Figure 1), TRIGGER should be expanded for
either an immediate label type (e[c], which we term ITRIGGER) or a delayed label
type ([l , u], DTRIGGER). The expansion is as follows (t refers to the variable t
bound in the expression where the expansion is done)1:

TRIGGER
e[c] (ITRIGGER) ∃ j : Occ • θ(e, j , t) ∧ holds(c, t)
[l , u] (DTRIGGER) ∃ t1 : Ti • θ(S1 := T , i , t1) ∧ t1 + l ≤ t ≤ t1 + u

EFFECT should also be expanded as follows (again, t refers to the variable t
bound in the expression where the expansion occurs):

EFFECT
∃ i . . . k : Occ • θ(e1, i , t) ∧ . . . ∧ θ(en , k , t)

The derived RTL axioms fall into six categories: initial state axioms, output
axioms, input axioms, progress axioms, loop axioms, and stability axioms.

3.2.1. Initial State Axioms

A state is either an initial state or a non-initial state. For each state there will be
an initial state axiom.

A condition can be true or false on entering the initial state; we will treat changes
in the truth value of conditions as events. There is one single initial state in each
machine; the initial state is initially true (see Figure 1, diagram(i)),

Icond θ(cond1, 1, 0)
I1 θ(S1 := T , 1, 0)

all the other states (Si), in the machine, are initially false.

Ii θ(Si := F , 1, 0)
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Figure 1. Schemas for the different types of rules for statemachines
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Because they are easier to grasp, we will give the rules for single output and single
input transitions first. Note however, that they are simply special cases of the rules
for multiple output and multiple input transitions which we give later.

3.2.2. Output Axioms

Single Output
A single output transition will generate the following set of axioms (see Figure 1,

diagram(ii)):

• SO1—a rule relating exiting the source state (S1) with entering the target state
(S2);

• SO2—a rule that relates exiting the source state with the trigger of the transi-
tion;

• SO3—a rule that relates exiting the source state with the effect of the transition.

SO2i and SO2d show the expansion of SO2 for an immediate and a delayed trigger,
respectively.

The generation rules assume that S1 is initially true; if this is not the case then
we have to ensure that i > 1 on the left hand side of the implication, and in SO2d

the index i will be replaced by i − 1 on the expansion of TRIGGER on the right
hand side. Here, these two different versions of SO2d are shown explicitly.

SO1 ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒ ∃ j : Occ • θ(S2 := T , j , t)
SO2 ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒ TRIGGER
SO2i ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒ ∃ j : Occ • θ(e, j , t) ∧ holds(c, t)
SO2d ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒

∃ t1 : Ti • θ(S1 := T , i , t1) ∧ t1 + l ≤ t ≤ t1 + u
SO2d ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t) ∧ i > 1⇒

∃ t1 : Ti • θ(S1 := T , i − 1, t1) ∧ t1 + l ≤ t ≤ t1 + u
SO3 ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒ EFFECT

SO3 can be strengthened considerably given some extra information on the event
generated in EFFECT ; if this event is generated by this transition exclusively, the
implication can be replaced by an equivalence. In this case, the occurrence index
on the right side of the equivalence will be the same as that on the left (for an
initially false state the index on the right hand side will be i − 1 and there is the
imposition of i > 1).
Multiple Outputs

For each state S1 with multiple output transitions the following axioms will apply
(see Figure 1, diagram(iii)):
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• MO1—leaving S1 implies that one of the labels is true and the corresponding
target state is entered;

• MO2—leaving S1 implies that one of the effects (in the labels) is generated and
the corresponding target state is entered.

Once again, these rules assume that S1 is initially true; if this is not the case,
then there is the imposition of i > 1, and the index i inside TRIGGER on the
right hand side of the implication is replaced by i − 1. For example, in MO1, if
TRIGGER expands to a delayed trigger, then i in the expansion should be i − 1
as in:
(. . . θ(S1 := T , i − 1, t1) ∧ . . .)

MO1 ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒
TRIGGER2 ∧ ∃ j : Occ • θ(S2 := T , j , t) ∨ . . . ∨
TRIGGERn ∧ ∃ j : Occ • θ(Sn := T , j , t)

MO2 ∀ i : Occ,∀ t : Ti • θ(S1 := F , i , t)⇒
EFFECT2 ∧ ∃ j : Occ • θ(S2 := T , j , t) ∨ . . . ∨
EFFECTn ∧ ∃ j : Occ • θ(Sn := T , j , t)

Note that in the single output rules we have three rules (one for the target, one for
the trigger, and one for the effect) instead of two; MO1 is a generalisation of SO1

and SO2, and MO2 is a generalisation of SO1 and SO3.

3.2.3. Input Axioms

Single Input
A single input transition will correspond to the following set of axioms (see Fig-

ure 1, diagram(ii)):

• SI1—a rule that relates entering the target state with leaving the source state;

• SI2—a rule that relates entering the target state with the trigger of the transi-
tion;

• SI3—a rule that relates entering the target state with the effect of the transition.

SI2i and SI2d show the expansion of SI2 for an immediate and a delayed trigger,
respectively. In all these axioms, we assume that S2 is initially false ; if S2 is initially
true then we must add the condition i > 1.

SI1 ∀ i : Occ,∀ t : Ti • θ(S2 := T , i , t)⇒ ∃ j : Occ • θ(S1 := F , j , t)
SI2 ∀ i : Occ,∀ t : Ti • θ(S2 := T , i , t)⇒ TRIGGER
SI2i ∀ i : Occ,∀ t : Ti • θ(S2 := T , i , t)⇒ ∃ j : Occ • θ(e, j , t) ∧ holds(c, t)
SI2d ∀ i : Occ,∀ t : Ti • θ(S2 := T , i , t)⇒

∃ t1 : Ti ,∃ j : Occ • θ(S1 := T , j , t1) ∧ t1 + l ≤ t ≤ t1 + u
SI3 ∀ i : Occ,∀ t : Ti • θ(S2 := T , i , t)⇒ EFFECT
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Multiple Inputs
For each state S1 with input transitions the following axioms apply (see Figure 1,

diagram(iv)):

• MI1—entering S1 implies that one of the input labels is true;

• MI2—entering S1 implies that one of the effects has been generated.

In all these axioms, we assume that S1 is initially false ; if S1 is initially true then
we must add the condition i > 1. We assume that S2 (. . . Sn) is initially true; if
this is not the case then j > 1 (on the right hand side), and for a delayed trigger
the expansion is: ∃ t1 : Ti • θ(S2 := T , j − 1, t1) ∧ t1 + l ≤ t ≤ t1 + u

MI1 ∀ i : Occ,∀ t : Ti • θ(S1 := T , i , t)⇒
∃ j : Occ • TRIGGER2 ∧ θ(S2 := F , j , t) ∨ . . . ∨
∃ j : Occ • TRIGGERn ∧ θ(Sn := F , j , t)

MI2 ∀ i : Occ,∀ t : Ti • θ(S1 := T , i , t)⇒
EFFECT2 ∧ ∃ j : Occ • θ(S2 := F , j , t) ∨ . . . ∨
EFFECTn ∧ ∃ j : Occ • θ(Sn := F , j , t)

Note that MI1 is a generalisation of SI1 and SI2, and MI2 is a generalisation of SI1

and SI3.

3.2.4. Progress axioms

Progress for single output

• PSO1—there will be a progress axiom for each single output transition but this
axiom will be different for immediate and delayed transitions.

PSO1i—Progress axiom for single output immediate transition (i.e. the trigger,
ITRIGGER, is of type e[c]).

As before, we need two different versions of PSO1i , the first for states that are
initially true, and the second for states that are initially false2.

PSO1i ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧ ITRIGGER ⇒ θ(S1 := F , i , t)
PSO1i ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧ ITRIGGER ⇒ θ(S1 := F , i + 1, t)

PSO1d—Progress axiom for single output delayed transitions (i.e. the trigger is
of type [l,u]).

As before, PSO1d has two versions, the first for states that are initially true, and
the second for states that are initially false.

PSO1d ∀ i : Occ,∀ t : Ti • (S1 := T , i , t)⇒
∃ t1 : Ti • θ(S1 := F , i , t1) ∧ t + l ≤ t1 ≤ t + u

PSO1d ∀ i : Occ,∀ t : Ti • (S1 := T , i , t)⇒
∃ t1 : Ti • θ(S1 := F , i + 1, t1) ∧ t + l ≤ t1 ≤ t + u
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Note in the second version that if S1 is initially false, the right hand side of the
implication expands to:
θ(S1 := F , i + 1, t1) ∧ . . .

Progress for multiple outputs
For multiple outputs we consider immediate and the delayed transitions sepa-

rately.
Given several exit transitions, some delayed and some immediate, we require

that when an immediate transition is enabled due to an event occurrence and/or
a condition being true, the state is indeed exited. However, if a delayed transition
is also ready, we do not want the axioms to discount the possibility of the delayed
transition being the one that is actually taken. ITRIGGER2 ∨ . . . ∨ ITRIGGERn

are the triggers of the immediate transitions out of S1.

PMO1i ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧
(ITRIGGER2 ∨ . . . ∨ ITRIGGERn)⇒ θ(S1 := F , i , t)

or (for initially false states)

PMO1i ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧
(ITRIGGER2 ∨ . . . ∨ ITRIGGERn)⇒ θ(S1 := F , i + 1, t)

Furthermore, if there are several delayed transitions out of a state, progress im-
plies that the state must be exited within some time which is within the minimum
of all the upper bounds (u2, . . . , un), relative to the time of entry to that state.

PMO1d ∀ i : Occ,∀ t : Ti • θ(S1 := T , i , t)⇒
∃ t1 : Ti • θ(S1 := F , i , t1) ∧ t1 ≤ t + minimum(u2, . . . , un)

or (for initially false states)

PMO1d ∀ i : Occ,∀ t : Ti • θ(S1 := T , i , t)⇒
∃ t1 : Ti • θ(S1 := F , i + 1, t1) ∧ t1 ≤ t + minimum(u2, . . . , un)

3.2.5. Loop Axioms

The previous axioms apply to transitions with disjoint source and target states. In
the case that the source and target are the same state, there is no progress as such,
i.e. the state is not exited and re-entered. Instead an axiom that relates the trigger
and the effect in the label of the loop will be generated. Only an immediate type
trigger is allowed in this case; if S1 is initially false ¬θ(S1 := F , i + 1, t).

L1 ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧ TRIGGER ⇒
EFFECT ∧ ¬θ(S1 := F , i , t)
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Where there are other transitions exiting state S1 then the generated axiom is as
follows (¬θ(S1 := F , i + 1, t) if S1 is initially false):

L1 ∀ i : Occ,∀ t : Ti • ini(S1, i , t) ∧ TRIGGER2

¬(ITRIGGER3 ∨ . . . ∨ ITRIGGERn) ∧
t1 ≤ t < t1 + minimum(l3, . . . , ln)⇒

EFFECT2 ∧ ¬θ(S1 := F , i , t)

Note that t1 is bound in the definition of ini . . . θ(S1 := T , i , t1).

3.2.6. Stability Axioms

As a complement to the progress axioms, the stability axioms state that if no exit
transition is enabled, the state will not be left.
Stability for single output

Stability axiom for single output immediate (the trigger, ITRIGGER, is of type
e[c]) transition3.

SSO1i ¬ITRIGGER ⇒ ¬∃ i • θ(S1 := F , i , t)

A stability axiom for the single output delayed transition (where the trigger is of
type [l,u]) is unnecessary, since the non-occurrence of events is irrelevant.

Stability for multiple outputs
The stability rules for multiple outputs ensure that:

1. if we are in a certain state at some point in time and no trigger of an immediate
transition (e[c]) is enabled,

and

2. that the current time is earlier than the minimum of the lower bounds of any
delayed transitions,

then the state will not be exited.
As before there are two versions of SMO1i , the first for states initially true, and

the second for states that are initially false.

SMO1i ∀ i : Occ,∀ t , t1 : Ti • ini(S1, i , t) ∧
¬(ITRIGGER2 ∨ . . . ∨ ITRIGGERn) ∧
t1 ≤ t < t1 + minimum(l2, . . . , ln)⇒
¬θ(S1 := F , i , t)

SMO1i ∀ i : Occ,∀ t , t1 : Ti • ini(S1, i , t) ∧
¬(ITRIGGER2 ∨ . . . ∨ ITRIGGERn) ∧
t1 ≤ t < t1 + minimum(l2, . . . , ln)⇒
¬θ(S1 := F , i + 1, t)
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Note that t1 is bound to the existentially quantified t1 in the definition of ini (see
previous footnote).

In addition to the axioms generated from these rules,constraints must also be
placed on the time bounds used. An upper bound is always greater or equal to
the lower bound, and by convention, if an upper bound is given explicitly then it
should be greater than 0.

4. Problem Statement

The example system is a controller which operates a railroad crossing. There will
be multiple tracks, and trains entering the crossing may be travelling in either
direction. The crossing controller must manage a “critical region” which extends
to either side of the crossing gate. Any train entering or leaving this region is
detected by sensors at its boundaries.

Informally, the safety property of this system is that the crossing gate must not
be up whilst any train is in the critical region. Since this constraint is met by a
system which keeps the gate down at all times, a utility property must also be met:
the gate should be up as often as is practical without compromising safety. For a
more detailed description we refer the reader to [5].

5. Constraints on The Railroad Crossing Problem

In this section, we describe a number of assumptions about the Crossing problem
which make it more amenable to our formalism.

Firstly, our model concentrates on the critical region and does not require any
detailed modelling of the crossing. We simply assume that there is a minimum
interval between a train entering the critical region and its passing in front of the
gate; in other words, trains have some maximum speed which cannot be exceeded.

Secondly, we stipulate that a train is considered to be out of the critical region
when it has left the crossing. That is, the critical region for an individual train
is shorter than the actual critical region for all trains. Since trains can run in
both directions, the critical region extends some distance either side of the cross-
ing. However, an individual train is clear when it has left the crossing, under the
assumption that trains never reverse direction. So, if a single train is in the critical
region, traffic will not have so long to wait.

In Figure 2 we show the behaviour of the sensor system and the gate. The
sensor system detects a train entering (inregion) the critical region and increments
a counter. If there are currently no other trains in the critical region (i.e. the
counter was previously zeroed) it generates a lower event. When a train is detected
leaving the crossing (exitregion) the counter is decreased; if there are no more trains
in the region then the sensor system goes back to its initial state and generates a
raise event for the gate. We assume that initially the sensor is in state None in
Region and that the counter is zero.
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The gate is initially in state (Up) and starts moving down as soon as it detects
a lower event. It will take at most ε1 units of time to go down; it will stay down
until it detects a raise event, taking ε2 units of time to go up. If, while the gate is
moving up, a lower event is detected, it reverses to moving down.

We make the following assumptions about the system environment:

• A train that has entered the critical region (inregion) will remain in that region
for at least ε1 units of time;

• A train may not stay forever in the critical region nor may it reverse, otherwise
the gate would remain down for ever. These two assumptions combine in the
following axiom;

∀ i : Occ,∀ t : Ti • θ(inregion, i , t)⇒ ∃ t1 : Ti • θ(exitregion, i , t1)
∧ t + ε1 ≤ t1 ≤ t + MAX

Hence, there is a minimum separation of ε1 between a lower event and a corre-
sponding raise event. This discounts the possibility of an infinite loop between
MvUp and MvDown; the gate cannot oscillate between Up and Down without
ever reaching either state.

• For an exitregion to occur there must have been an inregion which occurred
previously:

∀ i : Occ, t : Ti • θ(exitregion, i , t)⇒
∃ t1 : Ti • θ(inregion, i , t1) ∧ t1 + ε1 ≤ t

• Two or more trains cannot enter the critical region at the same instant in time;
two inregion events cannot occur simultaneously due to RTL’s monotonicity
axioms (see Appendix A). This is not a realistic assumption and a real sys-
tem that counted one train instead of two in this situation would not be safe.
However, our concern in this paper has been to keep the specification example
simple. We could have modelled the environment in a more realistic way by
using distinguished events inregionNorth, and inregionSouth for each direction,
likewise for exitregion events, and count variables. The signal to raise the gate
would only be sent in the case that both counts drop to zero.

5.1. Specification of Timing Assertions

Using the set of rules defined in section 3 we derive the set of axioms for each of
the statemachines shown in Figure 2.

We introduce operations inc, dec, zero to increment, decrement or set to zero the
value of a counter variable4. This counter variable is treated as a global variable.
We have also shortened the names of certain states of the gate and sensor, as follows:
Some, None, MvUp, MvDown.
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Figure 2. Timed Statecharts for the railroad crossing problem
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Sensor Axioms

SENSOR , {None,Some}

Initial State Axioms
Icond
S (1) θ(zero(count), 1, 0)
I1
S (2) θ(None := T , 1, 0)
Ii
S (3) ∀Si : STATE • Si ∈ SENSOR ∧ Si 6= NONE ⇔

θ(Si = F , 1, 0)

Output Axioms
SO1
S (4) ∀ i : Occ,∀ t : Ti • θ(None := F , i , t)⇒ ∃ j : Occ • θ(Some := T , j , t)
S (5) ∀ i : Occ,∀ t : Ti • θ(Some := F , i , t) ∧ i > 1⇒

∃ j : Occ • θ(None := T , j , t)
SO2
S (6) ∀ i : Occ,∀ t : Ti • θ(None := F , i , t)⇒ ∃ j : Occ • θ(inregion, j , t)
S (7) ∀ i : Occ,∀ t : Ti • θ(Some := F , i , t) ∧ i > 1⇒

∃ j : Occ • θ(exitregion, j , t) ∧ holds(count = 1)
SO3
S (8) ∀ i : Occ,∀ t : Ti • θ(None := F , i , t)⇒

∃ j , k : Occ • θ(lower , j , t) ∧ θ(inc(count), k , t)
S (9) ∀ i : Occ,∀ t : Ti • θ(Some := F , i , t) ∧ i > 1⇒

∃ j , k : Occ • θ(raise, j , t) ∧ θ(dec(count), k , t)

Input Axioms
SI1
S (10) ∀ i : Occ,∀ t : Ti • θ(None := T , i , t) ∧ i > 1⇒

∃ j : Occ • θ(Some := F , j , t)
S (11) ∀ i : Occ,∀ t : Ti • θ(Some := T , i , t)⇒ ∃ j : Occ • θ(None := F , j , t)
SI2
S (12) ∀ i : Occ,∀ t : Ti • θ(None := T , i , t) ∧ i > 1⇒ ∃ j : Occ •

θ(exitregion, i , t) ∧ holds(count = 1)
S (13) ∀ i : Occ,∀ t : Ti • θ(Some := T , i , t)⇒ ∃ j : Occ •
θ(inregion, j , t)
SI3
S (14) ∀ i : Occ,∀ t : Ti • θ(None := T , i , t) ∧ i > 1⇒

∃ j , k : Occ • θ(raise, j , t) ∧ θ(dec(count), k , t)
S (15) ∀ i : Occ,∀ t : Ti • θ(Some := T , i , t)⇒
∃ j , k : Occ • θ(lower , j , t) ∧ θ(inc(count), k , t)
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Progress Axioms
PSO1
S (16) ∀ i : Occ,∀ t : Ti • ini(None, i , t) ∧ ∃ j : Occ • θ(inregion, j , t)⇒

θ(None := F , i , t)
S (17) ∀ i : Occ,∀ t : Ti • ini(Some, i , t) ∧ ∃ j : Occ • θ(exitregion, j , t) ∧

holds(count = 1)⇒ θ(Some := F , i + 1, t)

Loop Axioms
S (18) ∀ i : Occ,∀ t : Ti • ini(Some, i , t) ∧ ∃ j : Occ • θ(inregion, j , t)⇒

∃ k : Occ • θ(inc(count), k , t)
S (19) ∀ i : Occ,∀ t : Ti • ini(Some, i , t) ∧ holds(count > 1) ∧

∃ j : Occ • θ(exitregion, j , t)⇒ ∃ k : Occ • θ(dec(count), k , t)

StabilityAxioms
SSO1
S (20) ∀ t : Ti • @j : Occ • θ(inregion, j , t)⇒ @i : Occ • θ(None := F , i , t)
S (21) ∀ t : Ti • @j : Occ • θ(exitregion, j , t) ∨ holds(count 6=)1⇒

@i : Occ • θ(Some := F , i , t)

Gate Axioms

GATE , {Up,MvDown,MvUp,Down}

Initial State Axioms
I1
G(1) θ(Up := T , 1, 0)
Ii
G(2) ∀Si : State • Si ∈ GATE ∧ Si 6= Up ⇔

θ(Si := F , 1, 0)
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Output Axioms
SO1
G(3) ∀ i : Occ,∀ t : Ti • θ(Up := F , i , t)⇒ ∃ j : Occ • θ(MvDown := T , j , t)
G(4) ∀ i : Occ,∀ t : Ti • θ(MvDown := F , i , t) ∧ i > 1⇒

∃ j : Occ • θ(Down := T , j , t)
G(5) ∀ i : Occ,∀ t : Ti • θ(Down := F , i , t) ∧ i > 1⇒

∃ j : Occ • θ(MvUp := T , j , t)
SO2
G(6) ∀ i : Occ,∀ t : Ti • θ(Up := F , i , t)⇒ ∃ j : Occ • θ(lower , j , t)
G(7) ∀ i : Occ,∀ t : Ti • θ(MvDown := F , i , t) ∧ i > 1⇒

∃ t1 : Ti • θ(MvDown := T , i − 1, t1) ∧ t1 ≤ t ≤ t1 + ε1
G(8) ∀ i : Occ,∀ t : Ti • θ(Down := F , i , t) ∧ i > 1⇒ ∃ j : Occ • θ(raise, j , t)
MO1
G(9) ∀ i : Occ,∀ t : Ti • θ(MvUp := F , i , t) ∧ i > 1⇒

∃ j : Occ • θ(lower , j , t) ∧ ∃ k : Occ • θ(MvDown := T , k , t) ∨
∃ t1 : Ti • θ(MvUp := T , i − 1, t1) ∧ t = t1 + ε2 ∧
∃ j : Occ • θ(Up := T , j , t)

Input Axioms
SI1
G(10) ∀ i : Occ,∀ t : Ti • θ(Up := T , i , t) ∧ i > 1⇒

∃ j : Occ • θ(MvUp := F , j , t)
G(11) ∀ i : Occ,∀ t : Ti • θ(Down := T , i , t)⇒

∃ j : Occ • θ(MvDown := F , j , t)
G(12) ∀ i : Occ,∀ t : Ti • θ(MvUp := T , i , t)⇒ ∃ j : Occ • θ(Down := F , j , t)
SI2
G(13) ∀ i : Occ,∀ t : Ti • θ(MvUp := T , i , t)⇒

∃ j : Occ • θ(raise, j , t)
G(14) ∀ i : Occ,∀ t : Ti • θ(Down := T , i , t)⇒

∃ j : Occ,∃ t1 : Ti • θ(MvDown := T , j , t1) ∧ t1 ≤ t ≤ t1 + ε1
G(15) ∀ i : Occ,∀ t : Ti • θ(Up := T , i , t) ∧ i > 1⇒

∃ j : Occ,∃ t1 : Ti • θ(MvUp := T , j , t1) ∧ t = t1 + ε2
MI1
G(16) ∀ i : Occ,∀ t : Ti • θ(MvDown := T , i , t)⇒

∃ j : Occ • θ(lower , j , t) ∧ ∃ k : Occ • θ(Up := F , k , t) ∨
θ(lower , j , t) ∧ ∃ k : Occ • θ(MvDown := F , k , t)
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Progress Axioms
PSO1
G(17) ∀ i : Occ,∀ t : Ti • ini(Up, i , t) ∧ ∃ j : Occ • θ(lower , j , t)⇒

θ(Up := F , i , t)
G(18) ∀ i : Occ,∀ t : Ti • ini(Down, i , t) ∧ ∃ j : Occ • θ(raise, j , t)⇒

θ(Down := F , i + 1, t)
G(19) ∀ i : Occ,∀ t : Ti • θ(MvDown := T , i , t)⇒

∃ t1 : Ti • θ(MvDown := F , i + 1, t1) ∧ t ≤ t1 ≤ t + ε1
PMO1
G(20) ∀ i : Occ,∀ t : Ti • ini(MvUp, i , t) ∧ ∃ j : Occ • θ(lower , j , t)⇒

θ(MvUp := F , i + 1, t)
G(21) ∀ i : Occ,∀ t : Ti • θ(MvUp := T , i , t)⇒

∃ t1 : Ti • θ(MvUp := F , i + 1, t1) ∧ t1 ≤ t + ε2

Stability Axioms
SSO1
G(22) ∀ t : Ti • @j : Occ • θ(lower , j , t)⇒ @i : Occ • θ(Up := F , i , t))
G(23) ∀ t : Ti • @j : Occ • θ(raise, j , t)⇒ @i : Occ • θ(Down := F , i , t))
SMO1
G(24) ∀ i : Occ,∀ t : Ti • ini(MvUp, i , t) ∧ @j : Occ • θ(lower , j , t) ∧

t1 ≤ t ≤ t1 + ε2 ⇒ ¬ θ(MvUp := F , i + 1, t)
Note : t1 is bound in the expansion of ini .
Other
G(25) ε1 > 0
G(26) ε2 > 0

5.2. Verification of Timing Assertions

In [5], the occupancy intervals were defined as being: λi = [τi , νi ], where τi is the
i ’th entrance of a train into the critical region if the region is otherwise empty,
and νi represents the next time after τi that the critical region is again unoccu-
pied. The occupancy intervals can be represented using the following event markers:

θ(Some := T , i , τi)
θ(Some := F , i , νi)

Recall that the safety property of the system is that for all times within all
intervals of occupancy, the gate is down. However, there is an important imple-
mentation restriction on this property: a realistic gate will take some time (ε1 at
most) to lower. Consequently, the safety property can only be verified for all times
after ε1 within any interval of occupancy. The utility property of the system is
that for all the times outside these intervals the gate will be up. Consider that the
gate takes a maximum of ε1 units of time to go down and ε2 to go up. If the gate is
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moving up and is requested to lower it reverses to moving down and will take some
time t ≤ ε1 to go down. However, if the gate is moving down, a request to move
up cannot be attended to until after at least ε1 units of time ( since a train takes
at least ε1 to pass through its critical region). We represent the fact that the gate
is down at time t as follows:

g(t) = 0 ⇔ ∃ i : Occ • ini(Down, i , t)

The same applies for the gate being up:

g(t) = 90 ⇔ ∃ i : Occ • ini(Up, i , t)

5.2.1. Rigorous Proof of Safety

As noted above, we can only verify that during each occupancy interval the gate
will be down for all except the first ε1 time units (during which it is moving down).
At several points in the proofs we make use of the monotonicity axioms of RTL
(see Appendix A).

∀ i : Occ,∀ t1, t2 : Ti • θ(Some := T , i , t1) ∧ θ(Some := F , i + 1, t2) ∧ t2 > t1 + ε1
⇒ ∃ j : Occ,∃ t3, t4 : Ti • θ(Down := T , j , t3) ∧ θ(Down := F , j + 1, t4) ∧

t1 ≤ t3 ≤ t1 + ε1 ∧ t4 = t2

We will consider a separate case for each state the gate can be in as the sensor
enters Some5. Case 1 (The gate is up) will be shown here and Case 2 (The gate is
moving up) can be found in Appendix B.

Case 1. The Gate is up

A1 θ(Some := T , i , t1)
A2 θ(Some := F , i + 1, t2)
A3 t2 > t1 + ε1
A4 ini(Up, j , t1)

1. ∃ j , k : Occ • θ(lower , j , t1) ∧ θ(inc(count), k , t1) by m-p(A1, S(15))
2. ∃ j : Occ • θ(lower , j , t1) by ∧-elim(1)
3. ini(Up, j , t1) ∧ ∃ j : Occ • θ(lower , j , t1) by ∧-intro(A4,2)
4. θ(Up := F , j , t1) by m-p(3, G(17))
5. ∃ j : Occ • θ(MvDown := T , j , t1) by m-p(4, G(3))
6. θ(MvDown := T , j , t1) by ∃-elim(5)

7. ∃ t
′
1 : Ti • θ(MvDown := F , j + 1, t

′
1) ∧

t1 ≤ t
′
1 ≤ t1 + ε1 by m-p(6, G(19))

8. θ(MvDown := F , j + 1, t
′
1) ∧ t1 ≤ t

′
1 ≤ t1 + ε1 by ∃-elim(7)

9. θ(MvDown := F , j + 1, t
′
1) by ∧-elim(8)

10. j + 1 > 1 by arithmetic

11. ∃ j : Occ • θ(Down := T , j , t
′
1) by m-p(9,10,G(4))
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12. θ(MvDown := F , 1, 0) by G(2)
13. ∀ i : Occ,∀ t1 : Occ • θ(MvDown := F , i + 1, t1)⇒

∃ t2 : Ti • θ(MvDown := T , i , t2) ∧ t2 ≤ t1 by m-p(12.,trans-ax-4)

14. ∃ t2 : Ti • θ(MvDown := T , j , t2) ∧ t2 ≤ t
′
1 by m-p(9,13)

15. θ(MvDown := T , j , t
′
2) ∧ t

′
2 ≤ t

′
1 by ∃-elim(14)

16. θ(MvDown := T , j , t
′
2) by ∧-elim(15)

17. θ(MvDown := T , j , t1) ∧ θ(MvDown := T , j , t
′
2) by ∧-intro(6,16)

18. t1 = t
′
2 by m-p(17,mono-ax-1)

19. t
′
2 ≤ t

′
1 by ∧-elim(15)

20. t1 ≤ t
′
1 by subs of 19 using 18

21. i + 1 > 1 by arithmetic
22.a.1. assume i = 1 by cases from 21
22.a.2. θ(Some := F , 1, t2) by subs into A2

22.a.3. θ(Some := F , 1, 0) by S(3)
22.a.4. ε1 > 0 by G(25)
22.a.5. t2 > 0 by arithmetic,A3,22.a.4
22.a.6. θ(Some := F , 1, t2) ∧ θ(Some := F , 1, 0) by ∧-intro(22.a.2,22.a.3)
22.a.7. t2 = 0 by m-p(22.a.6, mono-ax-1)
22.a.8. i 6= 1 by contr(22.a.5,22.a.7)
22.b.1. i > 1 by arithmetic,21,22.a.8
22.b.2. θ(Some := F , i + 1, t2) ∧ i > 1 by ∧-intro(A2,22.b.1)
22.b.3. ∃ j , k : Occ • θ(raise, j , t2) ∧

θ(dec(count), k , t2) by 22.b.2,S(9)
22.b.4. θ(raise, j , t2) ∧ θ(dec(count), k , t2) by ∃-elim(22.b.3)
22.b.5. θ(raise, j , t2) by ∧-elim(22.b.4)
22.b.6. ∀ t4 : Ti • t4 < t2 ⇒

¬ θ(raise, j , t4) by mono-lemma(Appendix B)
22.b.7. ∀ t4 : Ti • t4 < t2 ⇒

@k : Occ • θ(Down := F , k , t4) by m-p(22.b.6,G(23))
22.b.8. ∀ t4 : Ti • t4 < t2 ⇒

¬ θ(Down := F , k + 1, t4) by ∃-elim(22.b.7)
22.b.9. θ(Down := F , 1, 0) by G(2)

22.b.10. t1 ≤ t
′
1 ≤ t1 + ε1 by ∧-elim(8)

22.b.11. t
′
1 < t2 by arithmetic,22.b.10., A3

22.b.12. ini(Down, k , t2) by ini-def,22.b.9,22.b.11,22.b.7
22.b.13. ∃ j : Occ • θ(raise, j , t2) by ∧-elim(22.b.3)
22.b.14. ini(Down, k , t2) ∧

∃ j : Occ • θ(raise, j , t2) by ∧-intro(22.b.12,22.b.13)
22.b.15. θ(Down := F , k + 1, t2) by m-p(22.b.14, G(18))
23. ∃ j : Occ,∃ t3, t4 : Ti •

θ(Down := T , j , t3) by 11.
∧ θ(Down := F , j + 1, t4) by ∃-intro 22.b.15
∧ t1 ≤ t3 by 20
∧ t3 ≤ t1 + ε1 by 22.b.10
∧ t4 = t2 by mono-ax-1,22.b.15

QED
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6. Automatic proof using Proofpower HOL

The process of proof automation is central to our approach, and our work in this
area raised some interesting practical issues.

Firstly, we found that several early rigorous proof attempts, which seemed rea-
sonable on paper, were in fact insufficient because certain assumptions had been
forgotten in our formulation of the safety and utility properties. Incorrect or in-
complete formalisation of an intuitively understood property is a very common
error.

Secondly, automation illustrated that the character of the axiomatisation has
profound effects on the effort required to automate proofs. The problems of having
such a large number of axioms were somewhat offset by their uniformity.

Thirdly, the problem of interrelating a readable formal proof with its automation
in a theorem prover was an issue. In this section, we will briefly discuss the automa-
tion of the safety property proof, commenting on each of these issues in relation to
it.

6.1. Automation of the safety proof

Our embedding of Real Time Logic into Proofpower HOL (see Appendix A) is based
on the axiomatisation in [9]. It is a “shallow” embedding, rather than a “deep”
one. That is, we have not built in a specialised semantics and proof theory for RTL,
but have merely extended HOL with the RTL occurrence relation. This approach
is sufficient for experimentation, so long as we do not make use of formulae, which
while they may be well-formed HOL, cannot be expressed in RTL. For example,
our RTL theory models events as HOL variables, which permits one to quantify
over events, although this is explicitly disallowed in RTL. For higher integrity, a
deep embedding would ensure that one could not stray outside of the RTL logic,
whereas currently we have to avoid doing so ourselves. In addition, we currently
have to derive the RTL rules from state diagrams by hand. This is error prone and
we are looking at ways in which the process can be automated.

On the other hand, we have confidence that the tool is of sufficient reliability
to make a deep embedding of RTL worthwhile. Proofpower’s logical theories have
been developed in bottom-up fashion from an extremely small set of axioms. We are
forced to place trust in implementations of the tactics, but so far we have uncovered
no problems with them.

Proofpower uses the ML programming language as a “metalanguage” in which
to embed the HOL logic [6]. A Proofpower proof takes the form of a simple listing
of function (tactic) invocations which manipulate formulae. This listing can be
“played back” through the prover, and examined step-by-step, but in general it is
rather difficult to read these scripts. For example, the tactics may behave differ-
ently, depending on minor details in the way a given assumption is formulated. It
is therefore not easy to understand a Proofpower script as a standard Gentzen-style
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deduction. This is one of our motivations for presenting rigorous proofs for human
scrutiny, rather than proof scripts.

Automation begins by setting the property to be proved as the current goal:

set−goal([], p∀ i t1 t2 : N •
θ(true Some, i , t1) ∧ θ(false Some, i + 1, t2) ∧
(t2 > t1 + e1) ∧
(∃ j : N • ini(Up, j , t1) ∨ ∃ j : N • ini(MvUp, j , t1))⇒

∃ j t3 t4 : N • θ(true Down, j , t3) ∧
θ(false Down, j + 1, t4) ∧
t1 ≤ t3 ∧ t3 ≤ t1 + e1 ∧
t4 = t2q);

(Note: some notational differences were imposed upon us by the tool, for example
(false sv) means sv := F . We have also modelled occurrence indexes and time as
natural numbers). When broken down, this goal will produce two subgoals, one for
ini(Up, t1) and one for ini(MvUp, t1):

(* *** Goal “1” *** *)

(∗ 4 ∗) pθ(true Some, i , t1)q
(∗ 3 ∗) pθ(false Some, i + 1, t2)q
(∗ 2 ∗) pt2 > t1 + e1q
(∗ 1 ∗) pini(Up, j , t1)q
(∗ ? ` ∗) p∃ j t3 t4 : N • θ(true Down, j , t3) ∧ θ(false Down, j + 1, t4) ∧

t1 ≤ t3 ∧ t3 ≤ t1 + e1 ∧ t4 = t2q

(* *** Goal “2” *** *)

(∗ 4 ∗) pθ(true Some, i , t1)q
(∗ 3 ∗) pθ(false Some, i + 1, t2)q
(∗ 2 ∗) pt2 > t1 + e1q
(∗ 1 ∗) pini(MvUp, j , t1)q
(∗ ? ` ∗) p∃ j t3 t4 : N • θ(true Down, j , t3) ∧ θ(false Down, j + 1, t4) ∧

t1 ≤ t3 ∧ t3 ≤ t1 + e1 ∧ t4 = t2q

These subgoals are solved by proof procedures which follow the steps given in
the rigorous proof given above. For example, step 1 of the safety proof involves
instantiating S(15) to get the term lower(i , t1). This is done using the tactic
list−∀−elim, and the result is then “stripped” into the list of assumptions. That
is, the left hand side is matched with an assumption (in this case, assumption 4 of
goal 1, θ(true Some, i , t1), yielding the right hand side of the implication. This is
accomplished by the command line:
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a(strip−asm−tac(list−∀−elim[pi : Nq, pt1 : Nq] sensor−axiom−15));

giving a new assumption 1:

(∗ 5 ∗) pθ(true Some, i , t1)q
(∗ 4 ∗) pθ(false Some, i + 1, t2)q
(∗ 3 ∗) pt2 > t1 + e1q
(∗ 2 ∗) pini(Up, j , t1)q
(∗ 1 ∗) pθ(lower , i , t1) ∧ (inc(count), k , t1)q
(∗ ? ` ∗) p∃ j t3 t4 : N • θ(true Down, j , t3) ∧ θ(false Down, j , t4) ∧

t1 ≤ t3 ∧ t3 ≤ t1 + e1 ∧ t4 = t2q

The subsequent steps also involve the instantiation of left hand sides of implica-
tions, and so the rest of the lines in the proof procedure are largely the same.

Admittedly, our derived axiomatisations are not particularly elegant. There are
many axioms and some are formally redundant. However, the uniformity imparted
by the translation rules (nearly all the axioms are implications) is an advantage;
more elegant and concise axiomatisations in pure RTL would require more intel-
ligent manipulation in proofs. The uniformity of the axioms makes the rigorous
proofs easy, if rather tedious, to automate.

However, a few issues were raised by the automation of the proof detail. We found
that some of the “obvious” appeals to mathematics were quite difficult to automate.
The level of fully automatic reasoning in Proofpower is currently rather unevenly
spread. For example, we could not derive a = b ∧ b = c ⇒ a = c without interven-
tion, but other more complex mathematical theorems were proved automatically.
Our experience is that, in general, the more automated mathematical reasoning
the prover can do, and the more consistent it appears to be, the better. For exam-
ple, RTL’s logic and semantics are based on Pressburger arithmetic. Pressburger
resolution procedures drastically reduce the effort involved in RTL proofs, and we
are currently experimenting with PVS, which does incorporate them. However, we
would also sound a note of caution: it is all too easy to let the prover “take over”
without the user really understanding the reasoning behind the proof.

Much of the time and effort needed to discharge trivial subgoals would be reduced
by a deep embedding of RTL into Proofpower. For instance, Proofpower can dis-
charge trivial subgoals automatically due to its “knowledge” of High Order Logic,
but the prover has no “knowledge” of RTL’s concept of monotonicity. RTL proofs
rely heavily on reducing false formulae to contradictions of monotonicity. Subgoals
which violate monotonicity should ideally be discharged without user intervention.
For example, an assumption that the i ’th occurrence of an event happens at two
different times is an obvious contradiction, but currently the user has to apply the
monotonicity axioms explicitly to prove this. Much time can be wasted trying to
prove a goal before such a contradiction is picked out in its lengthy assumption list.

It is our opinion based on this experience, that once theorem provers have been
experimented with more widely, the industry will recognise the need for highly spe-



SPECIFICATION AND VERIFICATION OF REACTIVE SYSTEM BEHAVIOUR 25

cialised proving tools, dedicated to specialised logics, rather than widely expressive
logics suitable for embedding.

6.2. Remarks on proof as a verification method

Formal proof is a difficult and time-consuming process, so the value of a proof is
sometimes judged more by the importance of what is being proved than the elegance
of the proof itself. This seems to be the philosophy which underlies powerful tactic-
based theorem provers, which are often capable of completing proofs without any
real grasp of what is going on being conveyed to the user.

However, when an important property is proven, it is useful to know why it holds
and not just that it holds, particularly when one considers the possibility that a
subsequent change to a specification may invalidate the property. On the other
hand, a well-designed proof strategy has two advantages. Firstly, one can make
informed decisions about whether the same proof strategy can be reused to prove
other theorems. Secondly, one can predict where changes to the specification will
require a result to be re-proven.

A high-level design for a proof is as important as a high-level design for a program;
the amount of effort spent on the rigorous proof avoids the much greater effort that
would be wasted trying to salvage complicated ad hoc proof scripts which no longer
run. The process of proof is very much like the process of navigation. Arriving at
the right place by serendipity is possible, but hardly a sound basis for setting out.
Without a proof structure, ad hoc experimentation with the prover will not help;
indeed it is often difficult to know whether an alteration has made any difference
or not.

For example, auto-assisted proof attempts can become bogged down for three
reasons:

• The axiomatisation is incomplete. In this case, the theorem is unprovable from
the theory given, even though intuition suggests that it ought to be true.

• The proof strategy being used is too periphrastic. Even though the theorem
could be proved true in principle, the user becomes overwhelmed by the amount
of information produced by the prover, and the number of subproofs required.

• The theorem is not true, e.g. it may have been incorrectly formulated.

Since current provers cannot indicate which of these situations is the cause of ar-
rested progress, it is essential that the user has an overview of what is going on.

It is fairly easy to produce a proof script which follows the structure of a rigorous
proof, and it is also a sure way of uncovering hidden assumptions and errors. On
the one hand, to do a rigorous proof, the user must understand the process behind
it at the strategic level. On the other, the ad hoc process of experimentation with
the prover is inefficient and confusing, and only reproducible with some difficulty.
Using our approach, if the progress of the proof is arrested, the user knows precisely
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which inference step is causing the problem, and can then try to correct either proof
in a focused way.

The production of two artifacts instead of a single formal proof also has certain
advantages.

Firstly, the rigorous proof is a more readable artifact in system documentation
than either an exhaustive formal proof or a HOL-like proof script. Admittedly,
the latter can be re-executed line-by-line and observed. However, proof-tactics are
powerful enough to do different things in different situations, so it is usually hard
to reconstruct the progress of a proof from a proof-script.

Secondly, the approach is a very natural way of developing proofs incrementally. It
involves a simple feedback loop, in which the user argues a case rigorously, attempts
to automate the logical argument, and if necessary amends the rigorous argument.

Checking for correctness is not so highly automated in our approach, as with say,
the model checking approach used in the Modechart toolset. Verification by proof
is more time consuming and skills-intensive than “brute force” methods like model
checking.

This is not to say that we disparage the model checking approach used in the
Modechart toolset [13]; in fact, we envisage similar support for our formalism in
the future, because the option of quick feedback is useful when experimenting with
changes to a specification.

However, we feel that in the final analysis formal proof offers higher levels of
assurance than model checking. A good way to assess the quality of a specification
is to look at what can be argued from it, and how easily it can be argued, rather
than simply checking that it is a model of some property. Proof also encourages
the closer analysis of any informal arguments for safety and utility, which motivate
the design in the first place. A proof script and rigorous proof serve as evidence to
support the informal arguments.

7. Assessment

The Railroad Crossing example was originally proposed in [5] as a benchmark for the
comparison of different formalisms. We will therefore assess our approach against
the criteria proposed in [3].

• How easy it is to reason about time in the formalism? How understandable are
specifications and proofs in the formalism?

The advantage of this approach is that the specifications of temporal behaviour
using Statecharts are relatively easy to use for engineers without extensive train-
ing in formal methods. However, the derived axiomatisations are somewhat
clumsy, and verification requires theorem proving skills. On the other hand, for
those familiar with RTL, the proofs are not difficult. Their automation is hard
work, but there is the potential for improvement in the tools currently available.

• For what classes of timing properties is the formalism suitable?
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Timing properties in our formalism are essentially constraints on the separation
of event occurrences: i.e. if x happens at a certain moment in time, y must
happen within a certain amount of time. We believe that most (if not all)
timing constraints can be expressed in this way. Timeouts, for example, are
easily expressed in the formalism.

• What is the quality of mechanical tools available to support the formalism?

This is currently quite weak and we have to derive our axiomatisations manu-
ally. However, the Modechart toolset illustrates that a model-checking tools for
statechart-like formalisms are a practical proposition, and advances in theorem
provers are likely in the near future. There is a need for rigorously engineered
theorem provers with powerful user interfaces, dedicated to specific logics.

• How general is the formalism? Is it designed to specify and verify only tim-
ing properties? What other properties can be specified and verified using the
formalism?

The formalism presented here is intended to deal only with the temporal be-
haviour of real-time systems. We are looking at ways of combining it with other
“views” of the system, in particular with specifications of functionality.

• Is the formalism more suited to a particular phase of software development than
to others, e.g., requirements rather than detailed design?

The formalism aims to encourage specifiers to consider the specification of tim-
ing constraints as early as possible in the lifecycle. It is intended for use in
the design of the logical architecture of the system, rather than in the detailed
physical system design. We are currently examining the problem of relating the
underlying computational model to lower level concerns, such as schedulability
and resource usage, but this work is at an early stage.

• Does the formalism handle continuous as well as discrete time?

The formalism handles discrete time only. If a discrete time scale fine enough
to capture the necessary properties is chosen, we feel that the modelling of
continuous time is unnecessary.

8. Summary and Conclusions

In this paper we have presented the principles of a formalism for describing the
temporal behaviour of reactive systems. The approach combines the convenience
of a graphical notation with the potentially high levels of integrity offered by formal
proof. Information in Timed Statecharts is represented as formulae in Real Time
Logic. These are then subjected to a verification process which combines rigorous
handwritten proof with proof automation. The Railroad Crossing problem was used
to illustrate the approach and the relevant safety and utility proofs were presented.
Our preliminary assessment of the approach was also discussed.
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An approach to reactive system specification which emphasises formal proof is
the distinguishing characteristic of our formalism. For example, the Modechart
formalism is designed to minimise the possibility of erroneous specifications by
constraining the expressivity of the language, so that specifications are amenable
to model-checking techniques. By contrast, we provide a more expressive language,
e.g. by weakening the transition axioms of RTL, and require the user to record
assumptions which discount the possibility of lack of progress, or of a system being
un-implementable. Over and above the usual proof rules of first-order logic, only
simple properties, such as the monotonicity properties of the occurrence relation,
and the transitivity of precedence relations, need to be used in the formalism.
Rigorous proofs are made readable by frequent appeals to these properties. Formal
proofs constructed from a small set of rules are tedious and lengthy, but the use of
a theorem prover helps to overcome this.

We are currently considering further simplifications. For example, the initialisa-
tion of state variables by events appears to be unnecessary. Intuitively, an entry i
into a state should be followed by the i ’th exit event, rather than exit event i + 1,
as is the case where the state variable is initially false. This lack of uniformity can
be a source of error when formulating properties to be proved. It might be better
to stipulate that state variables have no provable value until such time as they are
set by some event or condition.

Simplicity will continue to be the priority in the future development of the tempo-
ral formalism. The provision of multiple “views”, each of which represents a certain
aspect of the system, is central to the work of the Dependable Computing Systems
Centre. The issues involved have been discussed in [2]. It is important that each
view can be related formally to the other views. This is easier when each formalism
is semantically simple. The exploration of how our formalism relates to views based
on other computational models will be our greatest concern in the future.
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Notes

1. Occ is the set of occurrence indexes defined as {i : N | i ≥ 1}, and Ti the set of times.
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2. The definition of ini is as follows.

ini : State ×Occ × T → Bool

∀S : State, i : Occ, t : Ti • ini(S , i , t)⇔
θ(S := F , 1, 0) ∧

∃ t1 : Ti • θ(S := T , i , t1) ∧ t1 ≤ t ∧ ∀ t2 : Ti • t2 < t ⇒ ¬θ(S := F , i + 1, t2)
∨ θ(S := T , 1, 0) ∧

∃ t1 : Ti • θ(S := T , i , t1) ∧ t1 ≤ t ∧ ∀ t2 : Ti • t2 < t ⇒ ¬θ(S := F , i , t2)

3. If S1 is initially false then we also require that i > 1 appear on the right hand side of the
implication.

4. When a condition is tested, the time at which the value of variables is tested is implicit.

5. Note that Some is initially false; that is why entering state Some for the ith time is matched
with leaving state Some for the i + 1th time.
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Appendix A. RTL Axiomatisation

THE THEORY ASM RTL

Parents

N Theorems

Children

Railroad

Constants

start ACTION → EVENT
stop ACTION → EVENT
true STATE VAR → EVENT
false STATE VAR → EVENT
θ EVENT × N1 × N→ BOOL

Types

EVENT
ACTION
STATE VAR

Axioms

mono axiom 1
` ∀ e i t1 t2 • θ(e, i , t1) ∧ θ(e, i , t2)⇒ t1 = t2

mono axiom 2
` ∀ e i t1
• θ(e, i , t1) ∧ i > 1
⇒ (∃ t2 • θ(e, i − 1, t2) ∧ t2 < t1)

start stop axiom
` ∀ a i t1
• θ(stop a, i , t1)
⇒ (∃ t2 • θ(start a, i , t2) ∧ t2 < t1)
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trans axiom 1
` ∀ sv
• θ(true sv , 1, 0)
⇒ (∀ i t1
• θ(false sv , i , t1)
⇒ (∃ t2 • θ(true sv , i , t2) ∧ t2 ≤ t1))

trans axiom 2
` ∀ sv
• θ(true sv , 1, 0)
⇒ (∀ i t1
• θ(true sv , i + 1, t1)
⇒ (∃ t2 • θ(false sv , i , t2) ∧ t2 ≤ t1))

trans axiom 3
` ∀ sv
• θ(false sv , 1, 0)
⇒ (∀ i t1
• θ(true sv , i , t1)
⇒ (∃ t2 • θ(false sv , i , t2) ∧ t2 ≤ t1))

trans axiom 4
` ∀ sv
• θ(false sv , 1, 0)
⇒ (∀ i t1
• θ(false sv , i + 1, t1)
⇒ (∃ t2 • θ(true sv , i , t2) ∧ t2 ≤ t1))

state var init ax
` ∀ sv • θ(true sv , 1, 0)⇔ ¬θ(false sv , 1, 0)

Theorems

occ ind mono thm
` ∀ i j t1 t2
• θ(e, i , t1) ∧ θ(e, j , t2) ∧ i < j ⇒ t1 < t2
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Appendix B. Safety Proof (continuation)

Case 2. The Gate is moving up

A1 θ(Some := T , i , t1)
A2 θ(Some := F , i + 1, t2)
A3 t2 > t1 + ε1
A4 ini(MvUp, j , t1)

1. ∃ j , k : Occ • θ(lower , j , t1) ∧ θ(inc(count), k , t1) by m-p(A1, S(15))
2. ∃ j : Occ • θ(lower , j , t1) by ∧-elim(1)
3. θ(MvUp := F , j + 1, t1) by m-p(A4, G(20))
4. j + 1 > 1 by arithmetic
5. θ(MvUp := F , j + 1, t1) ∧ j + 1 > 1 by ∧-intro(3,4)
6.a. ∃ j : Occ • θ(lower , j , t1) ∧

∃ k : Occ • θ(MvDown := T , k , t1) ∨
6.b. ∃ t2 : Ti • θ(MvUp := T , j , t2) ∧

t1 = t2 + ε2 ∧ ∃ j : Occ • θ(Up := T , j , t1) by m-p(5.,G(9))
7.a. The gate starts to move down
7.a.1. ∃ k : Occ • θ(MvDown := T , k , t1) by ∧-elim(6.a)

7.a.2. ∃ t
′
1 : Ti • θ(MvDown := F , k + 1, t

′
1) ∧ t1 ≤ t

′
1 ≤ t1 + ε1 by m-p(7.a.1,G(19))

7.a.3. follow steps 8.− 23. from Case 1.(7.a.2. for 7.)
7.b. The gate goes up
7.b.1. ∃ j : Occ • θ(Up := T , j , t1) by ∧-elim(6.b)
7.b.2. θ(Up := T , j , t1) by ∃-elim(7.b.1)
7.b.3. ∃ t3 : Ti • θ(Up := F , j , t3) ∧ t3 < t1 Assumption
7.b.4. θ(Up := F , j , t3) ∧ t3 < t1 by ∃-elim(7.b.3)
7.b.5. ∀ i : Occ,∀ t : Ti • θ(Up := F , i , t)⇒

∃ t2 : Ti • θ(Up := T , i , t2) ∧ t2 ≤ t1 by m-p(G(1),trans-axiom-1)
7.b.6. ∃ t2 : Ti • θ(Up := T , j , t2) ∧ t2 ≤ t3 by m-p(7.b.2,7.b.5)

7.b.7. θ(Up := T , j , t
′
2) ∧ t

′
2 ≤ t3 by ∃-elim(7.b.6)

7.b.8. θ(Up := T , j , t
′
2) by ∧-elim(7.b.7)

7.b.9. θ(Up := T , j , t1) ∧ θ(Up := T , j , t
′
2) by ∧-intro(7.b.2,7.b.8)

7.b.10. t1 = t
′
2 by m-p(7.b.9,mono-axiom-1)

7.b.11. t3 < t1 by ∧-elim(7.b.4)

7.b.12. t3 < t
′
2 by subs(7.b.10,7.b.11)

7.b.13. t
′
2 ≤ t3 by ∧-elim(7.b.7)

7.b.14. ¬ (t3 < t
′
2) by arithmetic from 7.b.13

7.b.15. ¬ (∃ t3 : Ti • θ(Up := F , j , t3) ∧ t3 < t1) by contr(7.b.12,7.b.14)
7.b.16. ∀ t3 : Ti • ¬ (θ(Up := F , j , t3) ∧ t3 < t1) by 7.b.15
7.b.17. ∀ t3 : Ti • t3 < t1 ⇒ ¬ θ(Up := F , j , t3) by ⇒-intro(7.b.11,7.b.16)
7.b.18. ini(Up, j , t1) by ini-def,G(1),7.b.1,7.b.17
7.b.19. ini(Up, j , t1) ∧ ∃ j : Occ • θ(lower , j , t1) by ∧-intro(7.b.18,2)
7.b.20. θ(Up := F , j , t1) by m-p(7.b.19,G(17))
7.b.21. follow steps 5− 23 from Case 1.(7.b.20. for 4)

The cases for Gate is moving down and Gate is down are repetitions of the steps
of cases 1. and 2.
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Mono-lemma

∀ t1, t2 : Ti • θ(e, i , t1) ∧ t2 < t1 ⇒ ¬θ(e, i , t2)

1. θ(e, i , t1) ∧ t2 < t1 assumption
2. ∀ t2 : Ti • θ(e, i , t2)⇒ t2 = t1 mono-axiom-1
3. Goal by contradiction(1, 2)

Appendix C. Utility Proof

We need to verify that if, for any length of time greater than ε2 there is no train in
the critical region, then the gate is up for that length of time.

∀ i : Occ,∀ t , t1, t2 : Ti • θ(Some := F , i , t1) ∧ θ(Some := T , i , t2) ∧
t1 + ε2 < t < t2 ⇒ ∃ j : Occ • ini(Up, j , t)

We will again consider a separate case for each state the gate might be in when the
Sensor leaves state Some.

Case 1. The Gate is up

A1 θ(Some := F , i , t1)
A2 θ(Some := T , i , t2)
A3 t1 + ε2 < t < t2
A4 ini(Up, k , t1)
A5 ∀ t3 : Ti • t1 ≤ t3 < t2 ⇒ @j : Occ • θ(lower , j , t3)
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1. ∃ t
′
1 : Ti • θ(Up := T , k , t

′
1) ∧ t

′
1 ≤ t1 ∧

∀ t2 : Ti • t2 < t1 ⇒
¬(Up := F , k , t2) by expansion of A4 using ini

2. ∃ t
′
1 : Ti • θ(Up := T , k , t

′
1) ∧ t

′
1 ≤ t1 by ∧-elim(1)

3. t
′
1 ≤ t1 by ∧-elim(2)

4. t
′
1 ≤ t1 ≤ t by arithmetic(3,A3)

5. t
′
1 ≤ t by transitivity of ≤

6. t4 < t Assumption
6.a. t1 ≤ t4 < t by cases from 6
6.a.1. t4 < t2 by transitivity of <, 6.a,A3

6.a.2. t1 ≤ t4 < t2 by arithmetic (6.a,6.a.1)
6.a.3. @j : Occ • θ(lower , j , t4) by m-p(6.a.2, A5)
6.a.4. @k : Occ • θ(Up := F , k , t4) by m-p(6.a.3, G(22))
6.a.5. ∀ k : Occ • ¬θ(Up := F , k , t4) by rewriting 6.a.4
6.a.6. ¬θ(Up := F , k , t4) by ∀-elim(6.a.5)
6.b. t4 ≤ t1 < t by cases from 6
6.b.1. ∀ t2 : Ti • t2 < t1 ⇒ ¬θ(Up := F , k , t4) by ∧-elim(1)
6.b.2. t4 < t1 by arithmetic (6.b)
6.b.3. ¬θ(Up := F , k , t4) by m-p(6.b.2,6.b.1)
7. ¬θ(Up := F , k , t4) by 6.a.6,6.b.3
8. t4 < t ⇒ ¬θ(Up := F , k , t4) by ⇒-intro(6,7)

9. ∃ t
′
1 : Ti • θ(Up := T , k , t

′
1) by ∧-elim(2)

10. ∃ t
′
1 : Ti • θ(Up := T , k , t

′
1) ∧ t

′
1 ≤ t by ∧-intro(9,5)

11. ∀ t4 < t ⇒ ¬θ(Up := F , k , t4) by ∀-intro(8)
12. Goal by G(1), 10, 11, and ini def

Case 2. The Gate is down

A1 θ(Some := F , i , t1)
A2 θ(Some := T , i , t2)
A3 t1 + ε2 < t < t2
A4 ini(Down, k , t1)
A5 ∀ t3 : Ti • t1 ≤ t3 < t2 ⇒ @j : Occ • θ(lower , j , t3)
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1. i = 1 ∨ i > 1 by def. of Occ
1.a. i = 1 case assumption
1.a.1. θ(Some := F , 1, 0) by S(3)
1.a.2. θ(Some := F , 1, t1) by subs of 1.a. into A1

1.a.3. θ(Some := F , 1, 0) ∧ θ(Some := F , 1, t1) by ∧-intro(1.a.1, 1.a.2)
1.a.4. t1 = 0 by m-p(1.a.3, mono-ax-1)
1.a.5. θ(Up := T , 1, t1) by subs of 1.a.4 into G(1)
1.a.6. t1 ≤ t by arithmetic from A3

1.a.7. t4 < t by assumption of arbitr. t4
1.a.8. t4 < t2 by < transitivity from A3

1.a.9. t1 ≤ t4 by arithmetic from 1.a.4
1.a.10. t1 ≤ t4 < t2 by ∧-intro(1.a.8,1.a.9)
1.a.11. @j : Occ • θ(lower , j , t4) by m-p(1.a.10, A5)
1.a.12. @k : Occ • θ(Up := F , k , t4) by m-p(1.a.11, G(22))
1.a.13. ∀ k : Occ • ¬θ(Up := F , k , t4) by rewrit. of 1.a.12
1.a.14. ¬θ(Up := F , 1, t4) by ∀-elim(1.a.13)
1.a.15. t4 < t ⇒ ¬θ(Up := F , 1, t4) by ⇒-intro(1.a.7,1.a.14)
1.a.16. θ(Up := F , 1, t1) ∧ t1 ≤ t by ∧-intro(1.a.5,1.a.6)
1.a.17. ∃ t1 : Ti • θ(Up := F , 1, t1) ∧ t1 ≤ t by ∃-intro(1.a.16)
1.a.18. ∀ t4 : Ti • t4 < t ⇒ ¬θ(Up := F , 1, t4) by ∀-intro(1.a.15)
1.a.19. Goal by G(1), 1.a.17, 1.a.18, and ini def
1.b. i > 1 case assumption
1.b.1. θ(Some := F , i , t1) ∧ i > 1 by ∧-intro(A1, 1.b)
1.b.2. ∃ j : Occ • θ(None := T , j , t1) by m-p(1.b.1, S(5))
1.b.3. θ(None := T , i , t1) by ∃-elim(1.b.2)
1.b.4. θ(None := T , i , t1) ∧ i > 1 by ∧-intro(1.b.3,1.b)
1.b.5. ∃ j , k : Occ • θ(raise, j , t1) ∧

θ(dec(count), k , t1) by m-p(1.b.4,S(14))
1.b.6. ∃ j : Occ • θ(raise, j , t1) by ∧-elim(1.b.5)
1.b.7. ini(Down, k , t1) ∧ ∃ j : Occ • θ(raise, j , t1) by∧-intro(A4,1.b.6)
1.b.8. θ(Down := F , k + 1, t1) by m-p(1.b.7, G(18))
1.b.9. k + 1 > 1 by def. of Occ
1.b.10. θ(Down := F , k + 1, t1) ∧ k + 1 > 1 by ∧-intro(1.b.8,1.b.9)
1.b.11. ∃ j : Occ • θ(MvUp := T , j , t1) by m-p(1.b.10,G(5))
1.b.12. θ(MvUp := T , j , t1) by ∃-elim(1.b.11)
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1.b.13. ∃ t4 : Ti • θ(MvUp := F , j + 1, t4) ∧
t4 ≤ t1 + ε2 by m-p(1.b.12, G(21))

1.b.14. θ(MvUp := F , j + 1, t4) ∧ t4 ≤ t1 + ε2 by ∃-elim(1.b.13)
1.b.15. j + 1 > 1 by def. of Occ
1.b.16. θ(MvUp := F , j + 1, t4) by ∧-elim(1.b.14)
1.b.17. θ(MvUp := F , j + 1, t4) ∧ j + 1 > 1 by ∧-intro(1.b.16,1.b.15)
1.b.18.a. ∃ j : Occ • θ(lower , j , t4) ∧

∃ k : Occ • θ(MvDown := T , k , t4) ∨
1.b.18.b. ∃ t1 : Ti • θ(MvUp := T , j , t1) ∧

t4 = t1 + ε2 ∧
∃ j : Occ • θ(Up := T , j , t4) by m-p(1.b.17,G(9))

1.b.19.a. ∃ j : Occ • θ(lower , j , t4) ∧
∃ k : Occ • θ(MvDown := T , k , t4) by case split on 1.b.18.a

1.b.19.a.1. ∃ j : Occ • θ(lower , j , t4) by ∧-elim(1.b.19.a)
1.b.19.a.2. t4 ≤ t1 + ε2 by ∧-elim(1.b.14)
1.b.19.a.3. θ(MvUp := F , 1, 0) by G(2)
1.b.19.a.4. ∀ i : Occ,∀ t1 : Ti • θ(MvUp := F , i + 1, t1)

⇒ ∃ t2 : Ti • θ(MvDown := T , i , t2) ∧
t2 ≤ t1

by m-p(1.b.19.a.3,trans-ax-4)
1.b.19.a.5. ∃ t2 : Ti • θ(MvUp := T , j , t2) ∧ t2 ≤ t4 by m-p(1.b.16,1.b.19.a.4)
1.b.19.a.6. θ(MvUp := T , j , t5) ∧ t5 ≤ t4 by ∃-elim(1.b.19.a.5)
1.b.19.a.7. θ(MvUp := T , j , t5) by ∧-elim(1.b.19.a.6)
1.b.19.a.8. θ(MvUp := T , j , t1) ∧ θ(MvUp := T , j , t5) by ∧-intro(1.b.12,1.b.19.a.7)
1.b.19.a.9. t1 = t5 by m-p(1.b.19.a.8, mono-ax-1)
1.b.19.a.10. t5 ≤ t4 by ∧-elim(1.b.19.a.6)
1.b.19.a.11. t1 ≤ t4 by subst(1.b.19.a.9,1.b.19.a.10)
1.b.19.a.12. t4 ≤ t1 + ε2 by ∧-elim(1.b.14)
1.b.19.a.13. t4 < t2 by arithmetic(1.b.19.a.12,A3)
1.b.19.a.14. t1 ≤ t4 < t2 by ∧-intro(1.b.19.a.11,1.b.19.a.13)
1.b.19.a.15. @j : Occ • θ(lower , j , t4) by m-p(1.b.19.a.14, A5)
1.b.19.a.16. Goal by contradiction of 1.b.19.a.1 with

1.b.19.a.15
1.b.19.b.1. ∃ j : Occ • θ(Up := T , j , t4) by ∧-elim(1.b.18.b)
1.b.19.b.2. ∃ t1 : Ti • θ(MvUp := T , j , t1) ∧

t4 = t1 + ε2 by ∧-elim(1.b.18.b)

1.b.19.b.3. θ(MvUp := T , j , t
′
1) ∧ t4 = t

′
1 + ε2 by ∃-elim(1.b.19.b.2)

1.b.19.b.4. θ(MvUp := T , j , t
′
1) by ∧-elim(1.b.19.b.3)

1.b.19.b.5. θ(MvUp := T , j , t
′
1) ∧ θ(MvUp := T , j , t1)

by ∧-intro(1.b.19.b.3,1.b.12)

1.b.19.b.6. t
′
1 = t1 by m-p(1.b.19.b.5,mono-ax-1)

1.b.19.b.7. t4 = t
′
1 + ε2 by ∧-elim(1.b.19.b.3)

1.b.19.b.8. t4 = t1 + ε2 by subst(1.b.19.b.6 into 1.b.19.b.7)
1.b.19.b.9. t4 < t < t2 by subst of 1.b.19.b.8 into A3

1.b.19.b.10. t4 ≤ t by arithmetic 1.b.19.b.8)
1.b.19.b.11. t5 < t Assumption of arbitr t5
1.b.19.b.12. follow steps 6− 12 of Case 1

using t5 for t4
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Case 3. The Gate is moving up

A1 θ(Some := F , i , t1)
A2 θ(Some := T , i , t2)
A3 t1 + ε2 < t < t2
A4 ini(MvUp, k , t1)
A5 ∀ t3 : Ti • t1 ≤ t3 < t2 ⇒ ¬∃ j : Occ • θ(lower , j , t3)

1. ∃ t4 : Ti • θ(MvUp := T , k , t4) ∧ t4 ≤ t1 ∧
∀ t2 : Ti • t2 < t1 ⇒ ¬θ(MvUp := F , k + 1, t2) by exp of A4 using ini def

2. θ(MvUp := T , k , t4) ∧ t4 ≤ t1 by ∃-elim(1)
3. θ(MvUp := T , k , t4) by ∧-elim(2)
4. ∃ t1 : Ti • θ(MvUp := F , k + 1, t1) ∧ t1 ≤ t4 + ε2 by m-p(3, G(21))
5. θ(MvUp := F , k + 1, t5) ∧ t5 ≤ t4 + ε2 by ∃-elim(4)
6. follow steps 1.b.15 to 1.b.19.b.11 of Case 2. using

3 in place of 1.b.12, and 5, in place of 1.b.14

Case 4. The Gate is moving down
Trivial; proof ommitted.
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