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Abstract
[bookmark: OLE_LINK125][bookmark: OLE_LINK126]It is well known that many students entering university struggle with the role, nature, purpose and use of definitions in mathematics. To those who are thoroughly enculturated into mathematics, it is hard to imagine there is an issue, while to those teaching students it is hard to work out where the difficulty lies. The classic distinction between concept definition and concept image (Tall & Vinner 1981, Vinner 1983), makes an important start, but there remains the issue of what definitions are for and how they are used. Following various linguists and philosophers (Edwards & Ward 2005) it is vital to distinguish between what have been called extractive definitions (usage is described and reported, as in a dictionary) and stipulative definitions (specifying required properties, as in mathematics). Students are culturally immersed in and familiar with the former, but in order to succeed in mathematics they have to become used to using the latter. 
In this paper, task-exercises are offered in order to provoke direct experience of ways of working with students and teachers so that they encounter examples of ‘reasoning solely on the basis of agreed properties’ arising from stipulative definitions.
Method of Enquiry
My preferred approach is always experiential, so I approach the topic of definitions through mathematical tasks. My ‘data’ consists of what the reader finds coming to mind as a result of and while engaging in the tasks (Mason 2002). Commentary and analysis is based on multiple experiences of the same or similar tasks.
Local and Global Definitions
Mathematicians are typically naughty in their use of the word define. Sometimes they make global definitions which are supposed to be stable over time and place, when they define a new concept. As both Poincaré (1909/1952) and Whitehead & Russell (1962) suggested, a definition is really a short name for a complex of properties. However sometimes mathematicians make local definitions. Consider the two acts of defining:
Define a function on a domain S and codomain T to be a subset F of S x T such that each member of S appears exactly once.
Define f(x) = x2.
The first is a global definition, intended to stand permanently (unless explicitly modified), whereas the second is a local definition, a temporary label for a particular function and liable to change at any time.  It is perhaps not surprising that mathematical definitions are confusing for students encountering such double usage (Alcock & Simpson 2002, 2011).  The mathematician may reply that both fit the sense of definition as a ‘shorthand label for a complex of properties’, but a pedagogically aware mathematician could be perfectly content to use the term specify when giving something a local label, because this emphasises that attention is being directed to a particular instance, as opposed to a general category of objects satisfying a list of required properties. Unfortunately, delving into student experience of definition reveals that this is just the beginning of confusions.
Given a definition of a concept, such as angle between two lines, or ellipse, how do you determine whether a specified object really is an example? If it ‘looks right’ to learners, if it fits their intuition or their sense of common usage, it is quite likely that it will be accepted as such. This may be sufficient for identifying angles between lines (at least until you try to work with dynamic geometry software), but it is certainly not sufficient for a locus produced by some construction that ‘looks like’ an ellipse. Checking that it actually has the required properties is the move that Tall (1991 p20) calls ‘moving from describing to defining’, which underpins university mathematics and which could underpin school mathematics as well.
Concept Images and Concept Definitions
Tall & Vinner (1981) developed the notion of concept image to refer to the collection of associations and images which come to mind when a technical term is encountered. This is in contrast to the formal, mathematical concept definition. The notion of concept image is useful as the beginnings of an explanation for why students’ reasoning does not always make use of concept definitions.  For example:
Fractionated
Consider the word fraction. What images and associations come to mind? Now bring to articulation, either out loud or on paper (since rehearsing in your head allows for too much in the way of slippage and imprecision!), a definition of fraction.
Comment
Informal definitions might include things like ‘parts of a whole’. Consulting a reasonably reputable source such as Wikipedia reveals a typical ‘dictionary-finesse’ because it refers to fractions as numbers expressed as the ratio of two numbers, begging the question of what is intended by number. Even Wolfram MathWorld defines a fraction as a rational number expressed as a/b with no specification of restrictions on a and b. They also define a rational number as a number that can be expressed as a fraction! These are descriptive, or as will emerge shortly, extractive rather than mathematically formal or stipulative definitions. 
According to most formal definitions of fractions, a fraction is an ordered pair of integers, the second (the denominator) being positive (Waismann 1961/2003 p55ff). Anyone imbued with ‘equivalent fractions’ may find themselves thinking in terms of rational numbers rather than simple fractions, perhaps like the authors of the Wikipedia and Wolfram entries, not least because most school textbooks move from fractions to equivalent fractions within one or two pages. 
Fractionated Continued








Which of the following are fractions?	, , , , , , , ?
Comment
According to the informal but circular definitions, all of these are fractions. According to a formal definition, only the first two and the sixth are fractions. Once equivalence of fractions is included, the domain is no longer fractions but rather rational numbers (equivalence classes of fractions). So all of the examples shown are rational numbers but only some of them are fractions.
As has been recognised by mathematics teachers for some 3000 years or more, there is nothing like an example to elucidate, but also to challenge and to reveal. Indeed an even more revealing probe is to ask students to construct examples for themselves, including extreme examples and perhaps even non-examples that they think some people might mistake for examples, in order to get them to explore and develop their personal example space (Watson & Mason 2005) as part of their concept image.
Another and very fruitful approach to fractions is as operators or ctions on objects (usually numbers but also on partitioned shapes). Thus fractions are always accompanied by “of … (some object”, just as measures are fruitfully always specified by a number together with an error interval. The arithmetic of fractions can then be developed as an arithmetic of operators, with equivalent fractions being actions having the same overall effect on all objects, introduced only when fractions as actions have become familiar.
When introducing a new concept (here ‘fraction’) it is important to remain within that domain until students have become familiar with the concept, that is, having developed a sufficiently complex concept image in order to be able to function with the concept, before increasing the complexity. A similar but different phenomenon surrounds the use of the word number.
Number
What is a suitable definition of ‘number’?
How many times in school does the word change its meaning?
Comment
The word ‘number’ is used in schools for whole or counting numbers, for whole numbers with zero, for integers, for rationals (and also for fractions), for some specific irrational numbers such as √2,  and e, as well as for reals and complex numbers. It is evident that sometimes students have a concept image come to mind based around counting when the teacher is thinking ‘real’, and so on. It is no wonder then that communication breaks down and learning suffers. At university students meet complex numbers and other number-like constructs such as matrices.
In the spirit of Socrates/Plato, and following the development of axiom systems from Euclid to Peano, concepts in mathematics are defined in terms of specified properties that they must satisfy. This is a sophisticated move as we shall see, and could be supported in school by working with students on mini-axiom systems.
There is considerable evidence (Clarke 2011) that most, even all students in school can undertake sophisticated mathematical reasoning, at least until it comes to the need for calculations in arithmetic or algebra. Few students experience algebra as a language for reasoning, being driven through algebraic calculations to solve equations rather than dwelling in reasoning-with algebra. The same applies to fractions: calculations are ubiquitous and the principle purpose.  Reasoning-with is rare.
Extractive and Stipulative Definitions
Edwards & Ward  (2004) report surprise that not only do many students not view definitions the way mathematicians do, but they do not use them appropriately, even in the absence of anything else to do. They build on philosophy and linguistics to distinguish between two types of definitions (Edwards & Ward 2004 p412): extracted definitions describe and report usage, as in a dictionary, whereas stipulative definitions specify usage, as in mathematics. Extractive definitions depend on social enculturation (the terms in the dictionary need to be familiar for the definition to be meaningful) and often build on sensory experience, whereas stipulative definitions are (supposed to be) free from connotations and use only previously defined (or assumed) terms. Other authors have used intensive for extractive and extensive for stipulative.
Thus a stipulative definition for ‘fraction’ might be the formal one, whereas an extractive definition might be to do with ‘parts of a whole’ or something similar to the ones quoted. An extractive definition of ‘negative 1’ might involve places to the left of zero on the number line, reference to debts, low temperatures and other instances, while a stipulative definition might be given in the form ‘-1 is that number which when added to 1 is 0’.  Something similar can be used for reciprocal and for logarithms (the log of a number to a given base is the power to which the base must be raised to give the number). These can be treated as slogans which provide a computational base for reasoning-with the concept.
An extractive (or intensive) definition of a continuous function, based on sensory experience, might be ‘a function with no gaps or jumps’, whereas an extensive definition requires formal apparatus such as -. To move from an intensive sense of continuity to an extensive definition which enables unusual, non-formula-based functions to be analysed for continuity requires fundamental shifts in thinking. Not only is there a change in how to think about continuity, from having a sense of discontinuity to having a way to prove the absence of such discontinuities, but there is a necessary development which extends intuition to include the discontinuity of sin (1/x) at x = 0. Experience of this shift could be available from early on if stipulative definitions were employed more widely, and if reasoning based solely on previously agreed properties was conducted from early on in mathematics lessons.
Extractive definitions are related to concept images, to supporting meaningful construal by students. Stipulative definitions in mathematics comprise the concept definition, and are intended to be used as the sole basis (initially at least) for recognising instances and for reasoning-about and reasoning-with the concept. So when a student is told that |x| is an example of a function whose derivative is discontinuous at 0, the natural response is to reason using concept images rather than resort to checking the specific formal definition. This may seem expedient at school, but is a major stumbling block on entry to university, and it really need not be the case.
A concept such as √2 has a stipulative definition as the positive number whose square is 2. An existence proof  is required before continuing to use it, though that is very much a mathematical after-thought in the historical development.  Similarly for √n where n is a positive non-square integer, and then √(-1) is stipulated to be a number whose square is -1. Until some existence theorem is proved (by working with ordered pairs of real numbers), a label is required (such as i with the sole property that i2 = -1) so as to avoid confusion between √(-1) and -√(-1). Where √2 and √(-1) differ is that unlike √(-1), several procedures can be specified that give closer and closer rational approximations to √2, which therefore can serve as surrogates for recognising and reasoning-with √2. The historical challenge for mathematicians, re-experienced as a contemporary challenge for students, is to let go of connotations and the desire for some re-presentation in the familiar, and work solely with stipulated properties. Of course in the Argand diagram, reinterpreting the Cartesian plane as the field of complex numbers by rotating the real number line through 90° can provide extractive and metaphoric support to intuition.
Students, brought up in a culture of extractive definitions, are called upon at the end of school or early university to switch from treating definitions as extractive to treating them as stipulative and this poses severe challenges. The notion of concept image is pedagogically useful precisely because labels for stipulative definitions are usually chosen from familiar vocabulary, thereby carrying extractive and hence imagistic connotations where none were intended. Except of course that the formal stipulative definitions draw upon the imagistic intuitions that are being expressed but displaced by the formal specification.
Thus images of √2 as (the length of) the diagonal of a unit square and associations with 45°, Pythagoras, and irrationality contribute to the concept image, but may dominate the two stipulative properties that it is positive, and that its square is 2.  For reasoning with and about √2, these are all that can be used. The extra shift that √2 ‘knows all its decimal places’ (they are all uniquely determined) despite the fact that we can never know them all is but one instance of the conceptual shift to abstraction called upon by the notion of the non-finite. It is highly productive in mathematics to consider infinite processes that unfold iteratively but cannot be completed in material time to nevertheless be completed.  Becoming at home with both unfolding and completed infinity is just one of the experiences captured by the pedagogical construct of procept introduced by Gray & Tall (1994) as a contribution to understanding, guiding and appreciating the difficulties in reification of experiences, which themselves underpin mathematics.
Extending ‘Number’
For a taste of the process of extending ‘number’ several times in school, consider the following two contexts.
Remainders and Negatives
Finding the remainder on dividing 37 by 7 is straight forward. But what about (–3)7 on dividing by 7?
Remainders of Negative Numbers & Negative Moduli
What would be a suitable definition for the remainder on dividing -17 by 5? Generalise!
What would be a suitable definition for the remainder on dividing 17 by -5? Generalise!
What is meant by ‘suitable’?
Comment
Many people consider the possibility that the remainder on dividing –17 by 5 is the same as the remainder on dividing 17 by 5 (appealing to symmetry; replacing something I don’t know how to do with something I do know how to do) and so they get 2. However this does not yield consistency if the arithmetic properties of remainders are extended to apply to negatives as well.
There are several extractive definitions of remainders, based on different approaches to calculating them. A ‘suitable’ definition is one that is consistent with the laws of arithmetic. What properties do remainders and moduli have that one would like to preserve? For example, if you add two numbers and then take the remainder, you should get the same thing as taking the remainders, adding, and then taking a remainder if that is necessary. Similarly, if you multiply by some number and then take the remainder, you should get the same thing as taking the remainder, multiplying and then taking the remainder if need be. 
There is still a choice to be made: should the remainder always be positive (then you can think of arithmetic taking place within that ‘set of remainders’) or should the remainder lie between 0 and the modulus?
This leads to the question of which properties to maintain: might there be some others that are overlooked but not maintained by the extended definition? Perhaps the most important is that adding a multiple of the modulus to a number leaves the remainder invariant.
[bookmark: OLE_LINK12][bookmark: OLE_LINK13]Using only the additive and scaling properties, and requiring remainders always to be positive, you can deduce that (–x) mod m is the non-negative integer which when added to x mod m gives 0 mod m. In other words, (–x) mod m = (m – x) mod m.
GCD
The concept of the LCM and GCD of a pair of whole numbers is familiar. There is a relationship between the GCD and the LCM of a pair of numbers, there are other relationships when three or more numbers are involved, and there are properties of GCD.  All of these could be explored by students as a domain in which to reason with a very limited set of properties, while gaining familiarity with those properties. But perhaps more is possible:
GCD of Fractions
What might it mean for a fraction number to be the GCD of two other fractions? 
What properties of the GCD of two integers ought to be preserved?
Comment
There may have been a moment of shock … this is not in the textbooks, and it challenges familiarity with GCD. Yet this is exactly what students experience at various stages in school, and especially on transition to university.
Properties of GCD include: GCD(a, b) =  GCD(a, b) and GCD(ab, c) GCD(a, b) = GCD(a, c) GCD(b, c) and GCD(a + b, b) = GCD(a, b).
It would be useful to have the GCD of fractions (as operators) to be invariant when equivalent fractions are used. In other words, the GCD ought to apply consistently to rational numbers.
Take as a stipulative definition that the GCD of n and m is the largest number that divides into both n and m integrally. Now modify this to refer to rationals. 
GCD & LCM of Rationals
If the GCD of two rational numbers is the largest rational number to divide into both numbers integrally, is there always such a rational? Is it unique? Is it consistent with the GCD of whole numbers seen as rationals?
What about the LCM?
Comment
If you treat the definition as stipulative, letting go of connotations and association, and if you work solely with the formal stipulative definition, you can find a definition in terms of the GCDs of numerators and denominators that satisfies all the desired properties.
This task offers teachers another taste of what students might be experiencing many times in school and in early university until they get used to ‘reasoning solely on the basis of agreed properties’. Intuitions (actually, habits with strong concept images) may be strongly challenged when a concept is extended. Other examples might include extending GCD and LCM to numbers of the form a + b√n where a and b are integers and n is a fixed integer which is not a square. Exploring this would give practice in manipulating surds.
Tertiary Examples

[bookmark: OLE_LINK5][bookmark: OLE_LINK6]Consider the terms increasing and decreasing in the context of infinite sequences. Alcock & Simpson (2011) and Edwards (2011) have explored students’ grasp of these definitions, which sometimes conflict with natural language usage. Take as a working definition that an increasing sequence is a sequence {un: n = 1, 2, …} for which n, un ≤ un+1.  
Increasing & Sequences
Construct some sequences that meet the definition but which might be mis-classified by students.
Comment
Alcock & Simpson (2010) and Edwards (2011) show that students use different interpretations of the concept in different situations. Yet mathematicians know that definition-checking involves strict application of the details of the definition. In other words, definition-checking involves checking that required properties are correctly instantiated in the particular situation. However, it is very easy to overlook what turn out to be essential ingredients. Thus even having read the definition once or twice, it is easy to overlook the inclusive inequality condition and construe it as as expressing intuition (strict inequality over the long run) without attending to the implications of the equality or the requirement that it apply to every consecutive pair of terms.
The issue may boil down to whether student attention is suitably drawn to the features that matter: mathematically, ‘increasing’ has to be everywhere not just in some places or as an overall trend.  To ensure that student attention is suitable directed takes more than loud voice tones and deliberate pointing on a screen. Student and tutor attention alike need to be aligned so that both are attending in the same way (Mason 2004/2008).
Even ‘knowing’ definitions and characteristics of something is not sufficient for generating mathematical reasoning, as Peled & Hershkovitz (1999) found amongst pre-service teachers working with irrational numbers. What appeared to be missing was flexibility in shifting between (re)presentations to support thinking in different contexts. So students are expected on the one hand to use stipulative definitions rigorously (not doing so was what seemed to lead Alcock & Simpson’s students astray), and yet on the other hand to be familiar with and to use alternative characterisations as accessed in different (re)presentations (as Peled & Hershkovitz’s teachers did not). No wonder first year undergraduates get confused! 
Root-Slopes and Inter-Rootal Distances
The notion of inter-rootal distances for a polynomial is not very familiar, nor is the notion of the root-slopes taken to be of particular significance. But both are closely allied to the generalisation of the discriminant of a quadratic. These concepts provide an opportunity to experience what it may be like for students to encounter new notions and be expected to work with them straight away.
Root-Slopes & Inter-Rootal Distances for Quadratics
What is the product of the root-slopes (the slopes at the roots) for a quadratic such as x2 – 4? What about in general?
What is the inter-rootal distance (distance between the roots) for a quadratic?
Comment
Squaring the inter-rootal distance suggests that it is closely linked to the discriminant even when the roots are complex. The square of the inter-rootal distance is similarly closely linked to the discriminant. 





Given a polynomial function f, consider the square of the product of the inter-rootal distances. If f(x) =  then the product of the inter-rootal distances is . The square of the product of the inter-rootal distances is then  while the product of the root-slopes turns out to be . Since the discriminant is usually taken to be , the three results agree to within a power of the leading coefficient and a power of -1.
Using the theme of doing  & undoing, suppose someone gave you a list of numbers and claimed that these were the root-slopes of a polynomial. How could you check that assertion? In other words, what properties must the set of root slopes have?  It turns out that for a polynomial of degree d, the sum of the products of the root-slopes taken d – 1 at a time must be 0, and this is a sufficient condition for cubics but not quartics or higher.
Tangents
Student difficulties with the concept of tangent are legion (for example, Vinner 1982, Tall 1986, Winicki-Landman & Leikin 2000, Biza 2011), and inflection points are equally complex for students (Tsamir & Ovodenko 2004). There is often a conflict in concept image between ‘touching the curve in one point’ and ‘touching the curve in one point at the point of tangency’. Here is a task that may provoke learners to interrogate their sense, their concept image of what a tangent is while at the same time ‘discovering’ inflection points (and their tangents). 
Define the tangent power of a point P in the plane with respect to a curve C to be the number of straight lines through P which are tangent to C somewhere.
Tangent Powers
Since every point in the plane is assigned a non-negative integer with respect to a given curve, the plane is divided into regions with constant tangent power. For the quintic shown below, sketch the regions of points which have the same tangent power. Make some conjectures about the quintic, and about functions in general.
Comment
There are at least two ways to explore this question.  One is to select a point P and then rotate a line through P about P seeing how often it is tangent.  This may challenge the appreciation of what happens as x gets very large in absolute value, but it proves tedious to do for a lot of points. An alternative is to imagine a straight line tangent to the curve at point T (a pen or pencil is handy for this) and then run T along the curve, getting a sense of what the tangent does, and then articulating the boundaries of regions where the tangent changes direction.
In this way, learners encounter the second derivative (where the tangent changes direction), and because they are attending to the point T, they tend not to worry about whether the line crosses the graph, or intersects it somewhere else as well.
The shift of attention from lines through a point to points encountered by a shifting tangent is typical of mathematical shifts, where the property that is wanted can be experienced in two (or more) ways, and what is important is flexibility between these.
Various conjectures may arise about how the tangent power changes as you cross from region to region, and what the value should be on the boundaries of regions.
[image: ]          [image: ]          [image: ]
The theme of doing & undoing suggests the question
Given a finite family of straight lines in the plane is there a polynomial (or a function that is at least twice differentiable?) for which the given lines are the inflection tangents for the function? If not, what condition(s) must they satisfy?
Notice how the shift of attention from number of tangents through a point, to the number of times a moving tangent passes through the point opens up possibilities. It actually offers more properties to work with.
Contexts for Work Prior to University
This section contains brief indications of topics in school mathematics that could be used to provide experience of the mathematical use of stipulative definitions.
Subtended Angle
There is a well known Euclidean theorem that the angles subtended at a circle on the same side of a chord are equal.  
[image: ]
One irritating feature of this result is the condition that the point must always be on the same side of the chord as the centre of the circle. It is awkward and inelegant to have to keep repeating that phrase, and to have to keep checking it when using the result in some context. Furthermore it overlooks the fact that angles on opposite sides are supplementary. It would be so much more elegant and simpler to be able to assert that the angle subtended at the circumference of a circle by a chord is invariant, but this would have to be balanced by the statement of the theorem that the opposite angles in a cyclic quadrilateral are supplementary.
Examination of the diagram shows that the ‘angle subtended by a chord’ is really highly ambiguous, because it specifies an angle between two straight lines: the line through P and A, and the line through P and B.
[image: ]
Which angle should be chosen, or how might one of them be specified so as to make the theorem work for all points on the circumference?
Imre Lakatos (1976) is well known for his radical and ground-breaking book Proofs & Refutations, in which he uses the historical development of two mathematical theorems, one in geometry and one in analysis, to propose that definitions and theorems co-emerge as mathematicians struggle to locate hidden assumptions which permit unintended counter-examples. What exactly then, is ‘the angle between two lines’? Is there a unique such object?
Angle Between two Lines
What is the angle between two lines meeting at a point P?
Comment
One approach is to declare the smaller of the two angles to be the angle, so that the angle between two lines is always less than, or equal to, 90°. This causes dynamic geometry programs all sorts of trouble, and it treats angle as unsigned, so orientation is ignored. What are the implications of this choice for the subtended-angle theorem? 
[bookmark: OLE_LINK443][bookmark: OLE_LINK444]A stipulative rather than an extractive definition is needed in order to reason mathematically. 
Another approach is to observe that angle measure involves one arm turning towards the other.  Define the angle between lines m and n to be the angle - less than 360° - through which m must turn about the intersection point in order to coincide with n.  One implication of this approach is that the angle between two lines depends on the order in which the lines are specified. What are the implications of this choice for the subtended-angle theorem?
The subtended angle theorem offers an opportunity to clarify and critique different definitions, and to consider implications of the available choices. Elegance is achieved through simplicity, but it may depend on where you want that simplicity to be based!
Modulus
The function |x| (absolute value) is usually introduced as if it were being defined extractively: some sort of description is given to do with removing the ‘sign’ or taking the distance to the origin (Vinner 1991, Leiken & Winicki-Landman 2000). Stipulatively it is an early example of a function specified by gluing together two formulae, as in


Pedagogically, an extractive definition makes sense because it offers images that can be accessed as part of the concept image, but for calculation purposes, the stipulative is essential. Apart from the classic tasks of sketching the graphs of the relations {(x, y): |x| + |y| = 1} and {(x, y): |x + y| + |x – y| = 1}, there is plenty to explore by thinking of || as an action performed on other functions.  Thus the functions 
f(x, a1) = |x – a1|, f(f(x, a1), a2), etc. 
provide a succession of images (zigzags) to explore, as well as a context for developing familiarity with how the absolute value function works. Using the doing-undoing theme gives rise to trying to classify those ziz-zag graphs that can be obtained by such iterations.  Multiplicative factors could also be introduced in order to alter the slopes.
Using a construct (absolute value) as the basis for exploration gives rise to mathematical exploration through which learners can experience various aspects of mathematical thinking (Mason, Burton & Stacey 1982/2010). It also provides another experience of reasoning solely from and with a few agreed properties as a taste of the role and importance of mathematical definitions and axioms.
Squares & Circles
Encountering different definitions for the same thing can be very confusing. For example, sin(x)  or sin(A) is defined variously as a ratio of sides of a right-angled triangle, a function generated by a point moving round a circle, the solution to a differential equation, and a power series. Many mathematical theorems take the form “the following properties are equivalent”, so that any one of them can be taken as a definition (see for example Winicki-Landman & Leiken 2000 and Leiken & Winicki-Landman 2000).
What then is a square?  The English verb ‘is’ is highly ambiguous concerning whether what is intended is a list of properties, or a parsimonious stipulation. From a property point of view, a square is a quadrilateral with four equal sides, four right-angles, opposite sides parallel, equal diagonals that bisect each other at right angles, a perimeter of four times the length of one side, an area of the square of the length of a side and an area which is the square of one quarter of the perimeter; it is also a shape that is involved in theorems such as Pythagoras, and which gives its name to the algebraic expression x2. One could go on, listing, for example, other shapes of which it is a special case, such as rhombuses, parallelograms, quadrilaterals, and other properties. 
It could be valuable for learners to become aware of the fact that shapes have many properties.  However, it is an obstacle if they come to believe that you need to check all of those properties before you are sure that you have a square in any particular situation!  Of course that seems ridiculous when confronted with this long list of properties, but it applies equally to the restricted properties of having four equal sides and four right angles, and having equal diagonals that intersect at right angles.  
[bookmark: OLE_LINK7]If you want to be able to use the properties of squares for making deductions, you need to have a reasonably parsimonious but psychologically sensible collection of properties that guarantee all the others[footnoteRef:1]. This is the mathematically ubiquitous notion of necessary and sufficient. In the case of a square, what choices of necessary conditions are sufficient to guarantee that a shape is indeed a square? A similar exercise can be carried out with circles, rectangles, kites, as well as with numbers and other school constructs. Finding a necessary and sufficient set of properties is precisely the approach advocated by Plato through Socrates, when switching from searching for an extractive definition of abstract concepts such as beauty or truth, to a stipulatively listing necessary and sufficient properties. [1:  Matthew Inglis (personal communication) pointed out that there is often a trade-off between efficiency and assimilability, between parsimony and intuition.] 

What can be engaging for learners is to try to find counter examples to proposals they and others make as to necessary and sufficient ‘minimal’ conditions. For example, looking for a shape that has one right angle, one pair of opposite sides equal and one pair of opposite sides parallel, but which is not a square can involve a considerable degree of geometric thinking, which may be more valuable than memorising lists of properties.
Magic Square Reasoning
Definition: a magic square is a square array of numbers for which the sum of all the entries in any row, in any column, and on the two main diagonals, is the same. Their properties provide a mini-set of axioms from which numerous deductions can be made, as in the following. 
3 by 3 Magic Squares
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Why, for any 3 by 3 magic square, must the sum of the red (dark shaded) squares be the same as the sum of the blue (light shaded) squares in each diagram?
[image: ]           [image: ]             [image: ]               [image: ]
What is the scope of ‘any’ in ‘any 3 by 3 magic square’?
What other configurations can you find for which the sum of the dark/red shaded squares is the sum of the light/blue shaded ones? Do all colour-symmetric configurations work (interchanging colours is a geometric symmetry)?
Comment
The only properties available are the requirements that the row, column and diagonal sums are the same. So these properties act as a mini-set of axioms for reasoning-with. Because no actual numbers are available, an empirical approach is stymied. Consequently, learner attention is directed to manipulating the properties available using but one idea: if the same term appears in two equal sums, then it can be eliminated from both without changing the fact of equality.
4 by 4 Magic Squares
Why must the sum of the dark/red shaded squares be the same as the sum of the light/blue shaded squares in each diagram?
[image: ]                  [image: ]                   [image: ]
What other configurations can you find for which the sum of the dark/red shaded squares is the sum of the light/blue shaded ones?
Creating your own configurations is relatively straight forward; justifying someone else’s configuration can be much more challenging, and this is typical of the doing-undoing theme in mathematics. The point of these and other tasks is that reasoning-with the few known facts (axioms or properties) not only offers opportunities for exploration and creativity, but provides useful experience of reasoning solely on the basis of agreed properties, that is of using stipulative definitions mathematically. Calling upon this when appropriate in standard curriculum topics would enrich student experience and prepare then for university mathematics. 
What Can Teachers Do?
Preparing students for university mathematics calls for more than repetition of procedures so that they become second nature.  It also involves exposing students to the mathematical use of definitions. Teachers in schools can:
Be aware of different ways of attending to objects: in terms of informal ‘extractive definitions’ based on images and metaphors, and in terms of ‘stipulative definitions’ based on necessary and sufficient properties;
Be awake to similarities and differences between natural language usage and technical use such as define and specify, and to extractive and stipulative definitions when they appear;
Develop adequate concept-images through the use of examples where the pertinent properties of examples are highlighted;
Prompt students to construct their own examples, including ‘boundary examples’ and near-miss examples;
Use mini-axiom systems with students in order to provide experience of movement from recognising relationships to perceiving properties.
Definitions are chosen so as to be definite about the terms we use, but also to make both the statement of theorems, and the reasoning required to justify them, as elegantly simple and hence as memorable as possible. Engaging learners in the implications of different variations of a definition may lead to an appreciation for learners of the role of definitions, and the reasoning that those definitions enable.
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