Progression in Mathematical Thinking
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I want to try to articulate what progression in mathematical thinking might mean when all aspects of the human psyche are taken into consideration, given the on-going trend towards focusing teaching on procedures and given the opportunities afforded by the Scottish Curriculum for Excellence. 

Background

What does progression in mathematical thinking refer to? Clearly it signals a change, but a change in what? And not simply a change but movement in some desired direction! A few moments reflection leads me to the following possibilities or components in which to look out for development, progression, enrichment, growing complexity etc.:

Performance 
(behaviour: doing better on harder tests; using less attention; working faster);

Conceptual Appreciation and Understanding 
(cognition: connections, meaning, articulacy);

Independence & Initiative 
(affect: disposition, resilience, …);

Intention & self-Discipline 
(will)

Attention

(what is attended to, and how it is attended to)

Ways of working collectively and individually

(milieu see Brousseau 1984, 1997).

I have long maintained that training behaviour is an important component of learning mathematics, but that training behaviour alone (through rehearsing routine procedures, getting faster, attaining facility, developing skills etc.) leaves the learner vulnerable through being inflexible and through depending on recognising the appropriate trained behaviour in a given situation. Thus memorising rules, and mnemonics for rules, will eventually produce chaos as fragments of rules become confused and memory overload is reached. (The fact that in the West we seem to have lost the ability to memorize for recall when needed is an extra factor).
To be flexible and effective, trained behaviour needs to be accompanied by educated awareness. Caleb Gattegno (1970, 1987 see also Mason & Johnston-Wilder, 2006; Mason, 1998) used the term awareness to refer to ‘that which enables action’, be it conscious or subconscious.  In other words it is awareness that calls trained behaviour into action and both informs and directs its use. Awareness is built up from imagery (e.g. concept images: see Tall & Vinner, 1981; Mason & Johnston-Wilder, 2004), connections and what is sometimes referred to as meta-cognition.

The energy and drive to educate awareness and to train behaviour comes from harnessing emotions. In mathematics these include disposition to think mathematically and to recognise opportunities to raise questions, as well as to make sense of mathematical experience.
Roots for distinguishing and combining these aspects of the psyche can be found in ancient Indian texts (e.g. the Upanishads) and in subsequent practical psychologies throughout the East and middle East. In the ancient Upanishads, behaviour, emotion, intellect, and will are linked together in the image of human psyche as chariot: the chariot corresponds to the body and hence to enaction; the horses correspond to the emotions which provide the motive source (hence motivation); the driver corresponds to the intellect or cognition, responsible to the owner which in turn corresponds to will.  The reins are usefully seen as mental imagery, which is how the driver communicates intentions to the horses; the shafts correspond to habits which connect the emotions directly to the chariot, and so on.  Attention is the manifestation of will.
What is sorely needed in mathematics education, in order to probe beneath the surface uses of terms such as progression, understanding, meaning, concept etc. is a way of working with each other that develops an increasingly precise vocabulary for aspects of teaching and learning by means of which we can negotiate meaning with each other and with learners. I see my time at the Open University as engaging in precisely that process (see for example Mason & Johnston-Wilder, 2004, 2006) and it is what Gattegno (1970, 1987) strove for.
Progression in Mathematical Manifestations of the Psyche

Many authors have drawn attention to a necessary shift in perception, a necessary shift both in what is attended to and in how it is attended to concerning the discrete and the continuous. Nowhere is this more clearly experienced than in tasks such as 

How many numbers are there between 1.50 and 1.59? 

For many learners, attention is confined to the discrete range of 1.51, 1.52, … 1.58. They rarely if ever have come to mind that they can name infinitely many numbers by including more non-zero decimal digits (Swan 1984, Kulberg 2010). Anne Watson and I (2005) find it convenient, indeed powerful, to refer to learners and teachers as being aware of dimensions of possible variation and within each dimension, a range of permissible change. Thus many learners entering secondary school are aware of the second decimal digit in the task as something that can change (dimension simply refers to an aspect or thing that can be varied) in this case ranging over single digits, but seem unaware that they can also alter the number of decimal digits. Their range-of-permissible-change is unnecessarily limited. There are many reasons, including a propensity to think about or even to articulate the numbers as “one point fifty”, etc. Even when the task is altered to

How many numbers are there between 1.500 and 1.5987?

there may not be sufficient variation to prompt inclusion of further decimal digits. Notice that we are using an aspect of variation theory (Marton & Pang, 2006) which suggests that learning a technical term or a procedure is about discerning additional aspects that can be varied without substantially changing the situation, and-or augmenting the extent of that variation.  Thus to prompt learners to become aware of the density of rational numbers, including the infinity of rationals and of reals, they need to be exposed to sufficient variation in the pertinent features, and to have their attention drawn to the inbetween-ness properties of finite and infinite decimal names (and such variation does work: see Kulberg op cit; Runesson, 2005).
So one aspect of progression in mathematical thinking is the extension of the permissible range of change in any context in which the word number appears, and to be thinking in terms of the dense-continuity of real numbers as a matter of course rather than being spontaneously confined to natural numbers through familiarity, confidence and habit.  It is helpful to think in terms of learners having, at any moment, an accessible example space consisting of the examples that come readily to mind when a technical term is used, together with tools for tinkering with those examples to create others (Watson & Mason, 2005). As the accessible example space becomes richer in terms of its population, its interconnections, and tools for tinkering with examples, progress is being made.
How then might a teacher probe for or seek evidence of progression? In terms of example spaces, dimensions of possible variation and range of permissible change, the most powerful probes I know of are construction tasks (see Watson & Mason, 2005). For example:

Write down two numbers whose difference is 2; and another pair; and another pair.

This may seem too simple for secondary students, but it soon reveals, and opens up for consideration by those with a previously limited example space, the possibility of using negatives, fractions, and both finite and infinite decimals, including otherwise-named irrationals like √2 and (. It is common experience that by the second ‘and another’ many learners are beginning to stretch their thinking to make it more interesting, and those who don’t naturally at first soon become attracted to the possibility when they hear what others have done.  Variants include writing down a pair whose difference is two but which makes as obscure as possible the fact that the difference is two; writing down a pair that no-one else will think of (which prompts thinking about what is likely to be common and what unusual); a pair that is peculiar in some way, and so on.
Taking the probe into the secondary curriculum, you can also alter the constraints to probe different dimensions of possible change:

Write down (you could ask for a sketch instead) the equations of two straight lines whose slopes differ by 2;

Write down the equations of two straight lines whose x-intercepts differ by 2;

Write down the equations of two straight lines whose y-intercepts differ by 2;

Now write down the equations of two straight lines meeting all three conditions.

If you have thought about the general class of pairs of straight lines so that you are aware of the whole example space rather than being satisfied with a specific pair (usually the first that come to mind) then you are well prepared for the final task. Thus familiarity with another and another can accustom learners to choose from amongst a range of possible examples form their example space, or even to try to express the most general example they can, which informs subsequent example construction when further constraints are added. So as well as revealing some aspects of learner awareness, you can use construction tasks to prompt the enrichment of learners’ accessible example spaces.  Progression then appears as enrichment over time.
Participants at the Stirling Conference found the following task struck home in their own experience:

Write down a function for which the integrals over two different intervals differ by 2; and another; and another.

They found themselves naturally specialising to simple functions and then trying to see what could be complexified or varied in order to make more general examples. This provides a taste of how construction tasks prompt the use of natural powers such as specialising & generalising and conjecturing & convincing (see Mason, Burton & Stacey 1982/2010). Over time, progression would mean that learners increasingly spontaneously use those powers for themselves, which requires of course that teacher and text do less and less of the specialising and generalising for learners!
It is quite common for learners to become stuck when faced with a non-routine or unfamiliar problem. Often it is because they have not been exposed to strategies for acknowledging being stuck and locating some way to get themselves going again. My son’s advice when he was about 8 was “get out and push” which of course is exactly what one has to do … but you need to have been exposed to ways of ‘pushing’ once you have “gotten out”, that is, once you have withdrawn from being stuck (Mason, Burton & Stacey, op cit.). One way to prompt learners to use their own powers, and to develop their progression in ways of working on mathematics both collectively and individually, is to engage publicly in the use of those powers. For example, faced with the challenge to count the triangles in the following diagram,
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it is perfectly natural, indeed sensible, to specialise to a simpler situation, to learn from that experience, and then to re-generalise for yourself.  If learners have not been engaging in this way in the past, if they have not seen someone publicly do this, they are unlikely to cope with tasks that are less routine and more exploratory.
Becoming flexible concerning the discrete and the continuous in mathematics is just one of several significant shifts in both what is attended to, and in how it is attended to that lie at the heart of significant mathematical experience at secondary level. Another is flexibility in the choice of unit, especially in the context of fractions.  I find tasks such as this one adapted from Pat Thompson (2002) really effective:
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Raise your hand when you can see something that is one fifth of something else; something that is two-thirds of something else; something that is three-halves of something else; etc. 

It is effective in prompting shifts in attention as different things are chosen as ‘units’. It also reinforces the view that fractions are best seen as operations on objects; that fractions become numbers only when they are applied to a unit such as on a number-line, from which they become associated with rational numbers and equivalence. I am confident that seeing fractions only as operators would make multiplication (composition of the actions) and addition (combination of the actions) much easier to comprehend, as actions. The shift to fraction as number could then be made painlessly. It is worth noting that fraction addition really should be called series-addition, because there is an equally useful parallel-addition (see ‘Crossed Ladders, Couriers and Cistern Filling’, also in this issue of the Scottish Mathematical Council Journal).
There are many ways to chart progress in developing a disposition  to think mathematically rather than a habit of waiting to be told what to do, including proposing for consideration questions arising from outside the classroom.  Two arising for me are illustrated here:

[image: image3.jpg]



[image: image4.jpg]



How does the price of sweaters compare with offers of the form ‘three for the price of two’  (once I realised that it was not saying 125% off!)? What track-shifts are being made possible by the configuration of railway tracks?
So my overarching description of progression is in terms of

Use of natural powers in making connections and forming images contributing to meaning and so enabling re-construction of techniques and procedures when needed (cognition);

Use of natural powers leading to moments of personal pleasure and so contributing to a disposition to think mathematically (cognition & affect);

Exposure to and growing recognition and use of mathematical themes such as invariance in the midst of change, freedom & constraint and doing & undoing in order to support connection making (cognition & behaviour);

Developing an ethos conducive to mathematical thinking including conjecturing, justifying, use of powers etc. (behaviour, affect& cognition);

Exposure to vocabulary for talking about mathematical thinking such as powers, themes, dimensions of possible variation, range of permissible change, example spaces etc. (cognition, behaviour & affect);

among other dimensions, structured by the image of the human psyche as being like a chariot. 
Most particularly, construction tasks, whether of examples of mathematical objects subject to constraints or whether of exercises like the ones in texts but developed to explore different dimensions of variation and ranges of change within those, are amazingly revealing about learners’ thinking as well as enriching for learners development. Indeed, all mathematical problems and exercises can be seen as construction tasks (you are asked to construct an object meeting certain constraints), but the construction perspective alongside dimensions of variation and range of change opens up the creative aspects of mathematics. Learners who have generalised problem-types for themselves are much more likely to be aware (have an action enabled) when they meet an examination question, than learners who have not, so progression in performance behaviour is a companion of progression in awareness, and emotion.  In the session I used a few tasks to offer at least a taste of this way of thinking about progression.
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