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INTRODUCTION 
This is a study of how a simple task developed into a number of more challenging explorations. 
On the surface therefore it illustrates the thesis that every mathematical task can be seen as but a 
particular example of a domain or space of related tasks.   It is also a study of how various 
fundamental constructs in mathematics education inform both reflection on experience, and 
pedagogically effective practices.   
The task itself began as one of a number of tasks (Mason 1996) designed to reveal to 
undergraduates that they actually knew spontaneously to specialise (to make use of particular 
examples in order to get a sense of what might be going on structurally), and then to re-
generalise using symbols. Generalisations, extensions and variations of the task developed over 
a long period of time.  In the process, the task itself became useful for other pedagogic aims. 
Constructs illustrated include dimensions-of-possible-variation which is a development of ideas 
of Ference Marton (Marton & Booth 1997) which intersect with a major mathematical theme: the 
study of invariance in the midst of change; the structure of attention (closely allied to the van 
Hieles’ framework); scaffolding-and-fading (Seeley Brown et al 1989, Bruner 1996); 
manipulating–getting-a-sense-of–articulating (Floyd et al 1981); and example-spaces (developed 
by Watson & Mason 2002, 2005) as part of concept-images, among others. 
The pedagogic assumptions underlying these notes is that to be effective as learners, students 
need to be active rather than passive, asserting conjectures rather than merely assenting to what 
is going on, anticipating what is coming rather than dwelling in what has just happened.  
Furthermore, the most effective way to prompt learners to use and develop their own powers of 
mathematical thinking is to get them to use those powers spontaneously, and then to draw 
attention to those powers. Subsequently, if they do not use those powers spontaneously, their 
attention can be drawn to the possibility by reference to prior experience. 
It has proved difficult to separate mathematical exploration, commentary on mathematical 
exploration, and pedagogical remarks, but in order to alert the reader to what to expect, for the 
most part, mathematical commentary is displayed left and pedagogical commentary is 
displayed right. 

Mathematics 

Task 1: One Sum 

I have written down two numbers which sum to one.  Which do you think will be larger, the square of the larger 
plus the smaller, or the square of the smaller plus the larger? 

Following Polya’s film (1965), I like to get people to commit themselves to a conjecture, 
then test that conjecture. It is all too easy for learners to ‘sit at the back of the class’ and 
think that they know, just as it is all too easy as reader of these notes to glance at tasks 
and then carry on reading rather than stopping and actually working on the task 
yourself. Committing yourself to making a conjecture gives you something to test out, 
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something to aim for.  When you discover that your conjecture needs modifying, this 
disturbance may act as a memory aid to recall the experience, and hence may 
contribute to learning, whereas ‘guessing correctly’ leaves little or no impression. 

Before reading this far you have probably already tried out one or two cases.  This is 
what Polya (1962) called specialising, and he recommended it whenever you are stuck 
on a problem (see also Mason, Burton & Stacey 1982).  Most people specialise 
spontaneously in this task, yet when they get stuck in the midst of making sense of 
some difficult mathematics, or when working on a hard problem, it is curious how 
specialising does not always come readily to mind. 

The pedagogical issue is how to support learners in having richer possibilities come to 
mind when they are stuck or struggling.  Alerting them to their own spontaneous use 
of their own natural powers to specialise and to generalise is an important step in 
prompting them to educate their awareness of their own powers.  Later, when they 
seem not to be using those powers spontaneously, they can be prompted to use them, 
at first directly, then later more indirectly, until they begin to use them spontaneously 
themselves.  This is how scaffolding-and-fading can be used to pedagogical advantage. 
(Bruner 1996, Seeley Brown et al 1989, Love & Mason 1992).   

Trying a few cases is all very well, but the abiding mathematical question is whether 
what you found to be the case for your numbers is necessarily the case for my pair of 
numbers.  In other words, does ‘it’ always work?  The notion of always-sometimes-
never true is important in mathematics, because locating the range-of-permissible-
change in which some statement is valid is an important part of appreciating the 
statement.  Put another way, many mathematical results can be seen as the statement 
of an invariant with a specification of what is permitted to change.  Invariance only 
makes sense in the presence of variation, and variation only in the presence of some 
invariance.  Understanding a concept involves appreciating what it is possible to vary 
in an example and still it remain an example, and over what range the change is 
permissible.  Appreciating a technique or the exemplary nature of a task similarly 
involves dimensions of possible variation and corresponding ranges of permissible 
change. 

Whenever an indefinite pronoun such as this, that, or it appears in learners’ 
explanations there is not only potential ambiguity, but a real possibility that learners 
are unaware of slides between different referents for the ‘it’.  By developing the habit of 
asking learners “what is the it?”, learner attention can be drawn to confusions. 

Some people who are algebraically confident immediately reach for symbols, and with a tiny bit 
of manipulation they verify that their conjecture always works. The algebraic solution is so 
quick and complete that it is hard not to then drop the problem and go on to something else. 
However, a good deal more is waiting to be found. The next task demonstrates a way of seeing 
which requires no algebra.  

Task 2: Depicting 

How might the situation in Task 1 be depicted? 

For example, ‘squaring the larger’ might suggest looking at squares; two numbers summing to 
one might therefore suggest a unit square with some sort of a division to show two numbers 
summing to one.  I deliberately do not wish to display a diagram at this point, because it is 
more fruitful to come to it, perhaps with some guidance, for yourself. 
If you have already drawn your diagram, then when you read what follows you will have to 
suspend what you have done to try to make sense of my description (or ignore mine 
altogether); if not then you have to make sense of my description without the assistance of your 
own.  Neither actions are trivial; both can be problematic. 
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Task 2a: Depicting 

Imagine a square, with a chord drawn at right-angles to one edge, going across the square. Imagine another 
chord at right-angles to the first, making two smaller squares in opposite corners inside the original square. 

As a teacher it is often necessary to suspend your own images in order to try to 
appreciate what learners are describing and displaying about their own thinking.  
Learning to hold various versions arising from the same stimulus is therefore of 
advantage when working with learners.  
Whether you had already drawn your own, or whether you were starting from scratch 
with my description, you experienced a situation in which there is potential 
interference and potential support from at least two of the three different modes of 
representation which Bruner (1966) described as enactive, iconic, and symbolic.  I see 
these as three different worlds which we occupy: material, mental and symbolic 
including verbal.  In this case, the task affords the possibility to experience movement 
between the mental the material, and between the verbal and the material, and as will 
emerge shortly, back again. 

On Presentation 
Tasks are not single items, but rather particular manifestations of a whole domain of associated 
tasks, as this study will indicate.  The notion of dimensions-of-possible-variation is useful for 
thinking about task presentation, as well as for the substance and focus of tasks.  For example, 
Task 2a is presented as an invitation to imagine.  A sensible way of coping is to build up a 
diagram following the instructions. It is also possible to try to work mentally for as long as 
possible, in order to strengthen the natural power that everyone has to imagine.  Note however, 
that imaging a square does not necessarily mean to picture a square.  Some 40% of the population 
do not respond strongly to the language of pictures for what they experience in the iconic or 
mental world.  Some people have a sense. Almost a visceral sense of square, some people work 
with the language, and most people have an element of all of these. 
Task 2a could have been presented using a diagram.  Different powers would then be called 
upon to make sense of the diagram.  In a workshop it could be presented in text as an 
instruction, or as a fully developed worksheet, or it could be described orally. It could even be 
presented in silence! A diagram could be presented fully completed, or could be built up step 
by step, perhaps even electronically.  These are just some of the dimensions-of-possible-
variation in task presentation.  The choice of  the form of presentation will be informed by the 
purposes of the task and the experience and expectations of the learners. 
Presenting a task, perhaps in silence, building up a diagram or sequence of expressions affords 
learners the opportunity to anticipate what is coming next.  For example, drawing one chord 
across the square and then pausing offers an implicit opportunity to anticipate not only that a 
perpendicular chord will be drawn next, but also where it will be drawn. 
It may be useful to draw learners’ attention to the possibility of anticipation by asking whether 
they are aware of anticipating what comes next.  If learners are not anticipating but merely 
waiting for what comes next, then they are not taking full initiative and responsibility as 
learners.  They are attending in the sense of ‘being present physically’ but not attending in the 
sense of paying as full attention as is possible to what is happening.  Anticipation has been 
highlighted by Boero (2001), and is one aspect of a conjecturing atmosphere or classroom ethos. 

Conjecturing Atmosphere & Ethos  
In a conjecturing atmosphere, everything said is treated as a conjecture to be tested and 
probably modified. Those who are certain, who ‘know that they know’ choose to listen and 
question more, while those who are tentative, take more risks by trying to articulate their 
current thinking.  It is the attempt to articulate which often helps clarify the concept. 
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Legrand (1993) promotes the use of scientific debates in which learners discuss, negotiate 
meaning, try to offer counter-examples and examples in order to test what is said and to try to 
prove or refute conjectures as they arise.  This is mathematical thinking in action.  Once there 
are competing conjectures, mathematical thinking really gets going as people try to refute or 
support their conjecture.  The most important feature, unlike political debates, is that everyone 
is eager to modify their conjecture to take account of what others offer.  Mathematically 
justifiable assertions usually take many modifications before they settle down. 

Back to the tasks  
Once the diagram of a unit square has been augmented by perpendicular chords, the 
calculations in the task can be depicted as areas.  But to do this requires discerning the edges of 
the square as having been split into two parts.  Further, the two parts are related, because the 
sum of their lengths is the side of the square and hence one unit.  While this discernment may 
seem trivial, there are many situations in which what seems obvious to the author proves to be 
opaque to learners.   
There is of course a vital shift of attention in seeing both numbers (the square and the 
unsquared) which are to be added together, as areas.  It may take a while to realise the 
significance of the square having unit lengths.  This feature that what seems like a length (one of 
the chosen numbers) can also be seen as one times that number and hence as an area is yet 
another example of the power of mathematical notation which emerges from ambiguity, from 
multiple interpretations of the same symbols. 
The areas depicted by the square of the larger plus one times the smaller, and the square of the 
smaller plus one times the larger are the same, looked at as broken into two parts in two 
different ways.  Thus the two calculations both calculate the same area, and so must be the 
same. 

When people meet something new (a new diagram, a new idea, a new concept) thir 
attention is often on the whole, undifferentiated.  To make sense they need to discern 
features, aspects, parts, and to perceive relationships between those parts.  None of this 
is automatic, though it makes use of natural powers that all humans possess, and it 
follows natural patterns in human sense-making.  It behoves the teacher to make sure 
that learners are discerning what the teacher is discerning, fore-grounding and back-
grounding appropriately, so that the intended relationships can be perceived.  It is a 
further shift, again quite subtle, to move from being aware of relationships amongst 
parts in a particular (such as a diagram or expression) and being aware of those 
relationships as properties which can be held, or not held, by objects.  Thus seeing the 
two inside squares in one diagram does not guarantee that the learner is aware that the 
chords could be anywhere along the edge making two squares, and not just in the 
particular place where they are shown. 
Paying attention to relationships and then shifting to being aware of those 
relationships as putative properties which objects may or may bnot have involves a 
shift in the structure of how learners are attending to the object (the diagram in this 
case). The van Hieles (1986) studied these shifts in the structure of attention in the form 
of levels of geometric thinking, but they are more usefully thought of as ways of 
attending.  It is not a matter of ‘being able’ or ‘not being able’ to property-make, as 
Pirie & Kieren (1994) call it, but rather a matter of rapid changes in how we attend 
moment by moment.  If learners and teacher are not attending in the same way, then 
there is unlikely to be effective communication between them. 

Task Interlude 
Many people, when told that I have two numbers which sum to one, or when asked to construct 
two such numbers, restrict themselves to numbers between 0 and 1.  A few choose the extreme 
pair, 0 and 1, some choose 1/2 and 1/2 (but then find that the calculation has no bite to it!).  The 
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sorts of numbers which first come to mind display the person’s immediate example-space 
(Watson & Mason 2002, 2005).   

We have found that asking people to construct mathematical objects, even quite simple 
ones, reveals a good deal about the range of things of which they are, at the time of 
asking, aware and confident.  If learners have a narrow sense of objects being talked 
about by the teacher or text, they are unlikely to appreciate the full force of what is 
being said.  So we use tasks such as the following to prompt learners to extend their 
example-space, and to experience making a choice from a range of possibilities rather 
than jumping at the first examples which comes to mind. 

Here is an example of a creative construction task. 

Task 3: Another & Another 

Write down two numbers that sum to one. 
Write down another pair. 

Write down another pair. 

Here we are exploiting the well known psychological impact of ‘three repetitions’: 
some people are content with three simple examples, but many find that by the third, 
they feel like challenging themselves, becoming more extreme, more ‘interesting’. 
Creativity is released.  By discussing choices that people make, others become aware of 
choices they hadn’t thought of.  On another occasion they may then find themselves 
being more adventurous (Watson & Mason 1998, Bills, Bills, Watson & Mason 2005] 

In the case of Task 3, there are of course possibilities to use fractions, decimals, and 
negative numbers (perhaps even complex numbers, though ‘larger’ and ‘smaller’ 
would have to be replaced by some other means of identifying one number of the pair).   

The type of number or number representation is one dimension-of-possible-variation 
connected with pairs of numbers which sum to one. Within that dimension there is a 
perceived range-of-permissible-choice (most people don’t think immediately of 
extremely large or extremely small numbers).  By inviting people to construct objects 
and then to discuss those choices, the extend their awareness of what could be 
changed, and the extent of permissible change.  For Marton (Marton & Booth 1997), 
this is one way of specifying ‘learning’: extending awareness of dimensions-of-
possible-variation and their associated ranges-of-permissible-change.  

Having considered types of numbers, what other features of the original task could be altered 
and still have a task of the same type? 

Task 4: DofPV 

What features of the depiction (and hence of the original task) could be varied and still the same flavour 
remain? 

If the diagram is dominant, then you might think of adjusting one of the chords that 
divides the square into regions.  Seeing or imaging the chords moving might easily 
raise the possibility that the two chords might become independent of each other.  
Before pursuing that option, other features which might change include changing the 
numbers (summing to one could be summing to something else), having three or more 
numbers summing to one, changing the operation from ‘sum’ to something else. Other, 
more remote possibilities include changing the outline figure from a square, say to a 
rectangle or even to some other shape, and even allowing the chords to be at angles 
other than parallel to the sides of the square (or other shape).  The use of numbers 
might be changed to other mathematical objects which can be combined in some way.  
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For example, matrices are sufficiently number-like, despite not commuting under 
multiplication.  Perhaps integrals of polynomials over a fixed interval, or the integral of 
a particular function over different intervals can replace ‘number’ (see Task Y).  Finally, 
and this will be pursued later, what about moving to higher dimensions (Task Z)? 

There are close links with the powerful device of asking ‘what if not…?’ type questions, 
and using the tactic promulgated by Brown and Walter (1983) of reading out an 
assertion and stressing one particular word (for example ‘the sum of two numbers is 
one …’) which almost automatically invites the question ‘why one, why not something 
else?’).  The extra power afforded by the notion of dimensions-of-possible-variation is 
that it suggests some structure amongst the features, and with corresponding ranges-
of-permissible-change. Different people may be aware of different ranges.  But it does 
even more. It extends the tactic from a way of opening up tasks to exploration, to a core 
feature of teacher’s informal assessment of learners awareness, providing access to 
learners’ example-spaces.  Furthermore, it directs teacher attention to what it means to 
appreciate-understand a concept, for a concept is appreciated to the extent that the 
learner has to hand not just examples, but awareness of what it is about those examples 
which is exemplary.  That is, what features of the examples can change, and to what 
extent, and still the object remains an example of the concept. 

Another way of directly focusing attention on a dimension-of-possible-variation is to display an 
animation (electronic or mental) of the vertical and horizontal line segments moving back and 
forth, at first coordinated to produce the squares in the corners, then independently.   

Explicitly varying the pair of numbers which sum to one  helps to remind learners that 
the diagram does not just depict a particular case, but rather, makes it possible to see 
the general through the particular (Whitehead 1932, Mason & Pimm 1984).  A 
reasonable pedagogic conjecture is that unless they are alerted to it, many learners will 
focus on the particular and at best only dimly be aware that a diagram is intended to 
‘speak the general’.  
Note however that if the teacher is always the one to invoke mental imagery, to invite 
anticipation and conjecture, to promote consideration of dimensions-of-possible-
variation and ranges-of-permissible-change, then learners are liable to become 
dependent on the teacher for such prompts. Once a pattern of questioning and 
prompting has been established, scaffolding the focusing of attention in specific ways 
(Seeley Brown et al 1989), it is important to begin fading the intervention through, for 
example, the use of meta-cognitive questions (“what question am I going to ask you?”; 
“what question did I ask you earlier/yesterday?”) so that learners are encouraged and 
supported both in becoming aware of the questions and prompts the teacher has been 
using, and taking the initiative to ask them of themselves for themselves.  Scaffolding 
and subsequent fading can usefully be thought of in terms of a spectrum of 
intervention densities (Floyd et al 1985), from the directive to the prompted to the 
spontaneously used by learners themselves. 

Task 5: Moving Chords 

In the diagram, the chords remain parallel to the sides of the square, but they cut 
the sides differently.  Read the shaded area in two different ways to obtain a (more 
complex) version of the original task. 

 

 

Here an anticipated affordance of the task is an opportunity to work on moving from 
material object (diagram) to mental image (of a generality seen through the particular) 
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to symbolic expression (verbal or symbolic).  Often it takes several attempts to reach an 
acceptably succinct statement that everyone agrees to in a group working together.   

One version might be that the given two pairs of numbers both summing to one, the 
product of the larger of each pair added to the smaller from one pair is the same as the 
product of the smaller of each pair added to the larger of the other pair.  Those 
algebraically confident can express this in symbols.  

The ‘=’ sign is often taken by learners, especially those growing up in the calculator 
age, to mean ‘do the calculation’, or ‘get the answer’.  Thus whereas they accept the 
statement that 3 + 4 = 7, they balk at 7 = 3 + 4.  Here the term ‘is the same as’ means 
‘equal in value’, as distinct from ‘equal in appearance’. 

Task 5a: More Moving Chords 

What role is played by the terms ‘larger’ and ‘smaller’ in stating an equality in Task 5? 

In fact, it seems that the two terms are only being used to identify numbers in from the pairs.  
The statement could equally well take the form ‘the product of one number from each pair 
added to the other number from one pair is the same as the product of the other numbers from 
each pair added to the other number from the other pair’.  However a good grasp of the way 
English refers to objects using ‘other’ is essential!! Again there is an opportunity to experience 
discerning of objects referred to by the ‘abstract words’, to experience relating these to 
correspond to what is written, and to see these relations as properties of pairs of numbers. 
One thing among many that this task highlights is that having worked mentally to identify 
objects, the language emerges quite easily, but encountering the language without the images 
makes decoding and interpreting quite a challenge! 

Structure Informs Meaning 
One of the powers of symbols over diagrams of course is that the full range-of-permissible-
change is any number (or even number-like object), whereas the diagram suggests an implicit 
permissible-range-of-change for the pairs of numbers as being between zero and one.  It is not 
difficult to extend the diagram to include negatives, but some additional ‘rules’ have to be 
considered and agreed. 

Task 6: Depicting Negatives 

By allowing the chords to escape the confines of the square, introduce ‘signed-distances’ so as to be able to 
draw and read diagrams with negative lengths.  What are the rules for calculating areas using signed lengths, 
so that the calculations are consistent with the arithmetic? 

This is a nice example of how the mathematical structure can be used to decide what the rules 
ought to be, so as to be able to use diagrams with negative lengths (see for example Sawyer 
1959).  Among other things, it becomes ‘necessary’ to require that the area formed by two 
negative segments be considered positive, whereas the area formed by a positive and a negative 
segment be considered negative.  Extending meaning is a fundamental mathematical theme 
which recurs again and again.  Here the interpretation of diagrams, seen as notation, is 
extended to encompass directed segments I order to admit negative numbers. 

Changing the Sums 

Task 7: Other Sums 

How might the original statement of equality be adjusted to take account of the two numbers summing to S 
rather than to one?  What about the two-pair version?  Must the pairs sum to the same number? 
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An area diagram may be informative! 

Changing the Operation 

Task 8: Some Difference 

Replace the word ‘sum’ in the original task with ‘subtract’. 
Is there a way of symbolically connecting the ‘subtract’ version with the ‘sum’ version? 

What happens if ’subtract’ is replaced by ‘(absolute value of) difference’? 

As Polya (1962) suggested, asking yourself if you have seen something similar before which 
might be informative is a very useful question to ask before diving into calculations. 

 Task 9: Products 

If two numbers have a product of one, is there a corresponding operation to replace squaring to produce an 
analogy to the original task? 

Changing the Objects 

Task 10: Integrals 

Which do you think is larger, 
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What is it about the choices made that makes this particular example work? 

What are some dimensions-of-possible-variation and corresponding ranges-of-permissible-change in those 
dimensions which preserve the setting as integration?  For example, notice that the coefficient of x plays no 
role whatsoever, and that what really matters, in preserving the structure of the original task, is that the 
integral from –1 to 1 is equal to 1. 

Task 10 variant: Bury the Bone 

What is the same, and what is different about, the two statements 

 x2 + 1 – x = (1 – x)2  + x  
and  
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Make up even more obscure ways of hiding the basic identity within mathematical calculations (what I like to 
call ‘burying the bone’ (Watson & Mason 2005) 

Being invited to ‘bury the bone’ is more than a technical exercise. It invites learners to 
experience for themselves how tasks can be complexified, thereby alerting them to a 
range-of-permissible-change, and thereby increasing the likelihood that they will 
recognise the essential task in some complex version appearing on an examination.  It 
also reveals the extent of their awareness of dimensions-of-possible-variation and 
corresponding ranges-of-permissible-change as a specification of their sense of the 
associated task-domain and various concepts involved.  For example, some learners 
might not think to change the limits of integration, or to change the degree of the 
polynomial (or to reach beyond polynomials).   
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Task 11: Matrices 

What additional constraint is required when using matrices (say two by two matrices, with ‘one’ replaced by 
‘the identity matrix’) in order to make the statement ‘given two pairs of matrices which both sum to the 
identity matrix, the product of one from each pair added to the other of one pair is equal to the product of 
the other from each pair added to the other of the other pair’ correct? 

Because matrix multiplication is not commutative, care must be taken to specify the order in 
which products are taken.  Furthermore, having replaced ‘number’ by ‘matrix’ in the original 
task, area diagrams are no longer sufficient to justify the corresponding assertion, because the 
matrices do not refer to the area in any way.  But the matrices do conform to the axioms to 
which algebra conforms, except of course for commutativity. 

Into Higher Dimensions 

Task 10: 3D 

What might a three-dimensional version of the original task look like? 

Of course having considered various dimensions-of-possible-variation in the original task, it is 
possible to generalise many different aspects at the same time, but for the purposes of these 
notes it seems sensible to work on one dimension-of-possible-variation at a time!  The tasks 
which follow will shift between a single pair and multiple pairs, but always summing to one. 
The focus here is to locate a structure within the first task which can be extended into three (and 
by implication, more) dimensions.  What then are salient features of the original?   
Stress could be placed on the comparison of two expressions; that expressions were the sum of 
areas (generalisable to volumes); and on the fact that one expression involved a square 
(generalisable to a cube) with something added, which in the diagram was a rectangle 
(generalisable to a cuboid) with one edge the length of the square.  Having analysed the original 
for generalisable features, imagining or drawing a cube partitioned into eight regions, it is 
necessary to find a way to select certain regions, the sum of whose volumes can be interpreted 
in two different ways. 
Starting from a cube in one corner, and aiming for a cube in the diagonally opposite corner, 
yields the following diagrams, amongst other possibilities. 

a

                    

a

 
Translating into symbols produces x3 + x(1 – x) + (1 – x)3 = x2 + (1 – x)2. 

Task 11: Three pairs in 3D 

Extend the equality in the previous task to three different pairs each summing to 1. 

Extend further to the pairs each having a different sum. 
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Notice how it is possible to be quite analytical, to allow the symbols to do most of the work in 
making the generalisations.  For example, a cube becomes a product, and hidden 1s become 
symbols for the corresponding sum. 

Task 11: Beyond 3D 

What might associated statements look like in higher dimensions? 

Thinking in four and more dimensions is not easy, so it is useful to find some symbolic 
approach which, derived from intuition, can then drive intuition beyond the easily imagined.  
One way of thinking is to see the unit cube as partitioned into 8 cuboids by the chordal-planes 
corresponding to one (or three) pairs summing to one along the edges.  This yields a cube 
whose vertices correspond o the eight cuboids.  Give these vertices coordinates (0, 0, 0), (1, 0, 0), 
… (1, 1, 1), and choose a path along the edges of this cube: for example, (0, 0, 0), (0, 0, 1), (0, 1, 1), 
(1, 1, 1).  Note that only one coordinate can change at each step since the path must be along the 
edges of the cube.  Such a path corresponds to choices of cuboids to make up a ‘shaded region’ 
in the original unit cube.  The two ways of shading volumes of cuboids correspond to 
partitioning the path into distinct pairs of adjacent vertices. Thus 

(0, 0, 0); [(0, 0, 1), (0, 1, 1))]; (1, 1, 1) and [(0, 0, 0), (0, 0, 1)]; [(0, 1, 1), (1, 1, 1)] 
code the two choices of shaded volumes in the figures. 

REFERENCES 
Bills, C. Bills, E. Watson, A. & Mason, J. (2004) Thinkers. Derby: ATM. 
Boero, P. (2001) Transformation and Anticipation as Key Processes in Algebraic Problem 

Solving, in R. Sutherland (Ed.) Algebraic Processes and Structures, Dordrecht: Kluwer, p99-119. 
Brown, S. & Walter, M. (1983). The Art of Problem Posing. Philadelphia: Franklin Press. 
Bruner, J (1966) Towards a Theory of Instruction, Cambridge: Harvard University Press. 
Bruner, J. (1996) The Culture of Education. Cambridge: Harvard University Press. 
Floyd, A., Burton, L., James, N., & Mason, J. (1981). EM235: Developing Mathematical Thinking. 

Milton Keynes: Open University. 
Legrand, M. (1998/2000). Scientific Debate In Mathematics Course. La lettre de la Preuve 

Novembre/Decembre 2000 on-line text (accessed 2006). 
Love, E. & Mason, J. (1992) Teaching Mathematics: action and awareness. Milton Keynes: Open 

University. 
Marton, F. & Booth, S. (1997) Learning and Awareness. Mahwah: Lawrence Erlbaum. 
Mason, J. & Burton L. & Stacey K. (1982) Thinking Mathematically. London: Addison Wesley. 
Mason, J. (1996). Twenty-Five Years of Problem Solving (1971 - 1996), IFP 6, Milton Keynes: Centre 

for Mathematics Education, Open University. 
Pirie, S and Kieren, T. (1994) Growth in mathematical understanding: How can we characterise 

it and how can we represent it?. Educational Studies in Mathematics, 26 (2-3), 165-190. 
Polya, G. (1962) Mathematical Discovery: on understanding, learning, and teaching problem solving. 

New York: Wiley. 
Polya, G. (1965) Let Us Teach Guessing, (film) Washington: Mathematical Association of America. 
Sawyer, W. (1959) A Concrete Approach to Abstract Algebra, London: Freeman. 
Seeley Brown, J. Collins, A. & Duguid, P. (1989). Situated Cognition and the Culture of 

Learning, Educational Researcher, 18 (1) p32-42. 
van Hiele, P. (1986) Structure and Insight: a theory of mathematics education. Developmental 

Psychology Series. London: Academic Press. 



11 

Watson A. & Mason, J. (2002) Student-generated examples in the learning of mathematics. 
Canadian Journal of Science, Mathematics and Technology Education, 2 (2) 237-249. 

Watson, A. & Mason, J. (1998) Questions and Prompts for Mathematical Thinking. Derby: ATM. 
Watson, A. & Mason, J. (2005) Mathematics as a Constructive Activity: the role of learner-generated 

examples. Mahwah: Erlbaum. 
Whitehead, A. (1932) The Aims of Education and Other Essays. London: Williams & Norgate. 


