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We need to find creative uses of available 
infrastructure networks 

 



Especially, when things go wrong! 

 



Robustness 



Datasets: European gas pipeline network 

Transmission network 

(d>= 15, + interconnections) 

2207 nodes, 2696 links 

Complete network 

24010 nodes, 25554 links 

www.platts.com 



Datasets: Gas trade movements by pipeline 

(2007) 

Data collected from: www.bp.com 

www.iea.org 



Betweenness centrality 



The max-flow problem 



Generalized betweenness centrality 



Generalized max-flow betweenness vitality 



Generalized betweenness applied to gas networks 



Generalized vitality applied to gas networks 



Robust infrastructure network: error tolerant to 
failures of high load links 

High Traffic Backbone + Error Tolerance = Robustness  

(i.e. Good Engineering) 

Rui Carvalho, Lubos Buzna, Flavio Bono, Eugenio 

Gutiérrez, Wolfram Just, and David Arrowsmith,  

Phys. Rev. E 80, 016106 (2009) 



Fair Flows 
The Max-Min Fairness Algorithm 



From cake –cutting to fair allocation 

of network resources 

• Mathematicians have been occupied with fairness in 

cake-cutting since the 1940s (Steinhaus, Knaster and 

Banach); 

• But what about the similar network problem: how to 

allocate network capacity among users in a fair way? 

• Challenge: how to gain analytical insights into the fair 

allocation of network capacity on very large networks? 

 



The Max-Min Fairness Algorithm 



The max-min fairness problem as the 
lexicographic maximin problem 



Max-Min Fair Flows 
• Consider a set of s-t pairs, each connected by a set of 

paths; 

• Each edge of a path transports the same path flow; 



• Typically, connections are specified by a fixed set of 

paths, and one wants to allocate path flows to each of 

these paths. 

 

• A set of path flows is max-min fair if no path flow can 

be increased without simultaneously decreasing another 

path flow that is already less or equal to the former. 

 

 

 

 

Max-Min Fairness 

• D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1987 

• J. Kleinberg, Y. Rabani and E. Tardos, Journal of Computer and Systems Sciences 63, 2 (2001)  

[1] 

to increase a path flow you need to decrease  

another path flow 

that is already smaller 



Max-min Fairness Algorithm: First Step 
[2] 



Max-min Fairness Algorithm: First Step 

The crucial 

elements of 

the algorithm 



Max-min Fairness Algorithm: Second Step 



Max-min Fairness Algorithm: Second Step (cont.) 



Max-Min Fairness in Nearest 
Neighbour Networks 



Assumptions 

 

Furthermore, we consider transport: 
– over shortest paths (path counting) 

– on networks with uniform edge capacity (path 

counting) 

– on regular grids (analytical results) 

– on 1 s-t pair (analytical results); 

 

• Consider a set of s-t pairs, each connected by a set of 

paths; 

• Each edge of a path transports the same path flow; 

 

[3] 



Max-Min Fairness: Assumptions 

 

Furthermore, we consider transport: 
– over shortest paths (path counting) 

– on networks with uniform edge capacity (path 

counting) 

– on regular grids (analytical results) 

– on 1 s-t pair (analytical results); 

 

• Consider a set of s-t pairs, each connected by a set of 

paths; 

• Each edge of a path transports the same path flow; 

 

[3] 



K-nearest neighbour networks 
[4] 

Two ways of measuring 

distance: 

• difference d between the 

indexes of s and t 

• Shortest path distance L 

between s and t 



Number of shortest paths from s to t 

• A shortest path is an 

arrangement of the K/2 rows 

into L-1 ‘stars’ and K/2-1 ‘bars’; 

• Each * marks a row and each | 

marks a change of consecutive 

rows in the path, e.g. *|*||*; 

 

 
• So the number of shortest 

paths between s and t is given 

by the number of ways to 

distribute L-1 identical balls (*) 

the  into K/2 distinct bags 

(rows), where each row can get 

any number of balls: 

 

 

[5] 



Number of s-t shortest paths 
as a function of s-t distance 
on K-nearest neighbour graphs 

Determining the sink inflow on a K-nearest neighbour network as the s-t 

distance d is varied is reduced to the problem of calculating sink inflows for 

𝑑𝑚𝑖𝑛(K,L). 



Path Counting Methods 



Path Counting Methods 



Relation between path counting and path 

flows 
[7] 

found 

recursively 

number of 

unsaturated 

paths 



The path flow increment at the last iteration 
[8] 

𝑟(𝑖) =
∆𝑓(𝑖)

 ∆𝑓(𝑖)𝑖
𝑗=1

 

𝑟(𝑖) → 1 tells us that that path 

flows are dominated by ∆𝑓 at 

the last iteration 



From path counting to path flows and back 

• Path counting methods are still 
valid when : 
– we have bottlenecks at s and t for all 

rows above the current; 

– We have a ‘chain’ of bottlenecks on 
one row (and at the symmetric row), 
followed by bottlenecks at s and t.  

• Our methods stop working when 
there is a gap in the row of two 
consecutive bottlenecks; 

• So what can we conclude from 
this? 

 



Sink Inflow [11] 

Fairness implies at least 50% 

loss of sink inflow compared to 

max-flow 



Diversity of the number of paths 
crossing edges as d is varied 

L=5 

[6] 

The pattern of intersections 

among these paths constraints 

the solution of the MMF flow, 

because the paths share the 

capacity of the edges they 

cross 



Parameter Space Diagram analytical results 

semi-analytical procedure 

well understood up to ‘gap’ layer  

well understood up to ‘gap’ layer  

[12] 



How do we generalise the path counting 

from the solid border to the dashed border? 
• Instead of knowing the position of bottlenecks, we 

search for them; 

• Once we find their location, we use path counting 
results as before; 

• This works as long as there are no gaps in the row of 
bottlenecks. 

 

TWO CASES: 

• i) all bottlenecks are edges of s or t until iteration i-1, 
but bottleneck at iteration i is not an edge of s or t; 

• We show theoretically that 

 

 

       is minimum on a horizontal edge. This simplifies the 

       search.  

• ii) Case i) was valid up to iteration j<i.  
– Search over horizontal edges still valid, as long as there are no 

gaps in the rows of consecutive bottlenecks.  

– We get a chain of horizontal bottlenecks followed by a 
bottleneck at s or t. 

 
  



Can power-law flows be fair? 
• Region defined by the 

solid line in the 

parameter diagram: 

histogram of  path flows 

well described by power 

law with slope -1; 

• Region defined by the 

dashed line: slight 

deviation from power 

law caused by ‘chains’ of 

bottlenecks. 

[13] 



Why do we get power-laws? 

Two factors 

• a) the path flows are dominated by 

the path flow increments at the last 

iteration (when the paths are 

saturated): 

 

• b) when L is large, the number of s-t 

shortest paths that are saturated at 

iteration i is of the order of magnitude 

of the number of s-t shortest paths  in 

the residual network: 

 

 

 

 

 

 



Conclusions 
• Max-min fairness requires a big sacrifice in 

network throughput (at least 50% in nearest-

neighbour networks); 

• Unexpected result: power law allocations can be fair! 

• The location of bottlenecks is trivial for L small, but the 

pattern seem more and more elaborate as L increases 

for K large –how elaborate can it get as L is increased? 

• We are currently finishing a paper on proportionally 

fair allocations on the European gas pipeline 

network, and I will be showing the results within the 

next few months. 
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