
1

What is the Best Environment-Language for Teaching Robotics Using Lego
MindStorms?

Anthony Hirst1, Jeffrey Johnson2, Marian Petre3, Blaine A. Price3, Mike Richards3

Departments of Telematics1, Design and Innovation2, and Computing3
The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

robofesta@open.ac.uk

Abstract

We aim to produce a range of educational materials
to teach robotics to a variety of audiences using the
LEGO Mindstorms Robotics Invention System™.
We briefly review the programming environments
currently available and consider their appropriate-
ness for our candidate audiences. There is the usual
trade-off between ease of use and power. It is
suggested that no single programming environment
is suitable for all audiences. Instead, a progression
of environments from microworlds, through
graphical programming environments, to textual
languages seems to provide the best way to develop
our teaching. In this paper we synthesise our
thoughts, and present them for constructive
criticism by the robotics community.

1. Introduction

Robotics has been shown by a number of
researchers to be motivating and beneficial in
teaching science and technology (Beer et al.,
1999). We believe that robots are a powerful
way to motivate learning. The construction
and programming of robots uses a wide range
of scientific and engineering principles – key
skills in the modern technological economy
(Wasserman, 2002). This range of skills
necessitates teamwork, planning and record
keeping.

We have taught subjects related to robotics for
many years, and we are beginning to formulate
a new robotics curriculum. In collaboration
with the international RoboFesta1 and
RoboCup2 movements, we plan a large
programme to teach robotics in schools as well
as in our university. Previous experience with
Lego-based teaching materials has made us
well disposed toward the Lego MindStorms3
Robotics Invention System™ as a possible
hardware platform for robotics, engineering,
and computing courses at first, second, and
third levels. The inevitable question is:

What are the best environment and language
for teaching robotics using Lego MindStorms?

1 www.robofesta.net, www.robofesta-uk.org
2 www.robocup.org
3 http://mindstorms.lego.com

Given the depth and breadth of things that we
intend to teach using MindStorms, from simple
programming to engineering principles and
simulation; and given the range of audiences
we intend to serve, from young children to
mature university students, the language issue
is both complex and crucial. Because the
large-scale production of good quality teaching
materials is expensive, the issue has economic
as well as pedagogic ramifications.

In this paper, we are not concerned with the
division between environment and language,
and we give both the terms language and
environment a wide interpretation. For
example, we treat a drop-and-drag
environment for creating code as a ‘language’
in the same way a conventional textual
language within an editing environment.

This paper is a synthesis of our research and
analysis to date. We do not attempt to give a
definitive answer to the question at this stage,
and we invite readers to contribute to the
discourse.

2. What are we teaching to whom and
why?

There is currently a widespread appeal of
robotics to adults and children of both sexes.
This is evident in the success of television
programmes featuring robots, and the growing
number of robot competitions. We have broad
educational aspirations, and would like to
harness the interest and enthusiasm of all
groups in this audience for wider educational
purposes. The programming environment-
language choice must accommodate those we
are teaching, what we are trying to teach them,
and our deeper educational aims.

2.1 To whom are we trying to teach?

• young children, less than ten years
• school children, 10 – 18 years
• university students, 18+
• adults – life-long learning

2

• teachers, learning to support students

The breadth of this list complicates the choice
of environment and language. Although, we
assume that some students will commence our
courses as novices to robotics, the assumptions
we can make about existing skills, speed of
learning, and appropriate conceptual level will
differ among groups. The needs of newly
literate children are different from those of
highly literate university students, which are
different again from the needs of mature
students returning to education. This suggests
that there is no one perfect programming
environment. Our goal must be pragmatic: to
serve as many students as possible while
making the best use of our resources.

2.2 What are we trying to teach and why?

Our plan is twofold:

• to teach robotics per se;
• to use robotics as a springboard to further

to motivate learning.

Robotics itself is multi-disciplinary,
encompassing subjects such as mechanical
engineering, electronics, control,
communication, vision, real-time parallel
computing, and systems design. All these are
relevant in our teaching.

Robotics is also a vehicle for developing key
skills (e.g., teamwork, critical thinking,
planning, scientific observation and record
keeping); for reinforcing skills in elementary
physics, mathematics, and numeracy; and for
introducing advanced concepts in simulation,
Artificial Intelligence (AI), and cognition.

Furthermore, robots raise profound questions
about our relationship with advanced
technologies and their potential that allow us
to address ethical and social issues surrounding
technology use.

2.3 Using robots to bridge between concept
 and practice

Traditional methods of teaching computing
tend to be abstract, and students often have
difficulty reasoning about program behaviour
and recognising the relevance of their
activities. The trouble is that general-purpose
languages are complex, in order to afford
necessary richness to the programmer.
Unfortunately for the novice, this often means:
‘you need to know a lot to do a little’.

Many languages require the users to type in a
large amount of code to produce relatively
trivial results. Either students have to learn the
syntax before they can write any programs
(which is frustrating), or they have to enter
code that is effectively meaningless to them.
An alternative approach is to use a graphical
programming environment.

Programming with robots using a tailored
environment that provide strong visual cues
and supports syntactic correctness:

• is concrete: students program things they

can handle, to behave in ways they can
observe in the physical world

• is incremental
• is creative
• admits many solutions
• allows manipulation within a constrained

context
• provides immediate feedback
• has behaviour (and thus encourages

anthropomorphisation)
• uses a variety of skills
• allows complete novices to create

interesting outcomes (e.g., “go collect a
tennis ball” rather than “print ‘Hello,
world.’)

Our experience so far is that programming
with robots helps learners to bridge between
concept and practice – and to derive principles
for themselves from their own experience.

2.4 Robots are appealing

The appeal of robots is evident in the success
of television programmes featuring robots,
such as RobotWars and TechnoGames in the
UK, that attract large audiences across a wide
range of ages. For over 75 years robots have
been a staple of popular culture. Recent films
such Steven Spielberg’s A.I. have stimulated
popular debate about the potential of robotics,
and the debut of the Sony AIBO has attracted
substantial media attention. Competitions
involving robots are popular with participants
and audiences alike. Robots are attractive to
adults and children of both sexes.

2.5 How will students study what we teach?

• supported distance learning
• classroom lesson
• self-help group
• independent exploration

3

Multiple disciplines, multiple audiences,
multiple learning modes – all of these mean
that our choice of programming environment is
sufficiently complex that there is unlikely to be
a single solution. Instead, we might ask:
What is the best progression of environments
and languages for teaching Robotics using
Lego MindStorms?

3. The System Context

3.1 The RCX Brick

Programming the MindStorms processor brick
requires a standalone computer where code is
composed, edited and compiled. The compiled
code is downloaded to the brick where it
executes using a small operating system
implemented as the brick’s firmware (Fig. 1).

Figure 1. system concept

MindStorms is shipped with three integrated
software components:

• firmware that can be downloaded to the

micro-controller at the heart of the brick;
this firmware implements a virtual
machine that will run bytecode
downloaded from a host machine4;

• an ActiveX control (the Spirit OCX) that
can be used as component-ware on an
external host machine to write programs
that can be downloaded to run on the
brick, as well as sending direct commands
to the brick running the Lego firmware5.

• a graphical programming language-
environment (RCX code) that uses a
Lego block metaphor to construct
programs out of small functional units.

For the educational market, Lego produce a
more flexible environment (RoboLab) in

4 A disassembly of the firmware is available at
http://graphics.stanford.edu/~kekoa/rcx/.
5 Technical documentation released by Lego as SDK1
(http://www.legomindstorms.com/sdk/) describes the
functions provided by the Spirit OCX.

which a wider range of functional units can be
wired together rather than plugged together.
The programming environments runs on the
user’s computer. They allow users to compose,
edit, and compile code which they then
download to the brick to run on the firmware.
The firmware shipped with the brick imposes
limitations on the types of commands that may
be executed and on the number of variables,
but replacement firmware can be downloaded
to provide different functionality. Hence,
choosing a particular programming environ-
ment may require downloading new firmware.

3.2 Hardware and operating system choice

The OU specifies the so-called Wintel machine
for its students. For better or worse, this
policy is based primarily and pragmatically on
the fact that some ninety percent of our
students have this hardware-software platform,
and it is easier to support a single platform
from a generic helpdesk servicing hundreds of
thousands of students world-wide.

Given this hardware default, the operating
system is virtually a fait accompli. The
obvious contenders are variants of Windows
and Unix (Linux or Macintosh System X).
The OU’s commitment to being as open and
inclusive as possible contradicts a one-
platform approach. Therefore, a language
solution that is platform or OS ‘agnostic’, such
as Java, would receive special consideration.

4. Choosing a programming environment

Our experience in teaching computing
(Griffiths et al., 1999, Woodman et al., 1998),
and the current trends in software engineering
and AI, give us some general guidance in
terms of desirable characteristics for
programming environments/languages.
An object-based approach would support and
integrate with our existing curriculum and is
now considered the basis of sound software
engineering. Object Oriented programming
also makes it easy to represent and present
complex behaviours to novices (Griffiths et al.,
1999).

We emphasise the importance of providing
software suitable for novices. Any
programming environment for novices must be
robust – it should behave reliably and
consistently, and it must not crash. Errors (if
they appear at all), must be meaningful.

The human-computer interaction, end-user
programming, and visual programming

4

literatures give us some guidance about
relevant concepts in language selection, as
follows.

4.1 Separation of domain manipulation from
 programming per se.

Microworlds are an educational tool originally
developed by the MIT Logo Group that allow
students to explore and manipulate a domain in
a controlled way (Pappert, 1980). The user
can manipulate data or phenomena in the
microworld through GUI devices such as push
buttons and fill-out boxes and see the
subsequent changes reflected on the screen.

In effect, users are ‘programming’ the
microworld – albeit only to the extent of
combining operations and manipulating
program parameters – but the syntax and
structure of the language are hidden under the
interface. Hence the implementation is hidden,
and users can concentrate on the domain
concepts, independent of the implementation
language. Moreover, users can learn
fundamental programming concepts that
generalise across languages without having to
learn language syntax (cf. Soloway’s (1986)
environment designed to allow high school
students to program by combining conceptual
units or ‘plans’ rather than in a programming
language.)

The sorts of concepts that can be learned from
such an environment include:

• that algorithms can be used to solve

problems
• that solutions can be decomposed into

relatively small components
• that most tasks can be accomplished by

using sequence, iteration, choice
• object concepts

Figure 1: frogWorld. A microworld used to
teach Open University students about objects,
messages and inheritance

Microworlds have been used on the entry-level
Open University course Computing: An
Object-Oriented Approach to teach the
concepts behind object-oriented (OO)
technology. In an early example, the students
are able to send messages to an on-screen frog
- telling it to hop left, right and up and down,
setting its colour, and so on. In later lessons
they create subclasses of frogs with some
inherited properties and some novel properties
particular to the subclass.

4.2 Simulation: separation of control logic
 from physical control

Simulation is a method commonplace in the
field of autonomous mobile robots for working
out and testing control strategies in isolation
from the physical system.

Figure 2: Ideally, the same program can drive

Figure 2 illustrates the ideal in which the same
program drives both the simulator and the
robots. Although simulations are often
different from real systems, simulators allow
ideas to be tested, and they are good for
detecting bugs when the vagaries of real
machines in real environments are not present.
This is pertinent to MindStorms where the
performance of individual sensors and motors
may vary. The effects of physical variation
can be addressed when the logic of the
program and its implementation are correct.

Program

Simulator Robots

5

Although a various of RCX simulators are
available, we do not feel that they are stable
enough for student use at the current time.

4.3 Direct manipulation

An important characteristic of the microworlds
approach is the direct manipulation of screen
objects, without imposition of linguistic
devices or explicit syntax. Hutchins, Hollan,
and Norman (1986) attribute to direct
manipulation that novices can learn basic
functionality quickly, experts can work
extremely rapidly to achieve complex ends,
and users can see immediately if their actions
are furthering goals. Hence, direct
manipulation is seen as highly desirable,
characterised by the provision of rapid,
incremental, reversible operations whose
impact on the object of interest is immediately
evident (Shneiderman, 1982).

4.4 Layering, progressive disclosure

A generalisation of the microworlds approach
are the ‘direct manipulation programming
environments’ (e.g., The Alternative Reality
Kit: Smith, 1987; LabView,
http://www.natinst.com/labview) which
provide both a domain-level representation
(e.g., a microworld or a control surface) and an
underlying code representation. A key
advantage of layering is that it is possible for
the user to build their conceptual model
through interaction with the microworld (i.e.,
in a controlled environment), and hence not get
near the underlying syntax until they have a
well-established model of the domain.

This sort of ‘layered’ approach, providing a
gradual revelation of functionality so that the
user can have the simplest environment that
meets immediate needs but expose more
functionality as needed has long been espoused
(Carroll and Carrithers, 1984; Carroll, 1987).
It has been incorporated into some of the most
effective programming environments for
novices and young users, such as Repenning’s
AgentSheets® (Repenning, 2000), a system
which also allows users to move from a
simple, accessible graphical environment to a
textual environment when more sophistication
and precision is required.

In fact, AgentSheets was used to create a rule
based programming environment -
LEGOsheets - for a forerunner to the Lego
RCX brick, MIT's Programmable brick; as far
as the authors are aware, a version of

LEGOsheets has not been produced for the
RCX brick (Grindling, et al, 1995).

Layering is also supported to a limited extent
by the RCX SDK2, which introduced the
Mindscript language. From the SDK2 release
notes, the intention behind this language was
to allow users to see a script language version
of the programme produced using the
graphical RCX language.

Students using our ‘frogWorld’ are only
introduced to the implementation language (in
this case Smalltalk) after fully exploring the
microworld. By then, they should have a firm
grounding in the concepts and can see how
they are applied in a more conventional
programming interface (Griffiths et al., 1999).

4.5 Readership

Graphical environments are seen as accessible
and fun, and direct manipulation potentially
reduces the need for text generation, which
may be problematic for newly literate children.
Yet graphical environments have associated
issues of readership (Petre, 1995), such as:

• significant limits on the number of

elements that fit on a screen;
• discriminability of graphical elements
• the need to develop effective reading or

inspection strategies
• the difficulty of indexing into the code, of

searching for and identifying desired
graphical entities;

• scalability;
• the importance of an effective graphical

editor.

5. Criteria for choice

We derived a list of criteria for language
selection. Our primary concern has been an
entry-level university course. However, we
also wish to re-use materials for use in schools
and to support students in competitions such as
RoboFesta and RoboCup. Hence, the detailed
decisions refer to university level, but the
higher level decisions (e.g., OO, layering,
multi-mode environments) are meant to
generalise across our diverse audience.

Relevant criteria for selecting a language
include:
- ease of understanding and use (and

suitability for novices)
- rapid development
- scalability (from simple programs to

complex systems)

6

- general-purpose programming
- convenient control of physical devices
- robustness
- support for maintenance
- cost
- compatibility with existing course and

curriculum decisions
- ease and cost of updating
- longevity

5.1 Comparison of RCX Programming
 Environments

From its first release, Lego MindStorms
proved very popular with the technically
sophisticated hobbyist community. Faced with
the limited power of the standard RCX

7

Summary table ○

●

Partially applicable
Applicable

Package

Language
type

Sp
ir

it
O

C
X

L
E

G
O

 fw

N
ov

ic
e

L
ow

 c
os

t

C
S

Po
w

er
 Development environment

RCX language Custom
graphical
(Lego)

● ● ● ●
Drag-and-drop, plug together
program blocks

Robolab Custom
graphical
(Labview)

● ● ● ○ ●
Drag-and-drop, wire together
program blocks, supports
communication between bricks

MindScript Script
language ● ● ● ● Text editor

LASM Byte-code ● ● ● Text editor
Brick
Command

Spirit OCX
commands ● ● ● Syntax checking text editor

Gordon's Brick
Programmer

Spirit OCX
commands ● ● ● Drag-and-drop editor

BotCode Resembles
Spirit OCX
commands

● ● ●
Syntax checking text editor

Pro-Bot Resembles
Spirit OCX
commands

● ● ● ○
Text editor

Finite State
Machine

Resembles
Spirit OCX
commands

● ● ● ●
Dialogue

Visual Basic Visual Basic
(using
ActiveX
control)

● ● ○ ●

Microsoft Visual Studio

Visual C Visual C
(using
ActiveX
control)

● ● ○ ●

Microsoft Visual Studio

JavaScript (using
embedded
ActiveX
control)

● ● ●

Preferred editor

Bot-Kit Dolphin
Smalltalk ● ● ○ ● ● ○ Language sensitive text editor

nqc C-like ● ● ● Language sensitive, visual
editor available (Bricxcc)

Ada Ada* ● ● ● ● Language sensitive editor
legOS C ● ● Preferred editor
librcx C ● Preferred editor
leJOS Java ● ● ● Preferred editor (visual

interface available)
pbForth Forth ● ● Console
MIT YBL Logo Console
* requires nqc
Legend
Spirit OCX Does the programming language use the LEGO Spirit OCX componentware?
Lego fw Does the programming language use the LEGO firmware?
Novice Is the language suitable for novice users, incorporating direct-manipulation, layered functionality, multi-

mode environment (graphical and textual), robustness?
Low cost Is the programming language cheap to buy?
CS Is the language suitable for teaching principles of computer science
Power Is the language powerful enough for advanced students to create complex systems?

Table 1: A comparison of MindStorms programming environments

8

Package URL

RCX language mindstorms.lego.com/sdk
Robolab www.ceeo.tufts.edu/graphics/robolab.html.

MindScript mindstorms.lego.com/sdk2
LASM mindstorms.lego.com/sdk2

Brick Command www.geocities.com/Area51/Nebula/8488/lego.html
Gordon's Brick Programmer www.umbra.demon.co.uk/gbp.html

BotCode www.iddgroup.com/products/botcode.html
Pro-Bot prelude.psy.umontreal.ca/~cousined/lego/4-RCX/PRO-BOT/index.html

Finite State Machine www.idi.ntnu.no/~petrovic/fsm
Bot-Kit www.object-arts.com/Bower/Bot-Kit/Bot-Kit.htm

nqc www.enteract.com/~dbaum/nqc/index.html
Ada www.usafa.af.mil/dfcs/adamindstorms.htm

legOS legos.sourceforge.net
librcx graphics.stanford.edu/~kekoa/rcx/tools.html#Librcx
leJOS lejos.sourceforge.net

pbForth www.hempeldesigngroup.com/lego/pbFORTH/index.html
MIT YBL el.www.media.mit.edu/projects/ybl

Table 2: Sources of MindStorms programming environments

programming environment described above,
several people created their own. Many made
use of the ActiveX component and the Lego
provided firmware, but some approaches led to
the creation of new firmware in the form of
software libraries that could be linked in to
'traditional' programming languages.

Table 1 gives a summary of the most popular
community-sourced programming environ-
ments, and Table 2 gives their availability.

6. Conclusions

We believe that robotics is a suitable vehicle
for teaching a wide range of students, no
matter what their age or background. The
Lego MindStorms kit is an appropriate low-
cost solution. Even though our work
comparing programming
environments/languages for MindStorms is
incomplete, the investigations to date allow us
to draw provisional conclusions.

First, MindStorms robotics provides an
opportunity to offer a microworld that bridges
between computing abstractions and real-
world activity. Well-designed microworlds
and simulations are useful teaching methods,
providing a low-risk, controlled environment
in which to learn and develop a firm footing
for further learning. Using such systems
fosters confidence in using skills as well as
teaching those skills.

More advanced microworlds, in which the user
can see genuine program code being
constructed and executed, are excellent

primers to advanced computer programming
with integrated development environments.

Second, although a wide range of
programming environments has been created
for the MindStorms brick, none meets fully our
requirements for an introductory course. With
the exception of RoboLab, none of the
graphical environments is powerful enough for
students to continue to advanced work. The
minimalist textual environments (text editors
and command line compilers) are not robust or
supportive enough for novice – especially
young novice – use.

Finally, we conclude that we need to take a
progressive approach, starting with a custom-
built, graphical, microworld-based system and
later moving to a more sophisticated
programming environment.

Figure 4. A progression of environments for
 an introductory course

The microworld-based system would introduce
concepts and simple programming in a
language-independent, object-based
methodology; would use progressive
disclosure (e.g., a pseudo-code view linked to
the microworld view) to help students map
between domain actions and code; and would
serve as a bridge to a more traditional
programming environment such as one of
those reviewed.

Level 1
MicroWorld

Level 2
RoboLab

Level 3
Textual
programming

9

References

[1] Beer, R.D., Chiel, H.J, and Drushel, R.F.
(1999) Using Autonomous Robotics to Teach
Science and Engineering. Communications
ACM, 42 (6), 85-99.

[2] Carroll, J.M. (1987). Minimalist Design for
Active Users (Enhancing System Usability),
Readings in HCI: A Multi-Disciplinary
Approach, 621-626.

[3] Carroll, J.M., and Carrithers, C. (1984)
Training Wheels in a User Interface,
Communications of the ACM, 27 (8).

[4] Griffiths R., Holland S., Woodman M.,
Macgregor M., Robinson H. (1999) Separable
UI Architectures in Teaching Object
Technology. Proceedings of the 30th
International Conference on Technology of
Object-Oriented Languages and Systems,
Tools USA '99, Santa Barbara.

[5] Gindling, J., Ioannidou, A., Loh, J.,
Lokkebo, O., and Repenning, A.
‘LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for
the LEGO Programmable Brick’. Proc. of
Visual Languages Conference, (Darmstadt),
172-179. IEEE Computer Society Press. 1995.

[6] Hutchins, E., Hollan, J., and Norman, D.
(1986) Direct Manipulation Interfaces, User
Centred System Design, D. Norman & S.
Draper (Eds) Lawrence Erlbaum Assoc., 87-
119

[7] Johnson, J. H., ‘The “can-you trust it
problem?” of simulation science’, Complexity,
2001.

[8] Johnson, H. J., ‘Children, Robotics, and
Education’, Proc. AROB-7, 16-18 Jan 2002.

[9] Johnson, J.H., Hirst, A. J., The RoboFesta -
Blue Peter Robot Design Competition,
Research Report 2, RoboFesta Edutainment
and Robotics Education Research Centre,
Faculty of Technology, The Open University,
Milton Keynes, MK7 6AA, UK.

[10] Papert, S. (1980) Mindstorms, Children,
Computers and Powerful Ideas. New York:
Basic Books.

[11] Petre, M. (1995) Why Looking Isn’t
Always Seeing: Readership Skills and
Graphical Programming, Communications of
the ACM, 36 (6), 33-44.

[12] Repenning, A.,(2000) AgentSheets®: An
Interactive Simulation Environment with End-
User Programmable Agents, Interaction 2000,
Tokyo, Japan.

[13] Schneiderman, B. (1982) Designing the
User Interface. (2nd Ed) Addison Wesley.

[14] Smith, R. (1987) Experiences with the
Alternate Reality Kit: An Example of the
Tension between Literalism and Magic.
Proceedings CHI + GI 87, 61-67.

[15] Sklar, E., Johnson, J., Lund, H., ‘Children
learning from team robotics’, Research Report
1, RoboFesta Edutainment and Robotics
Education Research Centre, Faculty of
Technology, The Open University, Milton
Keynes, MK7 6AA, UK.

[16] Soloway, E. (1986). Learning to Program
= Learning to Construct Mechanisms and
Explanations. Communications of the ACM, 29
(9), 850-858.

[17] Wasserman, E. (2002) Why Industry
Giants Are Playing with Legos, Fortune,
144(10), 101-106.

[18] Woodman M., Griffiths R., Robinson H.,
Holland S. (1998) An Object-Oriented
Approach to Computing, Proceedings of the
ACM Conference on Object-oriented
Programming, Systems and Languages,
OOPSLA '98, Vancouver.

[19] www.robofesta.net

[20] www.robofesta-uk.org

[21] www.robocup.org

