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0. Caveats & Contents

We were asked to choose eight seminal works and to summarise and review these.  However we could not find eight works which we felt adequately covered the territory.  We did find that there were collections of works with commonalities which provided a focus, an assemblage
, and we have assembled five of these.  In reviewing these assemblages we have made reference to other works with which we are familiar in order to support, amplify, corroborate or challenge assertions and findings.  We have also briefly indicated the type of research upon which the assemblage components draw.   

Caveats

Some caveats are required, however. We believe that we have examined most of the pertinent research, but we do not claim to have reviewed all relevant literature, which is vast; we are also aware that other assemblages would be possible. We report here on the five assemblages which emerged for us after considering various ways of trying to ‘dissect the corpus’.  Although other people might have made other choices, we are confident that the same sorts of themes and issues would emerge. Our chosen assemblages are not even uniform in type: some are single works which are themselves summaries, and others are constellations of papers from many authors writing around a theme and here represented by just a few, while still others are grouped by nationality because of a certain coherence in the approach and perspective. We are particularly aware that we have not included reference to Japanese, Chinese, and South East Asian research nor to research not readily available in English.

Furthermore, as the recent comparative study of algebra curricula has shown, school algebra differs from country to country (Sutherland 2000). Some national curricula (for example Hungary, France, Italy) emphasise algebra as a study of systems of equations, and other national curricula (for example England, Victoria & Queensland in Australia, Ontario in Canada) emphasise algebra as a means of capturing number patterns as formulae, and in Australia, go so far as to advocate 'expressing generality' and to 'give evidence for conjectures arising from mathematical investigations ...'. It is vital, though by no means common, that expressing patterns is carried forward into manipulations of those and other expressions, and into the study of the structure of numbers, of polynomials, and of other situations in which generality is expresed algebraically.

Moreover there is often a link between a mathematics curriculum and the mathematics education research in a particular country, as illustrated by the way in which the work of Janvier (1987) on multiple representations has influenced the curriculum of Quebec in Canada, and the way that research has influenced curriculum designers in the U.K. (see for example Sutherland 1990). This suggests that there will be an ongoing complex relationship between the results of mathematics education research and what is being taught in schools. This implies that it is likely that research results on the learning of algebra are in some respects culture-specific and should be interpreted as such. 
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1.  Five Significant Assemblages

In reviewing the literature generally, it has been very difficult to select a small number of pertinent sources which also cover the territory adequately.  We have settled on five assemblages, where an assemblage may include the work of several colleagues despite the absence of a single piece of writing drawing their contributions together. 

A1:  Sample Older Sources: J. A. Wright (1906), Sir Percy Nunn (1919), Hans Freudenthal (1973-91)

A2:  Bednarz, Kieran & Lee 1996

A3:  An Australian Assemblage

A4:  An American Analysis (2001) 

A5:  An Italian Assemblage

These assemblages have been selected as particularly informative and pertinent to the task of drawing up a curriculum specification for a subject (algebra) which is both important in its own right, and central to the use of mathematics in many different disciplines.  In this section we summarise the five assemblages very briefly.  They are elaborated in section 3.

A1:  Sample Older Sources: J. A. Wright (1906), Sir Percy Nunn (1919), Hans freudenthal (1973-91)

We have included a review of three representative sources of research and curriculum development taken from the past, because we find much that resonates with present day concerns, despite our advantage of modern technology. 

J. W. A. Wright 1906, The Teaching Mathematics in the Elementary and the Secondary School
Nunn, P. 1919,  The Teaching of Algebra, 

Freudenthal, H. four books over the period 1973-1991, 

Mathematics As An Educational Task; 

Weeding and Sowing,: preface to a science of mathematical education;

Didactical Phenomenology of Mathematical Structures, 

and Revisiting Mathematics Education: china lectures 

A2:  Bednarz, Kieran & Lee 1996 

Bednarz, Kieran & Lee 1996, Approaches To Algebra: perspectives for research and teaching
This collected edition, results from  an invitation conference,  and provides an excellent summary of different ‘approaches to algebra’  with research evidence provided for the strengths and weaknesses of  these approaches.   We have chosen to use these approaches, namely, generalisation, problem solving and functional to frame our thinking about the algebra curriculum.  Within this review we have chosen to replace the word approaches by aspects, because our general conclusion from the review process is that there is no one ‘approach’ which ‘works’ and a curriculum which uses only some will necessarily be deficient.  Rather, there are several aspects of algebra which need to be interwoven and which need to imbue teaching in order for that teaching to be effective.

A3:  An Australian AssemBlage 

We have chosen to include a review of research on learning algebra which emanates from the Australian mathematics education community (for example MacGregor & Stacey, 1997; Stacey & MacGregor, 1997; Stacey & MacGregor, 2000; Stacey & MacGregor, 2001; Stacey, 1999) as this represents a strong and long-term body of research investigating  students’  interpretation of letters, understanding of variable and problem solving. 

A4:  An American Analysis (2001)

Kilpatrick, J. Swafford, J. Findell, B. (Eds) 2001, Adding It Up: Helping Children Learn Mathematics
This work provides a comprehensive summary of what is known from research about teaching and learning mathematics, including algebra, from an American perspective.  
A5:  An Italian Assemblage

We review here the work of members of the Italian research community (for example, Arzarello, Bazzini and Chiappini (1994), Boero (2001), Dettori, Garuti & Lemut (2001) Bazzini & Chiappini(2001)). This research is characterised by a systematic  analysis of ‘complex’ problems followed by empirical work in authentic teaching and learning situations.  Members of the Italian research community normally work in collaboration with practising teachers and their research incorporates the development of curriculum activities and a consideration of the potential of new technologies for teaching and learning algebra. 

2.  Distillation of principal Themes

The time has come for a careful reappraisal of the aims and content of algebra courses and of ways of teaching the subject.  In any case the teaching of traditional algebra has long presented difficulties in schools and it is a branch of mathematics which remains a mystery to many adults. 

(Her Majesty’s Inspectorate 1979, quoted in Wheeler 1989)

This observation is reflected in every report we encountered, and traces can be found in every generation since at least the 16th century (Pycior 1997), and particularly in almost every decade of the 20th century.  Of particular note are

Coxford & Schulte, 1988,The Ideas of Algebra, K–12
Wagner & Kieran, 1989, Research Issues in the Learning and Teaching of Algebra 

Kieran, 1992, The Learning and Teaching of School Algebra

Giménez, Lins, & Gómez, 1996, Arithmetics and Algebra Education,

Filloy & Sutherland, 1997, Designing Curricula for Teaching and learning Algebra

Sutherland, 1997, Teaching and Learning Algebra pre-19
Sutherland, Rojano, Bell, & Lins, 2000, Perspectives on Algebra 

Sutherland, 2000, A Comparative Study of Algebra Curricula 

Kilpatrick, Swafford,  & Findell, 2001, Adding It Up: Helping Children Learn Mathematics,

Algebra at school forms a watershed for a majority of the school population.  Many adults report grave misgivings and strong dislike of a topic that they feel they never understood, even if they passed tests at the time.  What then is algebraic thinking?

What is Algebraic Thinking?

As Lins (1992) reports in his PhD thesis, in reviewing the research carried out until now ‘… no clear characterisation of algebraic thinking was available' (p1).  Influenced by our reading and of course by our own perspectives, we take algebraic thinking to mean moving from the particular to the general, as seeing and expressing what is generalisable about a particular.  This applies to the youngest children moving from number as adjective (2 pencils, 3 beads, 4 yoghurt pots) to number as noun (2, 3, 4, …), and carries on through the notion of tens complements arising from examples such as 2 + 8 = 10, 3 + 7 = 10, to ‘methods’ of mental and pencil-and-paper algorithms for addition, subtraction, multiplication and division, through seeking methods to resolve types or classes of problems, through the structural reasons for arithmetic on negative numbers, rationals, and decimals, through factoring and completing the square of particular quadratics as exemplars of factoring and completing the square of quadratic expressions in general, and so on into tertiary. 

This is consistent with Lins' conclusion (Lins 1992) that algebraic thinking is best seen as 'an intention' to shift from context to structure.  Algebraic thinking arises when people are detecting and expressing structure, whether in the context of problem solving concerning numbers or some modelled situation, whether in the context of resolving a class of problems, or whether in the context of studying structure more generally. Why then is algebra foisted on students at school?

Why algebra?

All of the summaries and many of the papers we reviewed agree, implicitly or explicitly, that algebraic thinking contributes to being a full citizen able to participate fully in the democratic process, and that algebra is the language in which the use of mathematics in economic activity is expressed.

From a democratic point of view, any citizen who is unconfident with expression and manipulation of generality cannot function fully in the political and economic process, because modern society runs on the assertion and critique of generality, including the use of mathematical models to study and predict the effects of policy decisions.  Citizens unable to engage in this debate are disenfranchised.

In an industrial culture, owners, factors, and managers all need to deal with the general in formulating (note the etymology) and deciding amongst different policies and when determining procedures to be followed by employees, which is in essence, a form of algebra.  By contrast, customers are interested only in the particular application of these rules to their situation. However, citizens need to be able to engage in thinking about the general in order to appreciate how those decisions are being made.  

In a knowledge-economy, everyone who participates is faced with assertions of generality concerning policy decisions and choices.  Citizens need to be able analyse and critique these assertions and the models which underlie them, and to assert their own versions.  Algebra provides the basis, the language, the foundation for this participation.

Today’s society places considerable emphasis on the use of technological tools such as spreadsheets and databases. These have their roots in the early development of computer programming languages, which in their turn have their roots in mathematics generally and algebra in particular. Thus it can be argued that today’s citizens should both appreciate and become competent in the generalising and symbolising power of algebra,  in order to be able to understand the potential and the constraints of these computational packages. Software only does what it has been ‘programmed’ to do. 

Abstraction as Strength and as Weakness

‘Abstraction from context’ which Diophantos achieved for early algebra nearly 2000 years ago, is a source of the power of mathematics, for abstraction enables 

concentration on the central technical problem to be solved independent of the particular context in which it is embedded, 

further and deeper study of more general structures in a search for an effective solution to a class of problems, 

and application of those techniques in a variety of superficially very different contexts.

Unfortunately this very strength is a weakness when it comes to education, for there is a strong temptation to teach the abstracted technique isolated from all context, and a converse temptation to teach the technique as a set of rules to be followed in specific contexts.  Neither has proved successful on its own, hence the tension between, for example, modelling and word-problems as approaches to the introduction of algebra. 

Interweaving of Research and Educational Perspective

Reviewing literature from around the world reveals subtle but important differences in approaches to research, to mathematics, to teaching, and in particular to algebra, and these differences must be borne in mind when seeking to construct a curriculum that ‘works’ in the context of England and Wales.  

Principal issue

The biggest issue is not ‘how best to teach algebra’, because any programme of materials and tests is likely to degenerate, as several authors suggest in one way or another, into the mechanical and the routine: the transposition didactique formulated by Chevellard (1984, 1985) in which expert awareness is transformed into instruction in behaviour.  In other words, the richness of the expert’s connections and competencies, when turned into teaching materials, becomes a collection of behaviours for students to mimic and master. Algebra teaching has always been particularly prone to degenerate from expressing generality into manipulation of letters as if they were numbers.  For example, despite the avowed desire for students to learn to use letters to express general relationships, books of exercises such as Humphreys (1938), which is typical of the problems posed to students over more than a century, are reduced to using letters as if they were numbers with no sense or hint that there might be a generality present.  This is evidenced by the lack of stimulus to generalise those parts of word-problems which use particular numbers. 

The issue therefore is how to strengthen and develop awareness and appreciation of the various aspects of algebra in every topic, amongst both serving and newly qualified teachers. Every topic, every lesson, offers opportunities for using and extending algebraic thinking, and unless algebraic thinking imbues teachers’ ways of preparing for and conducting lessons, algebra will continue to be the principal mathematical watershed for most people.

What is vital is that teachers use their own awareness of the centrality of algebra in mathematics as a computationally expressive language, to inform their practice in ever lesson, not just in lessons labelled ‘algebra’.  This requires teachers to be encouraged to develop their own awareness.  Working on awareness is not a one-shot event, but a career-long enterprise.  For example, departments in which teachers work together on mathematics new for them are better placed to refresh their awareness of what students experience and to refresh their awareness of the roles of algebra than are departments in which teachers do not develop their own mathematical thinking.

Kaput (1999) neatly summarises the demands of teaching algebra in the 21st century:

Begin early; integrate algebra with other subject matter; include several different forms of algebraic thinking (problems, modelling, generalising, functional thinking); build on children's natural linguistic and cognitive powers; encourage them to reflect upon and become aware of those powers so that they learn to articulate what they know; encourage children to make (mathematical) sense of the world around them and of what they are taught.

Arcavi (1994) puts it more succinctly:

Algebraic symbolism should be introduced from the very beginning in situations in which students can appreciate how empowering symbols can be in expressing generalities and justifications of arithmetical phenomena ... in tasks of this nature, manipulations are at the service of structure and meanings (p. 33)

Approaches based on manipulables (Sawyer 1959), on Babylonian area diagrams and on the balance metaphor (Filloy & Sutherland 1997) or on algeblocks (see website) or polynomial engineering (Simmt & Kieren 1999), while achieving some  success in the short term, face the problem of weaning students off the use of material objects and onto the use of mental objects, and further, onto the use of symbols to denote these objects.  Seeking solutions in digital technology alone is dangerous, for although software enables students to get a machine to manipulate algebra for them, they need at least some experience in that manipulation in order to know what to ask the software to do for them.  Exactly how much and of what form requires further research.

Distinctions & Dualities

The following distinctions arise in many of the reviews and reports, expressed in different language and with different emphases.  In our view they all need to be taken account of in the design of a curriculum and in the description of pedagogical practices, as well as in future research.

Object-Process

An expression such as 3x + 4 is both the answer to a question, that is, an object in itself, and also an algorithm or process for calculating a particular number. Being aware of this has been called proceptual thinking (Gray & Tall 1994). Arithmetic, including arithmetic with symbols places an emphasis on the process of calculation and thus many  students are not aware of this duality.  Absence of this dual perception accounts for many of the classic errors with symbols observed being made by students who only experience arithmetic with letters.

Analysis-Synthesis (Arithmetical-Algebraic)

In arithmetic one proceeds from given, known numbers to calculate as-yet-unknown numbers, arriving eventually at a final answer (what Viète 1591) called the analytic art.  In algebra one proceeds by denoting what is not-yet-known (“acknowledging ignorance” Mary Boole in Tahta (1972 p55), expressing calculations on those as-yet-unknowns to produce constraints, then seeking solutions to those constraints and re-interpreting them as solutions to the original problem. This is also typical of modelling more generally, for the algebra is being used to model-express the situation and the constraints. 

There are considerable initial psychological differences between moving from confidence into the unknown, to starting with the unknown and calculating ‘as if’ it were known. It is a reasonable conjecture that once letters become a familiar vocabulary in which to express generality and constraints, these psychological differences are likely to disappear.

Unknown-General-Variable-Parameter

Letters are used in four different yet inter-related ways:

to denote a specific unknown whose values are sought (what is the scope of generality given the constraints imposed?);

to denote a general or unspecified number which can take any one of a range of values; all expressions using that symbol are either valid, leading to the notion of an identity, or are constraints, leading to the notion of equations and inequalities;

to denote a quantity which is permitted to vary over a specified range (variable), used particularly to study the properties of functions;

to denote a quantity which could be allowed to alter but which for the moment is considered to be fixed (parameter); arises especially when generalising in the context of the study of something else as variable;

Structural-Empirical

One example, seen generically or paradigmatically, that is used to see through to the general, can give access to experience of structure in a situation, problem, etc..  Several, even many examples can be used empirically to locate and express a pattern (guess a formula).  Empirically abduced or induced formulae need to be justified by recourse to the source of the numbers; structurally deduced formulae need to be justified by articulating the identified structure.

For example, an empirical approach to a sequence  or set of numbers is to analyse them using finite differences or using a statistical technique such as linear regression to locate a possible formula which generates all the known cases, perhaps approximately; a structural means of building each term from preceding terms can be identified and expressed, and then the recurrence relation can be used to try to generate a formula; the source of the sequence of numbers can be examined and analysed to reveal a structural formula for the general term in the sequence.

Empirical pattern spotting is often a matter of ‘going with the grain’, whereas the important structural awareness emerges by ‘going across the grain’ (Watson 2000), but there is more to it than mere ‘trainspotting’ (Hewitt 1992).

Proof & Problem Solving

Mathematics is seen by many as being as much about proof as it is about problem solving, although trying to convince others can in fact be seen as a problem in itself!  Proving, or justifying, or reasoning, or convincing yourself and others, is a process which depends upon a symbol system for representing the objects about which something is to be proved.  Reasoning then proceeds by expressing relationships or necessary consequences.  Proof necessarily involves reasoning with generalities, showing that any and every case will conform with the justification offered. 

Whereas empirical approaches can be taken in finite situations where all possible cases can be listed, addressed or tested, once there are infinitely many possibilities, some sort of language is needed in which to express the general.  For example, the fact that the sum of two odd numbers is even and their product is odd is just an initial step on the road to studying the difference between conjectures based on particular examples, and certainty based on assumptions and reasoning, certainty over an infinite class of cases.  An early example which many children construct for themselves is that there is no largest number (“I can always add one to anything you say”).  It is quintessential mathematical reasoning, expressing a generalisation of an action performed in several particulars, and imagined as possible in any such situation.

Themes

In much of the writing reviewed there are both traces of, and direct references to, major themes which pervade mathematics and which serve to link and unify apparently disparate topics through the approach taken or through underlying structure which emerges. Here we mention briefly seven.

Mental Imagery

Expressing oneself in succinctly manipulable symbols involves the use of mental imagery as a mediator between the situation as imagined and the situation as abstracted and symbolised.  Similarly, manipulation of symbols involves anticipation of what will be achieved and of what form is sought (Boero 2001).  This is another important role for mental imagery. 

Freedom & Constraint

Most algebra problems can be seen as starting with a free choice of number, expression or function, and then imposing constraints on the choice, leading to the problem of determining whether there are any numbers, expressions, or functions which satisfy those constraints, and how to identify those that do.

Invariance Amidst Change

Most mathematical results are statements about something which remains invariant while other things are permitted to change.  Stress is usually placed on the invariant, but in order to appreciate it, it is necessary to be aware of the scope of permitted variation or change.  For example, the sum of the angles of a planar triangle is 180° states that the angle-sum is invariant, but obscures awareness that this is true for any planar triangle whatsoever.  Students often do not appreciate the import of the generality because they are unaware of the range of change within which the generality remains valid.  Explicitly varying elements is often necessary if students are to learn that that dimension of variation is possible within the concept (Marton & Booth 1997).

Doing & Undoing

Whenever a calculation is performed to reach an answer, it is possible to reverse the process and to ask, could this (another expression, number etc.) have been a possible answer, and if so, to ask what was the corresponding question.  At an elementary level, this is the structure which produces a need for negatives (what number could be added to 5 to give 3?) for rationals, and later for complex numbers among others.  

It is also a device for producing challenging and creative problems.  For example, is there a configuration in the game of jumping-pegs or leapfrogs which would take exactly 29 moves? Are there entries at the vertices of an arithmogon to give specified values along the edges?

Doing & Undoing often leads to characterising those numbers or expressions which could be answers, and distinguishing them from those that could not.

Characterising and Organising

Much of mathematics concerns characterising objects, such as the kinds of numbers which can arise as the solution to a specific problem (e.g. ‘one more than the product of four consecutive integers’, or ‘cannot be factored’), often in association with undoing or reversing a calculation process.

Extending Meaning

Throughout school students meet the same words used in contexts which include but extend their old use.  Thus number starts as ‘counting’ or ‘whole’ number, then includes the negatives, the rationals (strictly speaking, fractions are not numbers but ratios, and become numbers when all the ones with the same value are identified), numbers of the form a + b 
[image: image1.wmf] for some fixed n where a and b are rationals, the complex numbers.  Rational polynomials are number-like but curiously not considered to be numbers.  At each stage, the familiar numbers are extended by demanding that arithmetic remain consistent.  Something similar happens when trigonometric ratios (sine, cosine, etc.) are replaced by power series, solutions to differential equations, etc..

The Language of Generality

In English the words a and any can be used to indicate a generality (as can all and every), but can sometimes be used confusingly to indicate a particular:

Consider a number: is it particular or general?

The sum of the angles of a triangle (particular or general)

Take any number between 1 and 10 (is attention on the choice of one or on the fact that it can be any?)

This can be confusing to students, especially those for whom English is not their first language.

Similarities and Differences

A quick reading of the literature suggests that there are several different approaches to introducing algebra in school.  For example, Bednarz et al (1996) is structured around modelling, problem-based, generalisation based, and function based approaches (see Assemblage 2) and similar distinctions are articulated in different papers which emphasise one or the other aspect.  But in the final analysis, is there a significant difference between the different approaches distinguished?  Is there a significant element added by the use of calculators and software?

It is certainly possible to emphasise differences, as authors are prone to do.  But it is also possible to see great similarities in essence despite differences in rhetoric and discourse.  They all involve taking some situation, whether it arises in the material world or in some imagined or mathematical world, forming a mental image of the essence of the situation and of the relationships involved, expressing these in the language which at school is called algebra, manipulating the symbols so as to resolve the mathematical problems which emerge (solving equations or inequalities, isolating certain variables, finding integer solutions etc.), and finally, testing these solutions against the original situation to check for appropriateness.

Differences in pedagogy arise when the manipulations are isolated and emphasised at the expense of expression, so that students are faced with rules and techniques without participating in construction and communication of meaning.  This returns us to the opening theme of this section and to the virtually universal agreement amongst authors, that to be effective, the teaching of algebra has to engage students in constructing and communicating meaning, and that manipulation is a by-product not the focus or purpose of teaching algebra.

In Conclusion

Imbuing every lesson with algebraic thinking, with expressing generality and particularising generalities, with conjecturing and reasoning, is vital to successful experiences with algebra.  All dimensions of algebraic manifestations mentioned here (see following subsections) must be intertwined so that students can develop and use their undoubted powers to think (and to enjoy thinking) mathematically through the medium of algebra.

Algebra is now [1986] not merely ‘giving meaning to the symbols’ but another level beyond that: concerning itself with those modes of thought that are essentially algebraic – for example, handling the as-yet-unknown, inverting and reversing operations, seeing the general in the particular, [imposing constraint on freedom].  Becoming aware of these processes and in control of them, is what it means to think algebraically. (Love 1986, p49, quoted in Wheeler 1989 p282, square brackets added).

3. Review of five Assemblages

In this section we review the five assemblages, hoping thereby to encourage the reader to examine these works for themselves in order to appreciate them more fully.

A1: Sample Older Sources: J. A. Wright (1906), Sir Percy Nunn (1919), Hans freudenthal (1973-91)

J. W. A. Wright

1906, The Teaching of Mathematics in the Elementary and the Secondary School, American Teacher Series, J. Russell (Ed.), Longmans Green, London.

In a detailed and comprehensive analysis of the issues of the day, Wright still speaks to us today.  Many of the issues raised relate to the roots of algebra in arithmetic and these issues are still pertinent, despite shifts in cultural values in general and educational values in particular. 

Wright suggests four functions for algebra which find resonance in modern writing on the subject:

to establish more carefully and to extend the theoretical processes of arithmetic;

to strengthen the pupils’ power in computation, by much practice as well as by the development of devices useful in computation;

to develop the equation and to apply it in the solution of problems of a wide range of interest …;

to furnish such material within its domain as may be needed in the later study of mathematics and the various physical sciences.

Certainly the second of these functions, and to some extent the first, are presently emphasised in the National Numeracy Strategy, where pupils express mental methods of performing calculations such as 9 x 28 as (10 x 28) – 28.  This example is a particular instance of a general rule which employs the distributive law of arithmetic, and so provides the foundation for being expressed symbolically as the distributive law of algebra. 

For example, Wright observes that 

The majority of the remarkable mistakes in transformation of algebraic expressions made by pupils … are due to the fact that the expression and the transformation are meaningless jargon to the pupil, 

quoting as evidence Lodge (1903 )

Pupils say 
[image: image2.wmf] who would never say 
[image: image3.wmf]. 

Although this particular error may not be prevalent currently, others like it (e.g. 
[image: image4.wmf]) certainly occur.  Similar observations have been made recently of students arriving at university to read engineering and science (Hawkes & Savage 2000), and in the QCA rport on the 2000 round of Keystage 3 SATs.

Wright emphasises the roots of algebra in arithmetic, and proposes that 

There should never be any difficulty to pass from the symbol to the thing signified (and for quite a while at least the meaning of the symbol should be kept constantly in the foreground).  This may be achieved by continually replacing the letters which represent numbers by actual numbers.

… the numerical evaluation of expressions by the substitution of specific numbers for letters cannot readily be overdone in the beginning algebra. (p297-298).

The issue of how meaningfulness is supplied for or accompanies transformation of symbols (in other words algebraic thinking) is still with us and is discussed extensively by Boero (2001) whose work is reviewed in Assemblage A5.  We might express the fact that ‘symbols stand for something’ differently now.  We might for example, draw attention to the awareness of generality of which the use of symbols to express some general relationship is a manifestation, and we might even approach it a little differently, but the root notion is invariant: symbols stand for something.

One of the problems which Wright identifies with teaching algebra is that, being rule-based, it lends itself to attempts to teach instrumentally rather than relationally, (as Skemp (1977) would put it some 60 years later):

A drawback to the study of algebra is that it lends itself readily to mechanical  … while the drill work of algebra needs much attention, it has perhaps been allowed to encroach unduly upon the phases of work which require and stimulate thought (p301).

Thus fads and concerns may come and go, but some tensions are endemic.  This suggests that improving the teaching of algebra requires more than construction and provision of ‘ideal materials’.  Rather it is something which must imbue teacher, and hence pupil awareness and perspective.

In distinguishing arithmetic and algebra, Wright suggests that 

Arithmetic studies [numerical] values, while algebra studies functions (p308)

The role of algebra in expressing and then manipulating generality emerges for Wright in the solution not of individual problems, but of classes of problems:

After he has solved a number of problems differing only in numerical data, [s]he will see, or be led to see, that they all are in reality the same problem, and that [s]he can solve them all at one stroke if [s]he is a little less specific as to numerical values (p309, cross-gender parentheses added in order to modernise)

Wright acknowledges the age-old problem of transforming verbal problems into algebra:

It is a common experience of teachers that pupils find great difficulty in translating into equations conditions stated in words.  Yet ability to do this is one of the most important and valuable results of the study of algebra, the thought power so developed is one of its most useful products, and the pupil would not be allowed to end the study of algebra without a goodly measure of success in such translation.  There is no royal road to skill in this process … (p309)

Wright's proposal follows on immediately

… the battle is almost won by the mere separation of difficulties, and the victory is completed by a careful gradation of the instances under each type (p309). 

Unfortunately the evidence does not bear out his conjecture, for, as in fact he himself argues in then passages just quoted above, there is more to learning than simply repeating tasks, even graded tasks.  The pupil has to ‘see or be led to see’ the commonality, the generality.  Wright suggests getting pupils to express general relationships (what would later be called ‘expressing generality’):

If Frank is twice as old as Henry, and if A represents Henry’s age, what represents Frank’s age?
If John rides his bicycle three times as fast as William walks, and if t denotes the time in which John rides a mile, what represents the time in which William walks a mile?

State in an equation that a certain express train runs four times as fast as a certain freight train (p309).

Note however that in many books there are exercises like these which, by their layout and treatment, appear to be exercises in letters as numbers rather than as generality.  The distinction may be subtle, but the effect of the didactic transposition (Chevellard 1994, 1995) in which ‘expert awareness is transformed into instruction in behaviour” converts problems which could be about generalising into problems about manipulating letters.  Wright recognises the hypothetical nature of these settings, and advocates drawing on science for relationships to express as well.  He also quotes an example for Sir Isaac Newton in the presentation of the solution of a problem in two columns containing the relevant passage from the problem and the corresponding algebraic statement (p313).

Interestingly, given the present National Numeracy Strategy emphasis on mental mathematics, Wright suggests that

The uses of oral algebra seem to be largely overlooked or underrated.  There is no reason why oral work should not play as important a part in algebra as in arithmetic (p314).

This can involve, for example, mental manipulations of simple expressions.

Sir Percy Nunn

1919,  The Teaching of Algebra, Longmans, Green & Co. London.

Nunn begins with the indistinct boundary between arithmetic (attention on the arithmetical calculations performed to reach an answer) and algebra (attention on the process of calculating, not on the specific arithmetical calculation) (p1).  This is mirrored in several of the chapters of Bednarz et al (1996) which are reviewed in Assemblage A2, and in many other authors.

Nunn also points to an important but subtle distinction between analysis (identifying structure abductively) and generalisation (recognising patterns inductively) (p2). For example, recognising a pattern such as 

1 + 2 + 1 = 4
1 + 2 +3 + 2 + 1 = 9
1 + 2 + 3 + 4 + 3 + 2 + 1 = 16

from two or more ‘examples’ is recognising a pattern inductively (what Watson 2000 calls ‘going with the grain’), while recognising the internal structure (rising consecutives to n then falling consecutives, and with the front end paired with the back end giving the clear answer of n copies of n) is identifying structure abductively (what Watson 2000 calls ‘going across the grain’).  The temptation in classrooms is to be content with patterns with the grain, while the mathematical structure is revealed most readily by going across the grain. Nunn explicitly challenges the commonplace that “you cannot generalise from one example”, which in fact mathematicians do all the time (e.g. David Hilbert  and Srinivasa Ramanujan).

For the task of algebra … only two tools are, in principle, necessary: the power (which every mind possesses in some measure) of discerning the abstract essential process in the concrete arithmetical case, and a sufficient command of language to express it when discerned. (p4-5).

Concurring with Whitehead’s praise of succinct symbols to enable manipulation of complex ideas, Nunn also proposes that algebra is not confined to the algebra of school, based in ordinary arithmetic, but rather, 

Wherever there is a field of enquiry of a certain type an algebra may be invented to facilitate that inquiry. (p5)

Nunn also strongly advocates seeing the outer and inner aspects of mathematics (application and structure) as inextricably entwined and not usefully distinguished as two different streams. (p17)  Thus situations may give rise to equations, but equations need to be solved, not one at a time, but as whole classes.  Symbols are both objects to be manipulated and referents to ‘realities beyond themselves’ (p18).

Nunn is just one of many authors to see algebra as starting from generalised arithmetic:

Algebra regarded as ‘generalized arithmetic’ should have no formal beginning’ (p25)  (see also Branford 1908 p51)

But, as Branford (1908)  says explicitly, 

‘the radical mistake of algebraic teaching for many generations was in passing by a jump from Particular Arithmetic to Symbolic Algebra, and thereby omitting sufficient training in Generalized Arithmetic, … for generalized arithmetic is the simplest type of significant symbolic algebra’ (p253)

Nunn suggests that each rule is a generalisation (e.g. area as length times breadth, adding and subtracting the same thing leaves the total unchanged; but also incorrect ones such as ‘larger from smaller you can’t’ and ‘multiplication makes bigger’).  He also praises the use of graphs which can be manipulated as well as interpreted in ways inaccessible to formulae, but he recognises that ‘graphs are less compact and less easily reproduced’ p31).

Hans Freudenthal

1973, Mathematics As An Educational Task, Reidel, Dordrecht.

1978, Weeding and Sowing,: preface to a science of mathematical education, Reidel, Dordrecht.

1983 Didactical Phenomenology of Mathematical Structures, Reidel, Dordrecht.

1991, Revisiting Mathematics Education: china lectures, Kluwer, Dordrecht.

Freudenthal takes a modern, Bourbaki-structuralist approach, emphasising the importance of basing instruction in the child’s experience (hence the title of the 1983 book, which is  consonant with Dewey and many other authors), and also the process rather than the product:

… if in mathematics ready knowledge is called upon, it is the solution process that matters. (p467)

For example, in Weeding and Sowing he points out that the answer to –3 –5 is found by treating –x as that which when added to x gives 0, which arises from the structural requirement that all numbers have an additive inverse.  Following the notion of ‘with and across the grain’ (Watson 2000), a teacher could build up a pattern such as the following, beginning in the upper left-hand corner, and working down, then working across and down, across and down, etc. 

	3 – 2 = 1
	3 – 3 = 0
	3 – 4 = –1
	3 – 5 = –2
	…

	2 – 2 = 0
	2 – 3 = –1
	2 – 4 = –2
	2 – 5 = –3
	…

	1 – 2 = –1
	1 – 3 = –2
	1 – 4 = –3
	1 – 5 = –4
	…

	…
	…
	…
	…
	…


from which it becomes obvious to anyone ‘going with the grain’, that is, sensitive to the flow of pattern, how additive operations with negatives have to be carried out.  But it requires stopping and cutting ‘across the grain’, that is, drawing attention to the patterns themselves, which produces learning rather than mere pattern-following.  In his China Lectures, Freudenthal goes so far as to suggest that “one may question whether negative numbers properly belong to arithmetic or to algebra” (p62).

In Mathematics As An Educational Task Freudenthal continues this theme, arguing that fractions are constructed to permit unrestricted division, but they arise from extending the number system so as to admit solutions to multiplication problems (what times 3 will give 7?), just as counting backwards gives rise to a need for negatives, but they arise mathematically from extending numbers so as to enable solutions to addition problems (what added to 5 gives 3?) (p224).  This is what he calls ‘the algebraic principle’.  Something similar happens between exponentials and logarithms.

Freudenthal points to a philosophic difficulty which later plagued computer languages such as LOGO, namely the distinction between name and value.  Thus, if x is in the set {a, b, c}, then x must be one of a, b, or c.  But looked at another way, x is patently x and so is not in the set.  These difficulties were overlooked by the ‘New Math’ movement and eventually brought about its downfall.  Thus for Freudenthal there is no such thing as a ‘general number’, only indeterminates (letters) and unknowns (symbols of as-yet-unknown numbers) (p294).  Other difficulties encountered in treating algebra as a translation process between languages arises from expressions such as “hot chocolate and ice cream”, “three days and nights”, and “Dear Rosamund and John”, in which the distributivity of a modifier over two nouns depends on the context (p306).  Freudenthal advocates distillation of the axioms of a field (what others refer to as generalised arithmetic ) emerging as the properties of arithmetic expressed in symbols to produce the rules for manipulating letters.

Freudenthal also recognises the fundamental difficulty experienced by pupils:

For the majority who have got into contact with mathematics, it is mastering (or in fact not being able to master) formal rules.  What to do about it? (p469)

He finds that ‘sources of insight can be clogged by automatisms’, which de Bono (1972) expressed in terms of how chunking leads to being unable to detect alternatives, or, in quoting an unspecified source, Freudenthal re-expresses as “when calculating starts, thinking finishes” (p469)  His analysis is that the ‘didactical mistake resides in the principle of once learning by insight, and then irrevocably going forward to automatisms (p469)’, and he counsels returning to sources of insight when disturbances arise. This outward and inward or upward and downward flexibility was expressed more practically in an OU course (Floyd et al 1981), based on ideas of Jerome Bruner, John Holt, and others, as a spiral structure of increasing complexification and abstraction. When a new idea or problem is encountered it is natural to reach for something familiar and confidently manipulable such as physical objects like Dienes blocks, Cuisenaire rods, bottle caps etc., mental images, or symbols in the form of numerals or letters, as appropriate, in order to ‘get-a-sense-of’ what is going on in a confusing situation.  Manipulation leads to getting-a-sense of the idea or of the problem and how to approach it, and over time this sense becomes articulated increasing succinctly, robust, and confidently manipulable in support of further increasingly sophisticated levels of ‘abstraction’.  This  is captured in an ongoing spiral of Manipulating – Getting-a-sense-of – Articulating, which permits upward and downward movement as appropriate. 
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This spiral fits well with other models of how understanding develops, including the Pirie-Kieren ‘onion’ rings with its ‘folding back’ to previous states in order to enable reconstruction and further growth (Pirie & Kieren 1994).

The whole point of course is that abstraction is in the eye of the beholder, not in the symbols: something is abstract if the semantic content, the meaning, is inaccessible.  When there is a disturbance in the resolution of some problem, it is possible to move back down the spiral to familiar and confidence inspiring entities which, through manipulation, can re-establish a firm foundation from which one can re-climb the spiral of development in the particular case. 

Freudenthal points out that the apparent simplicity of performing ‘arithmetic with letters’ is based on ‘phenomenological profundity’ (p473), and that when this profundity is skated over or omitted altogether, students experience difficulties.

Freudenthal also points to the fundamental but sophisticated notion of substitution: substituting a multiplicty of ‘values’ for one symbol, and its converse, the absorption of multiple interpretations or substitutions in one single symbol (which is the role of variable in algebra) (p483-485).  Substitution is unproblematic to those with facility, who find it hard to appreciate the psychological associations and obstacles which learners can experience on first encounter when presented as simply ‘something one does’.

In his 1978 Weeding and Sowing, Freudenthal challenges the educational commonplace that we learn through repetition of many examples: 

‘generalisation as the result of numerous applications’ arises from confusing cognition with its formulation (p221)

by which he means that coming to see how a generalisation encompasses many cases does not imply that it was from seeing many cases that the generalisation was reached.  Quite the contrary.  Freudenthal constantly brings the reader back to structure as the essential thing being studied, not rules or techniques.

Freudenthal also points out that for a long time in Soviet education word-problems formed the core of algebra instruction.  The approach was criticised by Khinchin and Davydov on the grounds that ‘lots of arithmetic does not necessarily lead to (awareness of) generality’, because the approach degenerated into ‘letter arithmetic’ rather than the expression of generality.  Even so, the use of ‘letter arithmetic’ early on proves vastly superior to arithmetical repetition, even though the problems may be artificial and limited in type (Freudenthal p232).  Imagine what could be achieved by retaining the use of letters for expressing generality and for denoting the as-yet-unknown.  Freudenthal concludes that ‘abstraction and generality not according to the sprinkler method’ (sprinkler method = exposure to multiply repeated exercises or cases) but rather ‘as a principle, from the start onwards’ of mathematical instruction (p233) is to be preferred.

In his China Lectures Freudenthal points to the role of word problems used as opportunities to generalise.  For example (p37)

One tap fills a basin in 1 hour, and another in 2 hours.  How long will they take to fill the basin together?

He reports children thinking of looking at the full basin and seeing that 2/3 of the water comes from the first tap and 1/3 from the second and it will take 2/3 of an hour.  This enables them to move immediately to a generalisation: (a and b hours means 
[image: image6.wmf] and  
[image: image7.wmf]of the water comes from the two taps respectively, so it takes 
[image: image8.wmf] hours to achieve this working together.  He points out that this is vastly different from the unitary method.  It also permits generalisation to more taps, and to taps which are actually leaks.  Freudenthal notes in passing that few people see the connection with courier problems such as 

Two people walk towards each other at different speeds.  Where will they meet?

and prefer instead to draw graphs or to manipulate the distance-time-speed formula.

Distillation

If Wright, Nunn, and Freudenthal can be seen to offer approaches to teaching algebra, they amount to making use of the ‘algebraic principle’, that is to build the extensions of numbers to negatives and fractions structurally, to make use of expressing generality from the very beginning in both numerical and problem settings.  

For Freudenthal, as for Wright and Nunn, ‘letters mean something’, which is stark contrast to the effect that most instruction in algebra has on people.

A2: Bednarz, Kieran & Lee (1996) 

Bednarz, Kieran & Lee 1996, Approaches To Algebra: perspectives for research and teaching, Kluwer, Dordrecht.

This book  arose from an invitational conference aimed at comparing and contrasting different approaches to algebra. The book suggests four approaches to the introduction of algebra currently in use (generalisation, problem-solving, modelling, and functions) correlated with historical perspectives in the development of algebra, and these form the sections of the book.

The research methods used in different chapters involve analysis of historical texts, analysis of field trials and intervention studies in classrooms, and drawing on both personal experience and work with teachers and students but not formally analysed.

We start with a brief review of the research which draws on historical perspectives, before turning to the four approaches. 

Historical Perspectives

Tracing roots of what we recognise today as school algebra is a complex task.  There are indications of awareness of generality (through the use of apparently generic examples and the stating of general rules) in Chinese manuscripts, Indian Sutras, Greek Papyri, and Babylonian tablets dating from many centuries BC.  In the third century AD Diophantos initiated number theory by removing all pretence at application or use in contexts derived from the world of work, and by using a symbol to stand for an unknown quantity, a process which culminated in the 17th century algebraicisation of mathematics by Viète and Descartes.  For a potted history, see van der Waerden (1983) or Bashmakova & Sminova (2000).

Certainly since the beginning of printed books related to algebra from the 15th century on, the majority of texts treat algebra as the arithmetic of polynomials.  They stress that algebra is really the manipulation of letters that are treated as, and can stand for, numbers.  Thus they begin with adding and subtracting, multiplying and dividing polynomials; expanding brackets and factoring quadratics, finding LCMs and GCDs of polynomials, and then solving equations (linear, simultaneous linear, quadratic, simultaneous quadratic).  Later, graphs appeared along with equations of higher degree, logarithms and exponential functions, and ending up with trigonometry and sometimes applications to geometry through Cartesian coordinates.

In his early chapter, Louis Charbonneau rehearses principal developments in western mathematical thought pertaining to algebra, from antiquity to Descartes.  He draws particular attention to the role of magnitudes in Euclid.  One reading is that much of Euclid, (e.g. Book II) is arithmetic done geometrically, while Book IV is a theory of proportion.  Preference for geometrical proofs of what we would recognise as algebraic identities continued through Al-Khwarizmi, Viète, Descartes and Newton. Charbonneau highlights the importance of symbols as a means for manipulating relationships (i.e. meaning matters), but the manipulation itself is ‘an arithmetic’, a calculus, in the old sense of a system of rules for manipulation.  The strength of these manipulations is magnified because the symbols themselves express relationships. 

In his chapter, Luis Radford discusses the origins of algebra in geometric manipulation, with proofs of statements expressed in symbols being carried out geometrically.  This is pertinent today because many of those same diagrams are used to illustrate, motivate, justify. and even provide mnemonic images for, the manipulations we now call algebra.  

For example, the use of area calculations to motivate, justify, and act as a mnemonic for expansions and factoring of quadratics:
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This is readily transformed into the grid method for multiplication, whether of numbers of several digits, or algebraic expressions.  Much of the geometry of Euclid can be seen as ways of rearranging areas (e.g. the sum of two squares) into rectangles, thus providing ‘methods’ for solving problems we would consider to be either arithmetical or algebraic, involving quadratics.  Diophantos’ seminal collection of problems and solutions which gave rise to the topic of Diophantine Analysis (solution of equations in integers) marks a major step towards algebraic approaches to problems which was crystallised in the work of Viète (1591), but which only slowly permeated Northern Europe through the work of English mathematicians in the 16th and 17th centuries (Pycior 1997).

Of particular relevance is the migration from geometry to algebra of the Greek distinction between analysis (working from the unknown or the as-yet-unknown towards the known) and synthesis (working from the known to the unknown).  Radford elaborates on the dual notion of symbol as unknown and as variable as coming from distinct roots, coalescing in the powerful modern symbolic notation (this is a theme also elaborated by Freudenthal: see assemblage A1).

Teresa Rojano in her chapter reviews the historical roots of problems and points to an overly simplistic separation between algebraic manipulation and the use of algebra in expressing and solving problems which permeates textbooks of today, and is represented in textbooks from every generation.  She observes that originally it was classes of problems which drove the development of algebra, but when it became clear that the use of algebra to solve problems reduced the problem to solving equations, algebraists shifted their attention to the solution of equations, which later shifted to study of the structure of equations, and hence to modern algebra as encountered at university.

Rojano also seeks the origins of the idea of, and the expression of, two different ideas which come together in the use of letters in algebra: symbol as  unknown and symbol as  variable.  The first is static (‘it is a number, I just don’t know which’) while the second is dynamic (‘it varies over some domain’).  Stressing the notion of variable leads to a functional approach, while stressing the notion of unknown leads to or supports a problem-solving approach.  Both can be integrated by seeing a symbol as representing a generality (anything in some broad domain such as numbers), with subsequent constraints added (it must be a positive number, or satisfy one or more relationships), until perhaps its freedom is constrained to a set of solutions (problem solving), or its freedom to vary within constraints is the object of study (functional).

There is an interesting confluence between historical analysis of the roots of algebra and our reflections on the different approaches we encountered to research, in conjunction with the different approaches to education, namely that algebra, which functions as the universal language of much of mathematics, is by no means culture and context free.  Luis Radford (2001) puts it this way:

It is completely misleading to pose the problem of the development of algebraic thinking in terms of a transcultural epistemological enterprise whose goal is to develop an abstract and elaborate symbolic language. Indeed, language and symbols play an important role in the way that we communicate scientific experiences. Nevertheless their use is couched in sociocultural practices that go beyond the scope of the restricted mathematical domain. A more suitable approach to the study of the relationships between symbols and language on the one hand and the development of algebraic thinking on the other might thus be to analyse language and symbolism in their own sociocultural semiotic context. (p 29) 

In this quote, Radford highlights the role of algebra as a language in which to express meaning, and not just a calculus for manipulating letters as if they were numbers.  Furthermore, that meaning is socioculturally localised.  Algebra does not provide a ‘transcultural epistemological enterprise’ through the manipulation of meaningless letters standing for numbers.  It is a vibrant medium for expression as well as manipulation.

Algebra through Generalisation

From earliest times, people have sought to work out how to resolve not just individual problems but whole classes of problems (how to add, subtract, multiply,  or divide large numbers; how to add and subtract fractions; how to resolve proportion problems, etc.).  Those who have solved them sometimes tell others how to do it by providing a rule, which is the expression of a generality (cf. rule of three and rule of false position in Medieval Indian and European texts).  Mathematical topics taught in schools arose through the successful search for rules or techniques for solving classes of problems. The techniques are isolated, and then taught to children (e.g. long multiplication and division, factoring quadratics, etc.).  

As indicated in an ancient Chinese text, the Zhoubi Suanjing, (first century BC, see Kangshen, Crossley & Lun 1999), appreciation of the scope of generality, of invariance amidst change, lies at the heart of understanding:

... ‘man has a wisdom of analogy’ that is to say, after understanding a particular line of argument one can infer various kinds of similar reasoning, or in other words, by asking one question one can reach ten thousand things. When one can draw inferences about other cases from one instance and one is able to generalize, then one can say that one really knows how to calculate. ….  The method of calculation is therefore a sort of wisdom in learning . . . The method of learning: after you have learnt something, beware that what you have learnt is not wide and after you have learnt widely, beware that you have not specialized enough. After specializing you should worry lest you do not have the ability to generalize. So by having people learn similar things and observe similar situations one can find out who is intelligent and who is not.  To be able to deduce and then to generalize, that is the mark of an intelligent man . . . If you cannot generalize you have not learnt well enough . . ..  (p28).

Young children display this power as they grapple with and use language. Naming objects occurs early in children’s experience of language, as does the naming of processes (eating, drinking, etc.).  Language succeeds not by naming specific objects (my particular red-headed doll with a blue dress, that specific broken cup) but by naming generic objects (doll, cup) and learning to modify or qualify them with adjectives.  Thus language is inherently general rather than particular.  The fact that children master language suggests that they have the requisite powers to cope with the generality which is captured and expressed in algebra.  Indeed, failure to call upon children’s undoubted powers in the context of number may actually hamper their intellectual growth.  

In his chapter, John Mason (1996) draws attention to the dual nature of an expression such as 1 + 3n which is at the same time a particular number (thus perhaps thought of as unknown, or at least unspecified), and as representing all possible numbers which leave a remainder of 1 upon dividing by 3 (and thus is seen as variable). He proposes the conjecture that 

‘at the heart of teaching mathematics is the awakening of pupil sensitivity to the nature of mathematical generalisation’ (p65), 

and that only when the expression of generality permeates the mathematics classroom will algebra cease to be a mathematical watershed for most pupils.  Put another way, 

‘there is a stage in the curriculum when the introduction of algebra may make simple things hard, but not teaching algebra will soon render it impossible to make hard things simple’ (Tall & Thomas 1991 p128).

Mason draws attention to the fact that ‘worked examples’ have to be seen as examples  ‘of something’ in order to appreciate their examplehood.  When students treat examples as ‘yet more material to be learned’, rather than as generic and paradigmatic examples to follow, they miss the import and purport of those ‘examples’.  Appreciating examplehood is a form of ‘seeing the general through the particular’, with its converse process of ‘seeing the particular in the general’.  Kaput (1999) casts this as learning to look through symbols rather than at them, and at clusters of them when it is appropriate in order to perform manipulations.  Unless students are engaged in these acts in a lesson, the mathematical core of the lesson is likely to be overlooked.  Kirshner (1989) examines the visual aspect of algebraic symbolism as one of the factors impeding students progress when they are taught from an arithmetical-manipulational point of view.

Expressing generality is only part of contact with and use of algebra, indeed it is but one of the roots of algebra as presented in Mason et al (1985).  When students encounter multiple expressions for the same quantity, they soon recognise the possibility of manipulating the form of the expressions to demonstrate that equivalence without having to go via the stimulus for the expressions.  Expressing the properties of the arithmetic of numbers (generalised arithmetic) confirms these rules as both the rules of arithmetic and the rules of algebra.  Maintaining contact with generalisation then leads to generalisations of processes such as expanding brackets, factoring, graphing and reading graphs, and so on.
In a related chapter, Lesley Lee reports on studies with adults returning to mathematics being introduced to algebra through the expression of generalities concerning number patterns arising from contexts for counting (numbers of vertices, edges, matchsticks, etc. needed to construct pictures following a pattern: see South Notts Project undated, and Mason 1988a, 1988b for examples).  Lee concludes that 

‘the rewards of such an approach are many with perhaps the greatest being the opportunity for beginning students to function as creative members of the algebraic community from their arrival rather than standing back like tourists to watch others perform and create’ (p 106) 

Lee points out that seeing and expressing generality is not always a simple matter, however, as many students experience difficulties in seeing an intended pattern, in expressing that pattern clearly, and in coming to use symbols fluently and flexibly.  Yet these are inherent obstacles in any approach.  She observes that ‘a strict generalising approach has never been sustained throughout high school algebra’. If it is interpreted narrowly as simply ‘expressing patterns in numbers and patterns’ then it is hard to predict the difficulties that might surface later.  Furthermore

‘nor is it much of a challenge to demonstrate that functions, modelling and problem solving are all types of generalising activities, that algebra and indeed all of mathematics is about generalising patterns’, 

If expressing generality imbues all mathematics lessons, then students’ experience of mathematics could be transformed.

In a second chapter commenting on generalisation as an approach, Luis Radford raises philosophical issues concerning generalisation: when and why do people generalise?  He proposes that problem solving serves as a primary need for knowledge, while generalising serves as a driven-norm, and that this requires further analysis and research.  He also suggests that there are several different forms of generalisation, that it is a context-dependent activity.  His analysis is based on an empirical approach to generalisation (use of multiple examples from which to induce), rather than from a more structural approach in which the essence is seen and articulated arising from experience of one or more instances (see also Freudenthal in Assemblage 2).    

In one of his chapters, Alan Bell points to the dominant position in school algebra of arithmetic as the source of algebra, and that algebra as a language of expression enables many more structures to be analysed than simply those that yield ordinary equations.  For example, he cites the algebra that arises when a triangle is rotated about the mid-points of its sides under operations denoted by a label on those sides (for a collection of these based on early ATM and Leapfrog ideas, see Mason1988b).

When authors refer to algebra as generalised arithmetic, they often mean that algebra is the calculus of manipulating letters as if they were numbers.  But many authors go further, including Freudenthal (see Assemblage 2), and Mason (in his chapters in this book, and in Mason et al (1985) among many other places).  They use generalised arithmetic to mean the bringing to articulation of the rules of arithmetic, using letters to express the generality of such laws as commutativity of addition and multiplication (a + b = b + a, a x b = b x a), associativity, distributivity of addition over multiplication, and the roles of 0 and 1, which amount to the axioms of an integral domain even though this aspect need not be mentioned.  Thus expressing generality lies at the heart of algebra seen as generalised arithmetic in this full, structural sense. 

Expressing generality as an approach to algebra has mainly influenced curricula in English speaking countries (see Assemblage A3 on research from Australia) where it has tended to be confined to finding formulae for patterns, whether from a geometric source (counting edges, vertices, matchsticks etc to make up each member of a sequence of configurations), or in the structure of numbers (odd and even numbers, numbers leaving a specified remainder on dividing by a specified number, etc.), or even confined to rules for manipulating letters as if they were numbers.

Kaput (1999) points to two overlapping domains of generalisation for young children: reasoning and communication within mathematics, and in situations outside of mathematics but affording possibilities for mathematisation.  He points out that especially with young children it sometimes takes attentive listening to detect generality implied in voice tones and gestures, but that it is very often present, and is usefully drawn upon and developed, lest it atrophy.  

Critical Features of Expressing Generality

•
Awareness of, if not expression of generality is present from children's very earliest encounters with number;

•
Seeing the general through the particular, and the particular in the general are powers that children bring to school but which must be called upon repeatedly so that they develop in sophistication.  Furthermore, the exercise of powers like these is actually pleasurable and hence motivating (Gattegno 1973, Freudenthal 1978);

•
Expressing generality is not a skill that is mastered and then transcended, but rather an ongoing process of increasing sophistication;

•
Manipulation of expressions is justified through recognition that different looking expressions can represent the same result, and that imposing constraints on generality produces equations and inequalities for which techniques can be developed.; hus the manipulative aspects of algebra are set in a context of how the expressions arise in the first place;

•
Many authors and researchers seem to have overlooked the fact that expressing generality is involved in all mathematics learning, not just in problem solving;

•
To be effective, it has to be seen as pervading all of school mathematics and available in every lesson; it is not restricted to 'pattern spotting' but applies to every topic;

•
Expressing generality is not a skill that is mastered and then transcended, but rather an ongoing process of increasing sophistication;

•
The issue for teachers and textbook authors is whether they are calling upon students to use their powers, or are trying to do the work for students.

Strengths and Weaknesses

•
Seeing algebra as a language of expressing generality supports access to major themes of mathematics such as Freedom & Constraint (appreciating generality as freedom of choice limited by added constraints); Invariance Amidst Change (appreciating what can change and to what extent and still preserve an invariance); Doing & Undoing (reversing sequences of calculations); 

•
Manipulation of expressions arises through recognition that different looking expressions can represent the same result, and that imposing constraints on generality produces equations and inequalities for which techniques can be developed.  Thus the manipulative aspects of algebra are set in a context of how the expressions arise in the first place;

•
Rarely if ever has expressing generality imbued an entire approach to teaching as well as to the curriculum, so there is no concrete evidence that it would make the difference claimed for it;

•
Expressing generality draws upon teachers' awareness; when converted into instructional practices it could reduce the use of letters to express generality into 'arithmetic with letters'.

Algebra Through Problems 

The Bednarz, Kieran and Lee book devotes two sections to a problem-based approach to algebra.  The first is concerned with the introduction of algebra through traditional ‘word’ problems and the second is concerned with mathematical modelling. Both approaches attempt to engage students through calling upon them to think and to imagine, to draw upon their experience and to articulate relationships. However whereas the more traditional word problems have been developed over centuries for the predominantly pedagogic purpose of introducing students to the algebraic method,  mathematical modelling is concerned with using algebra (or other aspects of mathematics) to model physical situations and in this respect the physical situation being modelled must always be taken account of. Within this section we first review the chapters concerned with ‘word’ problems and then those concerned with mathematical modelling.

Word Problems

Word problems (mathematical puzzles and problems set in some sort of a context and presented mostly in words) have been around as long as written mathematics, for they are found in ancient Egyptian, Babylonian, and Chinese writing (see for example, van der Waerden 1983, Radford, 2001, Rojano, 1997,  Filloy et al, 2001).  

Louis Charbonneau and Jacques Lefebvre provide a chapter looking at the placement and function of problems in four algebraic treatises Diophantos, Al-Khwarizmi, Cardano and  Viète.  They conclude that problems are what drive mathematics and so are at the forefront of the emergence of mathematics, but they are to be found at the end of texts, in sections visited only by students who complete the core work quickly, or at the end of a topic as an example of the application of ideas and techniques to made-up situations.  Along the way they discover that the way in which different authors classified problems is consonant with their approach to problems (geometric, arithmetic, algebraic), and with the sophistication of their available techniques.

Classic word problems have been heavily criticised as fantastical and irrelevant to concerns of adolescents (Wiliam 1997, Karpinski 1965, Sanford 1975, Lave 1992, Swetz 1995, Gerofsky 1996 to cite only a few). For example, Whitehead (1948 p134) had a passing shot which has been echoed by many since:

By examples I mean important examples.  What we want is one hour of the Caliph Omar, to burn up and utterly destroy all the silly mathematical problems which cumber our text-books.  I protest against the presentation of mathematics as a silly subject with silly applications. (p134)

Furthermore, word problems sometimes provoke strong emotional reactions amongst otherwise calm adults (Reed 1999 p1-2).  A more careful analysis shows that word problems have been used in a variety of ways:

to show off the arithmetic skills of the problem poser (for example in some Babylonian tablets and Egyptian manuscripts, demonstrating skills in dividing by 7, 13, 17, and 19, see Robson 2000); 

to show how a technique is used to solve a class of problems, as when the solution is followed by ‘Do it like this’ in Egyptian papyri (Gillings 1972 p232-233) or by offering several related worked problems (Gillings op cit. p 154), or as Cardano put it “We have used this variety of examples so that you may understand that the same can be done in other cases …” (Witmer, 1968 p37);

to provide a context so that the solver can more readily locate the required calculations (but this leads to students using inappropriate information derived from their knowledge of the context: see Cooper & Dunne 1999);

to provide cultural information about what authors have assumed is familiar, interesting, or relevant to their students (see for example Butler 1838, written for the use of young ladies);

to induct students into a longstanding cultural practice of classic puzzles (collections were made by Metrodorus c 500 AD, and in the Aryabhatiya AD 499);

to challenge students to think more deeply than just at the level of arithmetical operations;

as recreation, like crossword puzzles, and as sheer playfulness.

As add-ons, word-problems straddle a spectrum from the reasonably realistic to the fanciful.  Yet we suggest that they provide an opportunity for working on expressing generality, and for harnessing students’ own creative powers by making up their own questions of a given type as part of their growing appreciation of what constitutes ‘type’.

In their chapter Nadine Bednarz and Bernadette Janvier discuss classic elementary word-problems which involve one of the four arithmetic operations, and the difficulties students from traditional arithmetic and algebra backgrounds experience in tackling these.  Classically students have difficulty in deciding which operation to use, and on which numbers.  Bednarz and Janvier analyse different structures of problems, look at the affordances and facilities pupils display with the different structures, and draw attention to the desire to work forwards from the known to the unknown, and the resistance to working with an as-yet-unknown. 

For example the three problem variants

Three children have 198 marbles between them.  Georges has 2 times as many as Denis, and Pierre has 3 times as many as Georges.  How many marbles does each child have?

Three children have 198 marbles between them. Pierre has 6 times as many as Denis, and Georges has 2 times as many as Denis.  How many marbles does each child have?

Three children have 198 marbles between them. Pierre has 6 times as many as Denis, and 3 times as many as Denis.  How many marbles does each child have?

are typical of classic problems such as found in a book of Clairaut (1760 quoted from a secondary source), and present three different structures with different complexity, leading to a prediction of differences in children’s performance which were confirmed in work with children aged 13-14.  

Reasonably enough, students are anchored in their arithmetic facility, and so reluctant to launch into the unknown afforded by algebra.  Their analysis is centred on the ease with which arithmetical or ‘forward moving’ bridges can be located in the wording of problems, thereby facilitating and leading them to work arithmetically.  

As with all word-problems, it is not the problem which is arithmetical or algebraic, but the approach that someone takes.  Sometimes it can be very difficult to find an arithmetical approach where an algebraic perspective is relatively straightforward. Whenever you know how to check whether a proposed answer is correct, you can set up an algebraic model of the problem (use a letter to stand for the proposed solution), which leads to one or more equations or inequalities.  This notion of ‘how would you check an answer if it were provided’ offers a useful transition from arithmetic to algebra which mirrors the method of false position that dominated medieval European mathematics. 

In a commentary chapter, Alan Bell argues for further research in classification of word problems according to structure and to the symbolic manipulations to which they give rise.  He also displays problem-solving as underlying or driving both generalisation and functional approaches.  He points to the role of problems-solving in the domains of both number, and of geometrical or spatial configurations, showing how traditional problems arise from transforming an unknown number or figure to get a result which is then specified.  Solving the problem is a process of undoing the transformation. 

Rojano reports in her chapter on the results of an Anglo-Mexican study in which students used a spreadsheet environment to express and resolve ‘algebraic’ problems.  The background to the study with spreadsheets was extensive research on the approaches which students use to solve a range of word problems (for further discussion of this see Filloy et al 2001). Filloy et al have classified students approaches to solving word problems  into ‘classical solution methods’ and ‘non-conventional methods’. The classical solution methods include both the ‘Cartesian algebraic method’ and the ‘arithmetic method’ (for a similar classification of students’ problem solving approaches see the work of Boero reviewed in Assemblage A5). 

Consider for example the following problem “A teacher has 120 chocolates and 192 caramels which she is going to share among her pupils. If each pupil receives three more caramels than chocolates, how many pupils are there?”. The Cartesian algebraic method to solving this problem could be expressed in the following way:

Let
x = no of pupils

Let
 y = no of chocolates given to each pupil

Then Total number of chocolates = xy
and xy = 120

Number of caramels given to each pupil = y + 3

and
 x(y + 3) = 192

…

Notice the creative ontological act with which the resolution begins: “let … = …”.  This is a significant creative act.

An arithmetic approach to solving this problem could involve the following reasoning “since in the statement of the problem it says that 120 chocolates and 192 caramels will be shared out among all the pupils, it can be concluded that 72 more caramels than chocolates were given to the pupils (192 – 120 = 72) and since each pupil received three more caramels than chocolates the number of pupils can be worked out by dividing 72 by 3, which results in 24 pupils. 

Filloy et al (op cit) and others have pointed out that the characteristic difference between the algebraic and the arithmetic approach is that the algebraic approach involves working with the unknowns of the problem (which in this case have been called x and y) whereas the arithmetic approach involves working with the known quantities in the  problem.

Filloy et al (op cit) also discuss what they call the ‘analytic method of successive explorations’ in which you assume, for example that the number of pupils is 12 and then work ‘forwards’ with this number, progressively adjusting the number 12 until a total of 120 chocolates is reached. This method bears some similarities to the method of false-position developed in Mesopotamia and Egypt as early as the 17th century BC (see Radford, 2001 for further discussion of this method). 

It is this latter approach which was developed by Rojano and Sutherland into what they called a spreadsheet-algebraic approach. In this approach pupils solve word-problems by using the cells of a spreadsheet to represent the unknowns in a problem and then build up the relationships expressed in the problem within other cells. In this approach pupils progressively modify the values of the unknowns until the given totals are reached (see Rojano & Sutherland, 1991 and Sutherland & Rojano, 1993, for further discussion of this approach). Results of studies in Mexico and England with 15 year old pupils showed that they could use a spreadsheet effectively to set up an equation. However as Dettori et al  (2001) have pointed out (see Assemblage 5) setting up an equation is only part of the algebraic method. 

Critical Features of Word problems

•
There is an unhappy track record of the use of word-problems at the end of chapters to make life miserable for students struggling to understand ideas.  They could be used as fodder for generalisation (see also Freudenthal in Assemblage 2)

•
Since problems are what motivate the development and exploration of mathematics, it makes sense to use problems as the core of teaching about the topics which emerge around techniques for solving classes of problems.

•
When solving problems students are likely to use a range of methods which make sense and work for them. These methods are likely to be based more in arithmetic than in algebra unless students become familiar with expressing generality for themselves so as to develop confidence in using symbols for their own purposes.

Strengths and Weaknesses

•
Word problems provide children with a splendid opportunity to make up their own questions, ever more complex and difficult, ever more general, and hence to participate in the formulation of mathematics (literally, the creation of formulae) rather than passive memorisers of already streamlined techniques.

•
There is always a tension about relevance of problem contexts: what makes a context or a problem relevant, and what happens when people resolve problems as if they were pertinent to every day rather than coded opportunities for recognising, extracting and generalising structure?  For example, Cooper & Dunne (2000) have in their work demonstrated that some children (particularly class and gender related) may be disadvantaged rather than advantaged by the use of contexts in problems, because they bring too literal a reading to the problem, and resolve it in entirely practical and pragmatic, but not necessarily mathematical ways.

•
As discussed above arithmetic proceeds from the known (the data) to the unknown (the solution), whereas algebra proceeds from the unknown (denote what you do not yet know and then express what you do know to reach constraints, then solve these and interpret back in the original context).  This is a significant and not always straightforward shift for students to appreciate and word problems have been crafted over centuries in order to support students to make this shift.  Transition from one form of thinking to the other can be aided by working out how you would check and answer, and then using a symbol to denote that checking process, leading to the statements of the constraints in the manipulable language of algebraic equations and inequalities.

Modelling

In his chapter, Ricardo Nemirovsky describes modelling as the construction of mathematical narratives (narrative articulated with mathematical symbols) for situations.  He works mainly with graphs which are then interpreted (see also Swan 1985).  He reports on several studies with children working on the notion of graphs as traces left by motion.  This is now readily accessible in any classroom with the use of a motion detector and a graphics calculator.  He shows how sophisticated mathematical thinking involving both the particular and the general arise as they try to make sense of what they see.

Claude Janvier provides a chapter which relates modelling with the difficulties children experience in trying to translate or re-express some situation in symbols.  There are constant shifts back and forth between semantics and syntax, between concrete and abstract meanings of each magnitude involved.

Students experiencing mathematics used to make decisions and choices in (apparently) real contexts is a strength; most of the models used are provided for students who are then expected to turn the stated model into algebra and to find a solution, often through maximising or minimising some objective function. 

Jim Kaput (1999) has developed SimCalc (software) to promote algebraic awareness through modelling dynamic experiences such as using a lift and driving a vehicle.  He suggests that the integration of the physical with the mental modelling and the articulation promotes students constructing mathematical meaning and hence using algebra to achieve goals they have set themselves.

Critical features of Modelling

•
Mathematics is used to resolve practical questions concerned with the material world

•
Modelling calls upon the use of many powers, including mental imagery to move from a specific situation to an abstracted imagined world, and then to the world of manipulable mathematical symbols, before making the journey back to the original setting or context.

Strengths and Weaknesses

• When modelling and word-problems are tacked on the end of other approaches to algebra as applications, whether realistic  uses of algebra or merely as puzzles, students find them very difficult, and the impression is implanted that these are peripheral.  This is why modelling as a full and comprehensive setting, and realistic mathematics (Gravemeijer 1994), de Corte & Verschaffel (1997) were developed: to try to involve students in solving realistic problems right from the start.

•
Any approach which is based on a more realistic mathematics will have a pragmatic  goal of solving  a problem. Under these circumstances it becomes ‘unrealistic’ to impose on students an algebraic as opposed to an arithmetic approach to solving the problem. This suggests that it might be more ‘honest’ of the teacher to say that what is being taught is an algebraic method without allowing students freedom to chose their problem solving approaches.

Algebra Through Functions

This focus is dominant in the USA particularly.  Developed from a Bourbaki perspective which took hold in universities in the 1960s, functions are seen as the fundamental mathematical object (after sets, indeed they are the means for studying sets).  Some would go further and make relations fundamental.  Here a relation is a subset of the set of ordered pairs {(x, y): x  X, y Y}, with functions a special class in which each x value is related to a unique y value. They can be thought of in several ways:

as a table of values;

as a graph of a relationship (in general, a curve in the plane);

as a rule, usually expressed in algebraic symbols;

and more recently,

as all three, manifested in spreadsheets, graphics calculators, and specially designed computer software.

Espoused particularly by Jere Confrey (1992),  Judah Schwartz & Michal Yerushalmy (1992, 1993), Yerushalmy (1995), and Jim Kaput (1995a, 1995b, 1999), a functional approach stresses the relationship between dependent and independent variable.  Yerushalmy & Schwartz (1993) go so far as to claim that the function “is, for pedagogic reasons, the appropriate fundamental object of secondary school mathematics”.  It requires students to shift from the image values taken by functions (expressions as answers) when evaluated at a specific point, to the functions themselves as objects (expressions as processes), thus incorporating the dual perception which lies behind algebraic expressions.  

It is clear that a functional approach is greatly enhanced with the presence of software (graph plotters and spreadsheets) and graphics calculators, which enable the user to move swiftly and easily between  the different representations and it could be argued that a functional  approach to algebra has developed as technology has developed. 

O’Callaghan (1998) reports that a computer-intensive algebra course for university students showed improvements in modelling, problem solving, and concept of function, though there was no difference in reification.  Kaput (1999) is developing software based on motion (of a lift, of a car) which is designed to build on students’ experience and through juxtaposition of graphs, tables, formulae, and real-time experience of  virtual car on a track, students are expected to gain facility in the transitions between representations, and a deeper sense of functions and relations.

Kathleen Hyde in her chapter reports on studies in a technology intensive environment in which functional relationships are taken as fundamental.  She gives example of students using quadratic functions (supplied by the teacher or text) to model material-world situations (e.g. pricing tickets so as to break even).  The case is made that in an increasingly technological society, pupils need to be able to use available tools to analyse and draw conclusions from mathematical models.

In their chapter Carolyn Kieren, André Boileau and Maurice Garançon report on a seven-year study using specially designed software exploiting a functional perspective stressing the use of letters to represent variables (in contrast to as-yet-unknowns).  They found a propensity for students to turn to an arithmetical methods to resolve some of the equations which arose, just as others have found that when people run into difficulties, they resort to what they are confident with.  They found that their students developed a deeper understanding and competence with translating situations into symbolic form than students in traditional settings.

Ricardo Nemirovsky uses his chapter to point to a difference between a point-wise view of functional relationships (reinforced especially by tables of values), and a holistic view (reinforced especially by graphs).  While tables, graphs and symbols can all be interpreted dually, dominance of tables or graphs could accentuate one over the other, while all three together could enrich pupil associations with the symbolic, and thereby make them more meaningful. 

Critical Features of a Functional Approach

· multiple representations

· exploits dynamic imagery possibilities of digital technology

· opportunity to focus attention on display and interpretation of relationships, leaving computations to the software where appropriate

· develops awareness and facility with function, the single most powerful idea of the 20th century in mathematics.

Strengths and Weaknesses

Drawing on people’s powers to use different representations, software offers a great improvement on exercises in slow and painful plotting of graphs from tables.  There is still a need for sketching graphs, because sketches can display multiple features which no single plot can display (due to features taking place at different scales).  Graph plotting technology also frees the student to work on issues such as the effects on appearance of different changes of scale in each axis, the effects on the formula of translation, and the effects of zooming in very closely on individual points.

Plotting technology emphasises graphs and tables as objects (which the hardware generates) rather than as the product of a dynamic process.  Thus imagining a point moving along the x-axis accompanied by its corresponding point on the curve provides an extra dynamic layer which is essential in order to read and interpret graphs effectively.

Tables have traditionally been seen as a means to an end, graphs as a suggestive but unreliable display, and formulae as the desired end product.  New technology is balancing these out, and approaches such as taken by Kaput (1995a, 1995b, 1999) and Confrey & Maloney 1996 Confrey et al (1989) (see also the Function Probe Website) try to give these equal status.

There is a slight hint (in Kilpatrick et al 2001) that ‘multiple representations’ has not had the expected impact on children’s performance in algebra.

The use of technology in classrooms has its own associated difficulties, at least until every maths classroom has its own computer and big-screen display, until teachers have become confident with its use with a whole class, and until children have easy and regular access to machines themselves. 

A3: Work from the Australian mathematics Education Community

Since the early 90s Australian researchers have carried out a range of large scale investigations of student’s understanding of algebra. These have focused on students’ interpretation of letters, understanding of variable,  problem solving and the cognitive and linguistic demands of learning algebra. The research methods used have involved large scale questionnaires, interviews with students and observations in the classroom. 

The Australian research on students’ interpretation of letters draws  on earlier studies such as Collis (1974), Küchemann (1981) and Booth (1984). Whereas earlier studies attributed students’ errors when interpreting symbolic algebra to stages of cognitive development, more recent Australian studies have looked for alternative explanations, particularly in relation to teaching approaches.  In addition, the underlying aim of this more recent Australian research has been to reassess students’ capabilities in the context of new curriculum  approaches which were being used to introduce students to mathematics.  These ‘new’ approaches are similar to approaches which have also been used in some schools in England and Wales.  Pupils’ first introduction to the use of letters for unknown or general numbers is in the context of writing formulas for number patterns where two variables are related by a rule (for example y = 2x + 1).

In one study carried out in 1992, paper and pencil tests were administered to 2000 students in Years 7-10 (ages 11 – 15) in 24 Australian secondary schools (MacGregor & Stacey 1997). The items used in this study were similar to those used in earlier studies (Booth 1984) and Küchemann (1981)).  For example

David is 10 cm taller than Con. Con is h cm tall. 

What can you write for David’s height?

MacGregor and Stacey classified students’ interpretation of letters into the following categories. Here the focus was only on misconceptions, whereas the Küchemann hierarchy incorporated both appropriate and inappropriate conceptions: 

the letter is perceived as an abbreviated word;

the letter is assigned a numerical value that would be reasonable in the context;

the letter is assigned a numerical value related to its position in the alphabet;

the letter has the value 1 unless otherwise specified;

the same letter can represent different quantities.

It was found that younger students often ignored the letter in a test item and gave numerical answers. For example for Con’s height  in the above problem they chose an arbitrary number. Pupils often gave a letter its ordinal position in the alphabet for lack of any other value.  Within a problem in which the unknown length of an equilateral  triangle was labelled x and the question asked ‘what is the distance around this shape?’ pupils sometimes measured this length instead of writing ‘3x’. Older students sometimes interpreted a letter to stand for the number 1 and when interviewed gave explanations such as “ x is just like 1, like having one number’. 

Within this research MacGregor and Stacey carried out observations in classrooms in order to explain some of the ‘errors’ made by students. They suggested, for example,  that a likely explanation of a belief that ‘the letter has the value 1’ is that teachers often say ‘x without a coefficient means 1x’. Overall it was found that many students give incorrect mathematical responses to algebra test items with these difficulties having several origins which include

intuitive assumptions and sensible, pragmatic reasoning about an unfamiliar notation system;

analogies with symbol systems used in everyday life, in other parts of mathematics or in other school subjects;

interference from new learning in mathematics;

poorly designed and misleading teaching materials.

Overall this would fit with a theoretical perspective on teaching and learning which sees understandings as derived from a history of experiences and meaning making in previous learning situations, including learning both out-of-school and in-school (for further discussion of this see Sutherland 1998).  This suggests that it is possible to predict that students will always develop idiosyncratic interpretations of letters whatever teaching approach is used. Thus we find it difficult to agree with Stacey and MacGregor’s statement that if misunderstandings are associated with particular teaching approaches then they can be avoided, because this might be taken to suggest that if only we can locate and describe ‘correct’ teaching then we can obtain ‘correct’ learning (which only makes sense from a transmission model of teaching and learning). Our theoretical models of learning suggest that all teaching will inevitably lead to the construction of some understandings which are correct in some situations and incorrect in others. In other words all learning and thus all teaching of mathematics  will result in both partial and unintended meaning construction. This suggests that it will never be possible to teach ‘symbolic algebra’ as a discrete and insubstantial part of the mathematics curriculum which can be learned in a straightforward and correct way. (See the discussion of the spiral curriculum in A1.)

For this reason  we  agree with the conclusion that “We suggest that in a typical curriculum students do not get enough experience of using algebra notation. In the schools we worked with students learn algebra in one or two short modules per year. These modules are usually not connected with other work and have no useful purpose from the students’ point of view” (MacGregor & Stacey, 1997 p17). 

More results from this 1992 study are reported in Stacey & MacGregor (2001). Here they state that Australian national curriculum documents are promoting the view that algebraic thinking begins to develop in the primary grades through experiences of generality (which relates to, and some of which is based on, Mason’s work set out in Assemblage 2) in which the first use of letters is for describing these patterns and relationships. 

Introducing algebra and algebraic notation through this ‘pattern-based approach’ — as a language for expressing relationships between two variables and not as a set of procedures for finding the ‘unknown number’ — is a clear break with tradition…the pattern based approach deals with generality first, leading to an understanding of functional relationships and their algebraic description…the new approach – introducing algebraic letters as pattern generalisers instead of specific unknowns – is derived from a desire to identify early algebra in schools with algebraic thinking, rather than only with its surface notational features. (p 142). 

The following is an example of one of the items which was used in the testadministered to students in the 1992 study. 

A. Look at the numbers in this table and answer the questions

	x
	y

	1

2

3

4

5

6

7

8

….

…
	5

6

7

8

9

..

11

…

…




(i)
When x is 2, what is y?…..

(ii) When x is 8, what is y?…..

(iii) When x is 800, what is y?

(iv)
Describe in words how you would find y if you were told that x is ………

(v)
Use algebra to write a rule connecting x and y ………..

MacGregor and Stacey  report that performance on these items varied from school to school.  For example on item A, the success of Year 9 students in writing an algebraic rule ranged from 18% in one school to 73% in another. “One of the most striking findings from both written testing and the interviews was the variety of patterns perceived and the many ways of  describing them. For example talking about Item A, Sarah (Year 10) said ‘x it starts as 1, 2, 3, 4 and builds up it goes in order’, Another student said about a similar item “From x you miss three numbers and then there is y”. This fits with the results of Sutherland & Rojano’s (1993) research on students’ responses to similar items and also fits with a theory of learning which emphasises the active sense making of students. It could be argued that these students’ responses are only incorrect because the students have not appreciated the ‘mathematical game’ they are playing. 

Stacey and  MacGregor report that in general students when answering items such as Item A  tend to search for a recurrence rule that would predict a number from the value of its predecessor rather than for a functional relationship.  “… Many of the patterns that students saw, including the recurrence relationships, are valid but do not lead to an idea that can easily be recognised algebraically” (Stacey & MacGregor, 2001 p146).  From this study they concluded that students taught with a pattern-based approach to algebra did no better on algebra items than students taught with a more traditional approach. They also point out that “When a new and different teaching approach is recommended in a national curriculum document, it is natural to assume that in some way research has shown it to be better. However there has been little empirical research of relevance to the choice of ways of introducing algebra” (p 152).

The Australian group have also carried out research on the use of multi-representational software (including graphics calculators) for learning algebra. One of the most important findings from this research was that different function graphers promote the learning of different concepts and solving procedures (Tynan, Stacey, Asp & Dowsey, 1995). This again fits with a theory of learning which takes account of the nature of the interactions between the learner and the learning environment. 

Our main conclusion from this Australian research is that developing ‘misconceptions’ about the use of letters in algebra is a normal part of the learning process, whatever teaching approach is used. Teachers need to understand this aspect of learning the algebraic language and through discussion and other forms of feedback support students to learn new meanings for letters. We suggest that any attempt to find a ‘best way’ to teach or a ‘best set of problems’ cannot be expected to work because this is based on a simple input/output cause-and-effect model of teaching and learning with no account being taken of active construction of meaning by the learners within a social context. The fact that all students do not develop the same ‘misconceptions’ relates as much to the varied experiences of students both in-school and out-of-school as to the particular teaching approach being used. In this respect learning the algebraic language is as complex as learning natural language and will need as much intensive feedback from teachers and other knowledgeable others as is the case for learning natural language.

We could also learn from the Australian research that  a-priori analysis of problems in terms of pupils’ likely meaning construction, combined with small-scale studies could lead to the prediction of some of the interpretations which pupils make when problems such as those involving pattern-spotting  from number sequences or figurative images are incorporated into curriculum reforms. This analysis can never predict a particular pupil’s interpretation but it can predict a range of likely interpretations.  This is compatible with and supported by a phenomenographic approach to research (Marton & Booth 1997).  See also Assemblage A5.

A4: Kilpatrick, J. Swafford, J. Findell, B. 2001

Kilpatrick, J. Swafford, J. Findell, B. (Eds) 2001, Adding It Up: Helping Children Learn Mathematics,  Mathematics Learning Study Committee, Center for Education, National Academies Press, Washington.

This book provides an excellent summary and distillation of research, from a North  American perspective, and also draws extensively on international research. The predominant concern in the USA is that algebra serves as  a threshold for College-entrance, and in many instances, for College-graduation. The approach in the USA is for algebra to be a course which is isolated from other aspects of mathematics (Algebra 1, Algebra 2 etc).  Research therefore focuses on difficulties experienced by students when learning algebra in an environment which isolates algebra from other aspects of mathematics. 

Algebra is described as ‘a systematic way of expressing generality and abstraction, including algebra as generalised arithmetic’ and as ‘syntactically guided transformations of symbols’ (p258).  However textbooks and teaching tend to emphasise the latter rather than the former.  Manipulation involves adding, subtracting, multiplying, dividing, factoring, solving equations, re-arranging for iterative approximation of solutions, etc.  As a manipulable language, it is suggested that algebra facilitates justification and proof (convincing yourself and others). The dual nature of expressions (as calculational sequences and as answers) requires students to learn when to interpret expressions, and when to treat them as objects to be manipulated (p261). 

But even in this book, algebra is presented in a chapter entitled ‘developing mathematical proficiency beyond number’, which is perfectly correct in one sense, but could unintentionally reinforce the notion that algebra starts when arithmetic is proficient, whereas many would suggest that algebraic thinking is a necessary step away from the particularities of number, and that this move mirrors or repeats the move from number as adjective (one pencil, two crayons) to number as noun-object, with a move from concentration on particular numbers to number as an abstract or general ‘thing’. 

Although in the USA most algebra courses confine themselves to linear functions to start with, and then move on to quadratics, it is highly likely (especially in a technology-rich environment) that other functions could be introduced at the same time to avoid students forming the impression that linear and quadratic is all that is of interest.  For example, Confrey & Smith (1995) provide further justification, and Philips, Smith, Star & Herbel-Eisenmann (1998) report on such an experiment which confirmed the conjecture  that with the support of technology, students can encounter a much wider range of examples and can cope with a greater degree of complexity than when confined to paper and pencil (see for example Fey & Heid 1984, Fey & Good 1985, Coxford 1985, Coxford & Schulte 1988).  Kieran & Sfard (1999) used graphs successfully to help 12 & 13 year old students to see through symbols to their referents, ‘like windows into a virtual world’, in order to appreciate equivalent expressions.  However they caution that this is not a panacea, just an aid. 
They point out that arithmetic in the USA is heavily committed to answers rather than to processes, so there is considerable work to be done to draw student attention to processes of calculation as a step towards algebraic thinking (p263).  Students used only to arithmetical thinking are liable to see the equals sign as a command to produce a single number as answer (see for example Küchemann 1981, Booth 1994, 1988).  It seems evident, but has not been verified on any large scale studies, that if arithmetic was undertaken with attention to the inherent and implicit generality of methods of calculation, the roots of algebraic thinking would be established, making algebra easier and more accessible later.  Furthermore, tasks calling upon algebraic thinking could be begun at a very early age as children grapple with the implicit generalities in their mathematics lessons.  Gattegno (1970) went so far as to suggest that 

something is mathematical only if it is shot through with infinity, 

which could be interpreted as ‘a lesson is not mathematical unless there is an opportunity to experience, if not express, generality’.

One of the significant ‘tweaks’ in practice which could have long term effects, is to get pupils to extend and vary the routine exercises they are normally given, whether to introduce large and small numbers (often a source of excitement as they use symbols to express things which are out of physical reach), or to bury-the-bone by making a routine problem more difficult for their peers, through varying the choice of context, numbers, setting, or complexity (see for example Watson & Mason 1998).

Intervention studies which support the kind of tasks promoted in the 70s in such books as Starting Points (Banwell, Tahta & Saunders 1972) have been carried out recently.  Carraher, Brizuela, & Schliemann 2000, report that young learners are able to engage with problems of an algebraic nature e.g. y=x+3, in which both particular and general are present.  They noted that in some contexts, children are inclined to instantiate generalities, while in others it seems to them strange to employ a particular.  Their research convinced them that there is 'potential behind an early introduction of algebraic concepts and notations' (p151).
Since introducing algebra as ‘arithmetic with letters’ has been so largely unsuccessful, Sutherland (1991) challenged researchers and teachers to ‘develop a school algebra culture in which pupils find a need for algebraic symbolism to express and explore their mathematical ideas (p2)’.  Coles & Brown (1999) tackled Sutherland’s challenge by developing a community of practice based on inquiry, which included the teacher making meta-comments about the thinking and about the nature of mathematical inquiry.  They observed an increase in spontaneous student meta-commenting and increased articulateness about the use of symbols in algebra. 

It is certainly consistent with the major schools of thought concerning learning that where children are invited and prompted to think about their thinking, to become aware of processes carried out on objects as well as on the objects themselves, then they are likely to become more relational, more algebraic, in their thinking (Kilpatrick et al p264-265).  

Noss, Hoyles & Healy (1997) addressed issues of students identifying a great variety of patterns in a simple match-stick sequence (see Assemblage 3) many of which do not readily lend themselves to algebraic formulation, and the phenomenon observed by Lee & Wheeler (1987) that students are not inclined to check the validity of such conjectures without explicit teacher intervention, at least at first, while both Stacey (1989) and Arzarello (1991) point to difficulties students experience in justifying their algebraic expressions.  They constructed a matchsticks world called mathsticks which requires students to build up LOGO procedures for drawing matchstick sequences.  They report on how the software supported some 12-13 year old students in finding alternative seeings along the lines of those suggested in Mason et al (1985) and Mason (1991).

It is also reported that there are some indications that students can learn to use symbol manipulators to solve problems without themselves having great facility in manipulating symbols, but much more research is necessary in order to validate this great hope of technologically-committed educators and researchers (p278).

Students find great difficulty in expressing generality.  Those who manage still find it difficult to interpret or make use of such generalisations in resolving problems (Lee & Wheeler 1987 p 159).   What research has been done can be interpreted as suggesting that sudedenly introducing generality in secondary school is less effective for a majority of students.  What is required is the whole of mathematics teaching being imbued with the use of symbols to express generalisations which underpins the whole of a pupils’ experience, calling upon children’s powers to think mathematically.

Through an emphasis on generalisation, justification, and prediction, students can learn to use and appreciate algebraic expressions as general statements.  More research is needed on how students develop such awareness.  At the same time, more attention needs to be paid to including activities in the curriculum on identifying structures and justifying.  Their absence is an obstacle to developing the “symbol sense” that constitutes the power of algebra. (Kilpatrick et al  2001p 281)

This conforms with views from many different authors over the last century.  The problem seems to be to put it into practice on a wide scale.

A5: Work from the Italian Mathematics Education COMMuNITY

We review here the work of Arzarello, Bazzini & Chiappini (2001),  Boero (2001) , Bazzini, Gallo & Lemut (2000), Dettori, Garuti & Lemut (2001)  who are all part of the Italian mathematics education community. In general their research is characterised by analysis of ‘complex’ problems from small-scale pilot studies, followed by empirical work in authentic learning situations. They work in collaboration with practising teachers and their research incorporates the development of curriculum activities. When interpreting their research it is important to bear in mind that the algebra curriculum in Italy emphasises rigour, correspondence between hypotheses formulated and experimental work and precise communication in  language. There is also an emphasis on a relatively formal approach to  functions and transformations of functions at the equivalent of Key Stage 4 (Sutherland, 2000). 

Paulo Boero (2001) has drawn attention to the importance of transformation and anticipation as key processes in algebraic problem solving, drawing on research in authentic classrooms and combined with a theorisation of the results from a perspective of explaining students’ meaning construction. 

  He considers processes of transformation both before and after algebraic formalisation. He suggests that when transformation happens without or before algebraic formalisation it is frequently based on the transformation of the problem situation through arithmetic or geometric or physical manipulation of variables. The work of Filloy et al (2001) also  make reference to such ‘arithmetic’  transformation (see Assemblage 2). Boero calls such transformations pre-algebraic. He says that when transformation occurs after or with algebraic formalisation then this is usually based on the transformation of the algebraic code, which considerably extends the range of possible transformations. 

Boero’s main argument is that anticipation is an important part of transformation:  

In order to direct the transformation in an efficient way, the subject needs to foresee some aspects of the final shape of the object to be transformed related to the goal to be reached and some possibilities of transformation (p99). 

Boero considers the transformation process as part of problem-solving, modelling, proving and conjecturing activity. He considers that the following standard classroom activities are likely to hinder the dialectic relationship between transformation and anticipation:

· Calculating standard arithmetic expressions

· Transforming algebraic expressions in order to simplify them

He considers that the following classroom activities are likely to enhance the development of this dialectic relationship:

· Producing and proving conjectures expressed with algebraic formulae

· Discussing the direction of transformations needed to obtain an algebraic expression with given characteristics

With respect to investigating problem-solving approaches,  variants of the following problem have been used extensively with pupils from grades IV to VIII. 

2000  liras will buy the stamps which are needed to mail a letter which weighs no more than 100 grams. If Maria has an envelope weighing 14 grams, how many sheets of writing paper weighing 16  grams each can she put in the envelope in order not to exceed (with the envelope) the weight of 100 grams.

Research by Boero and Shaprio (1992) found that it was possible to categorise pupils’ approaches to solving this problem into two main categories, which they called a ‘pre- strategy’ and an ‘envelopes and sheets’ strategy. 

What they refer to as a pre-algebraic strategy involves taking the maximum possible weight (100gms in the above example) and subtracting the weight of the envelope (14gms) from it (obtaining 86 gms in the above example).  The number of sheets is then found by multiplying the weight of one sheet by a number and comparing this with the remaining weight (e.g. 4 x 16 = 64 gms, 5 x 16 = 80 gms) or by dividing the remaining weight by the weight of each sheet of paper (i.e. 86 gms divided by 16gms).   They called this strategy pre-algebraic in order to emphasise 

two important, strictly connected aspects of algebraic reasoning, the transformation of the mathematical structure of the problem and the discharge of information from memory in order to simplify mental work (Boero, 2001, p 107). 

Envelopes and sheets strategy. This is a more ‘situated’ approach to solving the problem in which the weight of envelope and weight of sheets are managed together. 

These strategies include ‘mental calculation strategies’ in which the result is reached by immediate, simultaneous intuition of the maximum admissible number of sheets with respect to the added weight of the envelope, ‘trial and error’ strategies in which the solution is reached by a succession of numerical trials, keeping into account the result of preceding trials (ibid p107). 

In this sense pupils are transforming the problem by thinking about the number of sheets and the weight of the envelope as physical variables. 

This analysis is more fine-grained than that carried out by Filloy et al (2001) as it distinguishes between an approach which Boero suggests is the antecedent of an algebraic approach and an approach which is much more situated on manipulating the concrete objects of the problem. Boero & Shapiro (1992) found that pupils strategies evolve with respect to age and instruction from the more situated ‘envelopes and sheets’ strategy to a ‘pre-algebraic’ strategy.  For Boero and Shapiro the pre-algebraic strategy incorporates the roots of an algebraic approach.  The implications of this type of analysis are that when teachers find that pupils use a range of approaches to solve such problems they can make the similarities and differences between these approaches more explicit through for example collective whole class work centred around a common white-board. In some respect this approach is similar to that being taken by Coles and Brown (1999). 

Boero’s analysis of the ‘transformation function’ in algebra is important because it stresses the dialectic relationship between standard patterns of transformation which derive from instruction and practice and anticipations which produce the transformation, where anticipation is the mental process through which the student foresees the final  shape of the algebraic expression. He argues that text books and teachers place too much  emphasis on standard patterns of transformation, namely moving towards progressive simplification. Anticipating the effects of transformation relates to what Arcavi (1994) calls ‘symbol sense’. 

Another example used by Boero (2001) and drawing on the work of Arzarello (2001) highlights the importance of anticipating the effects of transformation within the conjecturing and proving process.  Boero discusses university students’ approaches to the following problem:

Prove that the number (p – 1)(q2 – 1)/8 is an even number, provided p and q are odd primes. 

Boero argues that anticipation of the transformation process leads to substitutions such as p = 2h + 1 and q = 2k+1. Arzarello found that ‘low attaining pupil seem to look (more or less in a random purely syntactical fashion) for some more complicated formula which can solve the problem and seldom try to substitute numbers for letters to see ‘what happens’” (ibid p 67). Boero would argue that this transformation without anticipation results from an over-emphasis on what he calls ‘blind manipulation’ in school algebra which probably derive from carrying out simplification exercises in school. 

Dettori  et al (2001) also consider  the effects of the nature of the problems and the tools which are offered to students with respect to their problem solving processes. In Dettori et al (2001) they present a detailed analysis of a range of ‘word’ problems and consider how these might be solved with paper and pencil and a spreadsheet.  From this they  develop a ‘didactic sequence’ of problems for teaching and learning algebra, which have been evaluated with groups of 13-14 year old students. Students were asked to solve the problems spontaneously before instruction, using an algebra approach which had been taught and also using a spreadsheet. 

1st problem of sequence — Book Problem 

We want to distribute 100 books among these pupils so that the second person receives four times as many books as the first person, and the third person gets ten more than the second person. How many books does the first person receive?

Last problem of sequence  — Fish Problem

We went fishing and caught a big fish: its tail weights 4 Kilos, its body weighs the same as the head plus the tail, and the head weighs one half of the body plus the tail. What is the weight of the whole tail?

Dettori et al maintain that an arithmetic approach proceeds step by step whereas an algebraic approach  focuses on a global–synthetic view of the problem. They also maintain that a problem is ‘more algebraic’ when the algebraic solution is simpler than the arithmetic one. They suggest that the above ‘fish problem’ is difficult to solve with an arithmetic approach. The results of asking students to solve the sequence of problems with a spreadsheet leads them to conclude  that  students can learn some aspects of an algebraic approach from using spreadsheets to solve problems but that they cannot learn from this work how to synthesise and manipulate the complete relation. This relates to our earlier discussion of the object-process duality in algebra, in which an equation such as 4x + 7 = 1.5x  - 3  can be viewed as both a statement of equality of two calculational processes, and also as an object in its own right amongst a general class of similar objects with associated techniques for 'solving for x'.

Important issues raised by the Italian research are

Although systematic analysis of potential problem solving approaches to mathematical problems cannot be culture free it does show that there is nothing  ‘essential’ about a particular problem with respect to the approach which a pupil might use to solve it.  Possibly in the UK we have focused too much on ‘good problems’ and conveyed to teachers the idea that there is something about the problem alone which will provoke the use of algebra. As the Australian research on students’ approaches to solving number-pattern problems shows there is nothing intrinsic about a problem which provokes a particular approach. This is why  the role of the teacher is so important and this has been very much under-emphasised in much of the so-called constructivist approaches to learning mathematics. 

Anticipation, which is one of the roles played by mental imagery, is important for successful manipulation of symbols to achieve answers to problems, as well as for formulating those problems in algebraic language.
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