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We need to find creative uses of available
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Especially, when things go wrong!
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Robustness



Datasets: European gas pipeline network
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Datasets: Gas trade movements by pipeline




Betweenness centrality
Consider a substrate network G'g = (Vg, Eg) with node-set Vg and link-set Fg.
The betweenness centrality of link e;; € Eg is defined as the relative number of
shortest paths between all pairs of nodes which pass through e;;,
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where o ; is the number of shortest paths from node s to node ¢ and o, (e;;)
is the number of these paths passing through link e;;.




The max-flow problem

The maximum flow problem can be stated as follows: In a network with link
capacities, we wish to send as much flow as possible between two particular
nodes, a source and a sink, without exceeding the capacity of any link.

Formally, an s-t flow network Gp = (Vp, Ep,s,t,c¢) is a digraph with node-set
Vi, link-set IYp, two distinguished nodes, a source s and a sink t, and a capacity
function ¢: Fp — R{]". A feasible flow is a function f : F'p — RS‘ satisfying the
following two conditions:

o 0 < f(e;;) <cleij), Veij € Er (capacity constraints);

) Zj:ejieEF [(eji) = Zj:e@-jeEp f(eij), Vi € V\{s,t} (How conservation
constraints); ]

|

1< Min cut

The maximum s-t flow is defined as the maximum flow into the sink, f(Gp) =
max() ;.. cp, f(€it)) subject to the conditions that the flow is feasible.



Generalized betweenness centrality

Create a flow network by partitioning the substrate network, Gg = (Vg, Eg),
into a set of disjoint subgraphs Vp = {(Vs,,Fs,), -+ ,(Vs,,, Ear)}. The flow
network Gp = (Vp, Er) is then defined as the directed network of flows among
the subgraphs in Vg, where the links g are weighted by the value of aggregate
flow among the Vp.

The betweenness centrality of link e;; € Fg is defined as

Us,t(eij) _
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The generalized betweenness centrality (generalized betweenness) of link e;; €
Is is defined as follows. Let Tk 1 be the flow from source subgraph K =
(Vik, Fr) € Vp to sink subgraph L = (Vy,, Ey) € Vp. Take each link ey, € Ep
and compute the betweenness centrality from Eq. (1) of e;; € Eg restricted
to source nodes s € Vi and sink nodes t € V. The contribution of that flow
network link is then weighted by 1% ; and normalized by the number of links
in a complete bipartite graph between nodes in Vi and V7,
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Generalized max-flow betweenness vitality

Question: How does the maximum flow between all sources and sinks change,
if we remove a link e;; from the network?

In the absence of a detailed flow model, we calculated the flow that is lost
when a link e;; becomes non-operational assuming that the network is working
at maximum capacity. In agreement with Eq. (2), we define the generalized
max-flow betweenness vitality (generalized vitality):
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where the amount of flow which must go through link e;; when the network is

operating at maximum capacity is given by the vitality of the link: AS’;F (eij) =
[st(GF) — fst(Gp\eij), and f(Gp) is the maximum s-¢ flow in Gp.




Generalized betweenness applied to gas networks
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Generalized vitality applied to gas networks
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erahzed max-flow betweenness vitality, where the sets K and L are countries
and the values of T ; are taken from the data in the flow network.




Robust infrastructure network: error tolerant to
failures of high load links

High Traffic Backbone + Error Tolerance = Robustness
(.e. Good Engineering)
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Rui Carvalho, Lubos Buzna, Flavio Bono, Eugenio

Gutiérrez, Wolfram Just, and David Arrowsmith,
Phys. Rev. E 80, 016106 (2009)




Fair Flows

The Max-Min Fairness Algorithm



From cake —cutting to fair allocation
of network resources

« Mathematicians have been occupied with fairness in
cake-cutting since the 1940s (Steinhaus, Knaster and
Banach);

« But what about the similar network problem: how to
allocate network capacity among users in a fair way?

« Challenge: how to gain analytical insights into the fair
allocation of network capacity on very large networks?

S ;g




The Max-Min Fairness Algorithm



The max-min fairness problem as the
lexicographic maximin problem

» The relationship between links and paths can be described by
the link-path incidence matrix B. Set B = 4, (e;) = 1 if the
link e belongs to the path p;, and set B = 6, (i) = 0
otherwise.

» The problem:

/exr;nax {(fpy, fopr - -, fon )
subject to  fp,, < fp, < ... <1,
Bf <c

fPf 2 0'



Max-Min Fair Flows

« Consider a set of s-t pairs, each connected by a set of
paths;
« Each edge of a path transports the same path flow;

a) & 3 b) :f.
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Max-Min Fairness

« Typically, connections are specified by a fixed set of
paths, and one wants to allocate path flows to each of

these paths.

* A set of path flows is max-min fair if no path flow can
be increased without simultaneously decreasing another
path flow that is already less or equal to the former.

Elp(“ial’v’) €r: fp(i,k) > fp(i,k') — Elp(jal) €r: fp(j,z) < fp(j,l)/\ fp(j,l) < fp('isk‘)

to increase a path flow

you need to decrease
another path flow

* D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1987
* J. Kleinberg, Y. Rabani and E. Tardos, Journal of Computer and Systems Sciences 63, 2 (2001)
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that is already smaller
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Max-min Fairness Algorithm: First Step

PU): set of paths on the network at iteration j of MMF,
P(f)(e): subset of paths in PU) that contain edge e;

Assign P(Y) = P and ¢V (e) = c(e) for all e € E, and a path

flow fé(?,l) = 0 to each path p(; «) € p).
In the first step of the MMF algorithm, for each edge e with
non-zero capacity that belongs to at least one path, define the
edge capacity divided equally among all paths that cross the

edge at iteration j of the MMF algorithm as

) (e) = cV(e)/ [PV (e)|. .

We then find the minimum of ¢U)(e), given by

2

0%



Max-min Fairness Algorithm: First Step

PU): set of paths on the network at iteration j of MMF,
PU)(e): subset of paths in PU) that contain edge e;

Assign P(Y) = P and ¢V (e) = c(e) for all e € E, and a path
flow fp((?')k) = 0 to each path p(; 4 € p).
In the first step of the MMF algorithm, for each ¢
non-zero capacity that belongs to at least one pa

edge capacity divided equally among all paths thea
edge at iteration j of the MMF algorithm as

¢9)(e) />

We then find the minimum of 4)(1) ), given by

<A,c(j) min oV (e).




Max-min Fairness Algorithm: Second Step
» Increase all path flows of paths in pU) by AfU), such that

{ D L AFU) i ppiy € PY)
) | _

fp(Elik)) I'Fp(ik < P\P(J)

The effect is to saturate the set of bottleneck edges

={eg € E: Z 1 Opiis (eB)Af() cU)(eg)}, and

consequently also to saturate the set of paths that contain at
least one bottleneck edge.

» Create a residual network

C(j+1)(e) — C(j)(e)_ 2 S, ( )A,c(j)_

P(i k) epPU)

Note that c(j+1)(e3) = 0 for all eg € Epg, that is all edges in
Eg will be saturated after this step.
» Paths that contain at least one edge eg € Ep are saturated

paths, i1.e. their path flow will not be increased in subsequent
iterations of MMF.



Max-min Fairness Algorithm: Second Step (cont.)

» Remove the set of saturated paths from P, that is

pU+l) = pU\ U 5 PY)(eg).

EBEEB
We say that PUtY) is the set of augmenting paths because

the path flows of paths in PUTL) can still be increased in
subsequent iterations of the algorithm.

» If PUTL) is not empty, increase the iteration, j — j + 1, and
go back to the first step, otherwise stop and store the value of
Jj as J*.

» The max-min fair (MMF) flow on edge e is then the sum of

path flows over all paths that cross the edge after the
algorithm terminates:



Max-Min Fairness in Nearest
Neighbour Networks
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Assumptions

« Consider a set of s-t pairs, each connected by a set of
paths;
« Each edge of a path transports the same path flow;

Furthermore, we consider transport:

— over shortest paths (path counting)

— on networks with uniform edge capacity (path
counting)

— on regular grids (analytical results)
— on 1 s-t pair (analytical results);



(3]

Max-Min Fairness: Assumptions

« Consider a set of s-t pairs, each connected by a set of
paths;
« Each edge of a path transports the same path flow;

Furthermore, we consider transport:

The MMEF flew allocation
cepends exclusively en the number
of paths passing through each ecdge
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K-nearest neighbour networks

Two ways of measuring

distance:

« difference d between the
indexes of s and t

« Shortest path distance L
between s and t

FIG. 2. (Colour online). Two layouts of 6-nearest neighbour
networks. Nodes are numbered by an index from west to east,
and the distance d that separates two nodes is the difference
between their indexes. A source s and a sink ¢ pair are placed
(a) d = 7 and (b) d = 9 nodes apart, respectively. The

shortest paths between s and ¢ are identified by numeric labels

[d _ ( (d _ 1 ) (mOd l’—‘ /2) )] on the edges. The shortest path length between the two nodes

is L = 3 in both panels. There are six s-¢ shortest paths in (a),

dmin (K, L)

but only one in (b). Edges have unit capacity, edge thickness

(L —_ 1) %k K/2 —'— 1’ is proportional to the MMF flow allocation, and saturated

edges (or bottlenecks) are drawn in black. Nodes are coloured
according to their shortest path length from the source.



Number of shortest paths from sto t -

@ @
* A shortest path is an

arrangement of the K/2 rows QO @ @
into L-1 ‘stars’ and K/2-1 'bars’;

k
e Each * marks a row and each | ‘
1 k=K/2-1
mark; a change of consecutive ® ® ®
rows in the path, e.g. *[*||*;

@ @ O
(a) =0 =1 1=2 I=L-1  I=L
o © @ 90 ¢ ¢ * So the number of shortest
o 2 ), ® o paths between s and t is given
(b) - by the number of ways to
) Q O O distribute L-1 identical balls (*)
\ the into K/2 distinct bags
Q @ @ (rows), where each row can get
kl_. any number of balls:
d:wm S ® N(K/Q,L):((K/z))=<K/2+L2)
L-1 L-1
C5](/‘2 . . ©

1=1 1=2 1=L-1 1=L



Number of s-t shortest paths
as a function of s-t distance
on K-nearest neighbour graphs

(K =4,d) g1, vije) = L 1,02,1,3,1,4,1,5,1 ...
M~ e N N
L=1 2 3 4 5

ivizg =1,1,1,08,2,1,6,3,1, 10 ,4,1,15,5,1,...
N—— ™ ) N—— \ o N

.....

L=1 2 3 4 5
{(n(K =8,d)Yac1. vz = 1. 1. 1,1,14,3,2,1,10,6,3,1,20, 10 ,4,1,35, 15,5, 1,...
\q/—/ \ /= ~ s\, P AR ~ -4
L=1 2 3 4 5
{n(K =10,d)}ac1. (jvie = L1, L1 1,15,4,3,2,1, 15, 10,6,3, 1,35,20,10,4,1,70,35, 15,5, 1,. ..
L—1 5 PY 4 5

Determining the sink inflow on a K-nearest neighbour network as the s-t
distance d is varied is reduced to the problem of calculating sink inflows for
d™™(K,L).




Path Counting Methods

K/2 K/2+L-2
N(K/2,L) = ((L—/l)) = ( /le ).
Using the asymptotic expansion of the binomial coefficient for
L large,

N(K, L) =

(L—1)K/2-1 (K/2 -1)K/2
(K72 = 1), ( 2(L—1) *O(L))

Problem: for L large, N(K, L) —the input to the algorithm—
grows polynomially with L (for fixed K) and exponentially
with K (for fixed L).

Solution: device a simplified MMF algorithm for K-nearest
neighbour graphs that depends only on path counting
methods.
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Path Counting Methods

n(s, v, t) = N(k, )N(K/2—k+1,L—1)

() () Tl

o

where 1< k < K/2and 1< < L—1.
Q ©
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n—1

= N(kl, /1) 1—[ N(kH—l —ki+1, 11— l,)N(K/2 —k,+1,L— In)
=1

Ki+1 — ki +1 K/2—k,+1
l1—1 l ivi—1—1 L—1,—1 '
where1<k1§ < k, < K/2,

1<h<b<--- <[l <L-1.

NK/2—k+1,L—1) = ((’”ﬁ:g“)) .

7

wn) =
ko —k
> n(€sy 1y vy at) = Nk — ki +1,L—2) = (( 2L_13+1)) .

1=L-1

=L



Relation between path counting and path™
flows

. j_l
PO (e )| = nlegr) = X e o ey ) ®
g=1
- ”(esf“%_n) . ’ @ i
=NK/2—(i+j)+2,L-1), f
@&—®)
Assuming that the bottlenecks are edges of k=i (kyl,) ®
the source or sink: " +M+1)O 0<A<K/2-i+1-k,

AFY) = ming!) (e) = ' (e, ,+) numtt>er0tfd
o) e o o o)

= e, )/ | P (e,

,w,-*)

/ . Z:q’_:10 ‘P(q)(es,wf) Af(a) OZK/2-J'+1
found B ‘p(i) (es aﬁ) C2=1</2
recursively _ o 1=0 1=1 1= I=1+1 I=L-1 =L
B c — ’q_lo n(eslw@ql))Af(Q) 2
n(es,w(*zf_l) )

_ c— Y oN(K/2—(i+q)+2 L—1)Afd
B N(K/2—2(i—1),L—1)




The path flow increment at the last iteration

AFD | {f‘: =1
SO L =
l_ l I A — A — =
J=1 Af [ :: - ¥ —i=4
0.6F r4 i=5
= | i=6
- A
0.4: A’
B r - 1 tells us that that path
0.2} f flows are dominated by Af at
1 the last iteration
O- 1 1 I 1 )
0 20 40 60 80 100
L

FIG. 8. (Colour online). Plot of the ratio 7' between the
path flow increment at iteration ¢ and the path flow of paths
that are saturated at iteration 7, as a function of L for K = 24
as the iterations 7 increase. The path flow is dominated by
the path flow increment at the last iteration when r ~ 1.

(8]



From path counting to path flows and back

Path counting methods are still ® > -
valid when : | .
— we have bottlenecks at s and t for all AT [.) © O
rows above the current; .
P i 1)0 0<A<K/2-i+1k,
— We have a ‘chain’ of bottlenecks on 2
one row (and at the symmetric row),
followed by bottlenecks at s and t. Q:mz_m ® O ®
Our methods stop working when )
R/
there is a gap in the row of two o

consecutive bottlenecks; k=K/2
1 1=, =1 +1 =L-1 =L
So what can we conclude from ’ ’

this?



Sink Inflow 1
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FIG. 9. (Colour online). Plot of the sink inflow as a function of (a) the s-t distance d and (b) the s-t shortest path length L
for even K and 4 < K < 14. The solid curves in (b) are computed assuming that all bottlenecks are edges of the source s or
the sink ¢.
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crossing edges as d is varied
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The pattern of intersections
among these paths constraints
the solution of the MMF flow,
because the paths share the
capacity of the edges they
Cross

FIG. 10. (Colour online). Complementary cumulative distri-
bution of the number of s-t shortest paths passing through
each edge for L = 5, as d is varied. We considered only
edges that are crossed by at least one path. The diversity of
the number of paths crossing each edge is illustrated by the
different distributions. When d = d™"(K, L), the distribu-
tion is broad and some edges are crossed by a large number
of paths. The pattern of intersections among these paths
constrains the solution of the MMF flow, because the paths
share the capacity of the edges they cross. However, when
d=d™"(K,L)+ K/2—1, there is only one s-t shortest path.
In this case, the MMF algorithm allocates the edge capacity
to the path flow, because that path does not interact with
any other.




Parameter Space Diagram ©_naical resuts
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FIG. 11. We partition the parameter space (K, L) in areas
A2y, such that after the first i iterations the MMF algorithm
finds 27 bottlenecks that are edges of the source s or sink ¢ for
all cells inside an A9,y area. We use alternating red and blue
coloured cells to distinguish neighbouring A,y areas. The
parameter space is partitioned into four regions.
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How do we generalise the path counting
from the solid border to the dashed border?

« Instead of knowing the position of bottlenecks, we
search for them;

* Once we find their location, we use path counting
results as before;

« This works as long as there are no gaps in the row of
bottlenecks.

TWO CASES: i}

i) all bottlenecks are edges of s or t until iteration (-1,
but bottleneck at iteration i is not an edge of s or ¢ i
« We show theoretically that N
oV (e) = cW(e)/ ‘pU)(e)‘ ol

is minimum on a horizontal edge. This simplifies the
search. i

« i) Case i) was valid up to iteration j<i.
— Search over horizontal edges still valid, as long as there are no
gaps in the rows of consecutive bottlenecks.

— We get a chain of horizontal bottlenecks followed by a
bottleneck at s or t.
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Can power-law flows be fair?

Region defined by the
solid line in the
parameter diagram:
histogram of path flows
well described by power
law with slope -1;
Region defined by the
dashed line: slight
deviation from power
law caused by ‘chains’ of
bottlenecks.

(a)

(b)
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Why do we get power-laws?
Two factors .

* a) the path flows are dominated by
the path flow increments at the last g |
iteration (when the paths are
saturated): |

FO) ~ AFE) = 1/N(K/2 — 2(i* — 1), L). § e AN

* b) when L is large, the number of s-t
shortest paths that are saturated at 2
iteration ( is of the order of magnitude
of the number of s-t shortest paths in
the residual network:

n'") ~ N(K/2—2(i" — 1), L).




Conclusions

Max-min fairness requires a big sacrifice in
network throughput (at least 50% in nearest-
neighbour networks);

Unexpected result: power law allocations can be fair!

The location of bottlenecks is trivial for L small, but the
pattern seem more and more elaborate as L increases
for K large —how elaborate can it get as L is increased?

We are currently finishing a paper on proportionally
fair allocations on the European gas pipeline
network, and I will be showing the results within the
next few months.

Rui Carvalho, Lubos Buzna, Wolfram Just,
Dirk Helbing, David Arrowsmith,

Phys. Rev. E 85, 046101 (2012)
 —————————




