Electricity demand forecasting and the problem of embedded generation

John Young 6th March 2013

Operating the system

Electricity National Control Centre

Frequency

50.5

50.0

49.5

Operating the system

- 50.0 Normal operating frequency
- Upper statutory limit 50.5
- 52.0 **Generators tripping**
- 49.5 Lower statutory limit
- **Demand disconnection starts** 48.8
- 47.0 Demand disconnection complete

Demand profile shapes

- Shape of demand curves in terms of turning points and points of inflections - remains fairly constant from day to day
- Exact position of turning points, both in vertical (Demand) and horizontal (Time) directions varies, at least partially because of weather and non-weather variables
- Shape evolves slowly over time, with some abrupt discontinuities

GB National Demand A Typical Daily Profile: January

GB National Demand A Typical Daily Profile: January

GB National Demand A Typical Daily Profile: February

GB National Demand A Typical Daily Profile: March

GB National Demand A Typical Daily Profile: April

GB National Demand A Typical Daily Profile: May

GB National Demand A Typical Daily Profile: June

GB National Demand A Typical Daily Profile: June

Forecasting electricity demand

Typical demand profile shape

2 distinct shapes: GMT and BST

What Else Affects Demand?

- Time of Day
- Bank Holidays
- School Holidays
- Day of Week

Day of week impact

What Else Affects Demand?

- Time of Day
- Day of Week
- Bank Holidays
- School Holidays

Weather

Special Events

Temperature

Demand Effect (MW)

Temperature

Illumination

Radiation

The Impact of Weather Cooling Power of the Wind

Wind Speed

19

The Impact of Weather Rain

The Impact of Weather Some Numbers

Temperature (1° C fall in cold conditions)

Cloud cover (clear sky to thick cloud)

Precipitation (no rain to heavy rain)

Temperature (1° C rise in hot conditions)

Cooling power (10 mph rise in cold conditions)

+ 1,000 MW

Weather Variables

- 4-Hourly Average Temperature [TO]
- Effective temperature [TE]
- Wind Speed [WS]
- Cooling Power of the Wind [CP] a function of Wind Speed and Temperature (TO)
- Effective illumination of the Sky [EI] A derived quantity calculated from radiation levels and measurements of cloud type and cover

Non-weather variables

Day of week

- Year Effect indicator variable for different years: mostly owing to different economic conditions
- **Time of year** seasonality
- Time of Sunrise and Sunset
- **School Holidays** % of schools on holiday
- Annual Holidays indicator variable from common August holiday weeks
- Bank Holidays excluded from data set for purposes of modelling, then deal with on an ad hoc basis

GB National Demand Cardinal Points

Standard Linear Regression Conventional Models

Model Inputs:

- Historic Demands
- Historic Weather Heathrow, Glasgow, Manchester, Bristol, Leeds, Bimingham
- Additional Effects School Holidays, Day of Week, Time of Year

Modelling

- Construct different models for each of the Cardinal Points (CPs)
- Construct different models for GMT and BST
- Construct models of two different types for each CP:
 - Standard linear regression models (Conventional Models)
 - Time series models with linear regression (Trend models)
- Depending on the CP we construct 7 day models, 5 day models, Saturday models and Sunday models
- On any day of the week there are at least two (and up to four) models that we forecast with

2B Demand (12:30)

2B Model On Day Of Week Effect Actual Demand Vs Fitted Values

Including A Seasonal Effect Actual Demand Vs Fitted Values

Including A Weather Effect Actual Demand Vs Fitted Values

Including A School Holiday Effect Actual Demand Vs Fitted Values

Time Series with Linear Regression Trend Models

nationalgrid

Including A School Holiday Effect Actual Demand Vs Fitted Values

Including A Trend Component Actual Demand Vs Fitted Values

The Model Symbolically

Modelling CP Demand

- Construct forecast models using variables that make sense
- Use best model possible with variables that reduce the residual error significantly

Track 'Basic Demand', non-model component of demand

Weather Component

Day of Week Component

Basic Demand

Basic Demand

Manually track and forecast basic element of demand

Profile Matching

Check how well CP forecasts match historic days

Choosing Basics

- Forecast basic demand
- Aim is to reduce risk of error

2B model: Jan-Feb 2013

Embedded PV Generation

Embedded PV Generation

Embedded Generation

- 'Invisible', non-metered
- Connected directly into distribution networks
- Effectively reduces demand on the system
- Not just PV...

The Impact of Embedded Generation

- True GB Demand is higher than National Grid observe
- Not a new phenomenon, but an increase in more variable technologies means it is a more significant effect
 - Wind Power ~ 2,000 MW
 - Solar Power ~ 1,500 MW

Virtual Demand: A True National Demand

Model Using Virtual Demand

Forecast Virtual Demand; Adjust for Embedded Generation

Embedded Generation

The Forecasting Process

Model using Virtual Demand

Forecast Virtual Demand; Adjust for Embedded Generation

Forecasting Embedded Wind Generation nationalgrid Existing Forecasting Methods

Standard Wind Power Curve Wind Farm

- Decile wind speed forecast applied to a load curve
- Load curves for each wind generator, optimised using actual metering

Forecast Wind Speed / mph

national**grid** Wind Power forecast probabilistic view for next 5 days from Mon 3rd Dec 2012

Wind cut out forecast

Metered wind generation forecast

- Use same process to forecast embedded wind
- Have information on location and capacity for all embedded wind generators above 2MW

Forecasting Embedded Generation Simulated National PV Output

53

Forecasting Embedded Generation Forecasting PV

- National average radiation forecast
 - Generic power curve
- National capacity

The challenges of PV

Embedded Wind

- Individual locations and capacities
- Wind speed forecasts for various locations
- Experience forecasting metered wind

Embedded PV

- Overall capacity for whole country
- National Average radiation
- No operational experience yet

Forecasting Embedded Generation Forecasting PV

The Problem with Embedded Generation

- ~ 3,500 MW installed capacity
- Variable output dependant on weather effects
- Changing capacity levels
- Reliant on estimates of output
- No means of directly testing forecast models
- Increases the volatility of National Demand

Including A Trend Component Actual Demand Vs Fitted Values

Model Residual / MW

Thanks for listening

Demand and Wind Forecasting

