
Using Robotics for Teaching Computing, Science, and Engineering at a Distance

BLAINE A. PRICE*, ANTHONY HIRST†, JEFFREY JOHNSON‡, MARIAN PETRE*, MIKE RICHARDS*
Departments of Computing*, Telematics†, and Design & Innovation‡

The Open University
Milton Keynes, MK7 6AA

UK
Contact Author: B.A.Price@open.ac.uk

ABSTRACT

The abstract nature of computing, science and engineering
can make them difficult subjects to teach in any
environment; teaching at a distance introduces additional
challenges. This paper presents on-going work into new
distance education courses using commercially available
robot kits to introduce fundamental concepts in
computing and engineering. It discusses why robotics
provides leverage on teaching these subjects, the choice
of platform, and how ‘teamwork’ will be supported in this
context.

KEY WORDS: Curriculum design, Universities
without Boundaries, Artificial Intelligence, Mobile
Communication and Computing, University Education,
Education of Children

1. INTRODUCTION

Teaching abstract science and engineering concepts to
novices always presents special challenges, but doing this
at a distance introduces additional difficulties for both the
student and the organisation. The Open University has
been teaching all of its undergraduate students using
Supported Open Distance Learning1 for over 30 years.
Even given high-quality text and multimedia
presentations supported by BBC television programs and
video; students have difficulties with some of the more
abstract concepts in the sciences, engineering, and
computing.

A number of researchers have shown that robotics can be
motivating and beneficial when teaching science and
technology [1]. We agree that robots are a powerful way
to motivate learning. The construction and programming
of robots uses a wide range of scientific and engineering
principles [2] necessitating teamwork, planning and
record keeping, all of which are essential for general

1 Distance Learning means that students study at a distance from the
institution providing their courses. Supported means the students have a
local tutor for telephone and email contact, able to help, who provides
face-to-face tutorials, and grades their assignments. Open means there
are no pre-requisites for entry.

science, software engineering, systems engineering and
everyday life. So how can these issues be handled
effectively in distance education?

Robotics offers particular advantages for teaching
computing and engineering subjects at a distance because
of the transparent nature of the robot: it is self-
demonstrating. Using a robot as a teaching medium
allows students to have a ‘conversation’ with the device
under construction. A student can ask questions of a robot
and observe the answers:
• What happens if I use a different gear ratio?
• What happens if I set a light threshold to a different

value?
• What happens if I have these two complementary (or

even opposing) behaviours active act at the same
time?

In the absence of a traditional instructor, the robot can
provide students with a form of interactive learning
experience at a time and place of their choosing. As Beer
et al point out, “the real world rather than a professor
decides whether a particular engineering design or a
certain scientific hypothesis is correct”[1]. The challenge
is to guide students effectively through the universe of
possibilities, to encourage exploration while minimising
time-wasting dead-ends.

The Open University (OU) has taught subjects related to
robotics for many years, and we are beginning to
formulate a new robotics curriculum for our students.
This is strictly within the context of distance education:
In addition to our own curriculum development, in
collaboration with the international RoboFesta2 and
RoboCup3 movements, we plan to support teachers who
are teaching robotics in schools.

In this paper we present a rationale for using robotics
when teaching subjects at a distance. Additionally, we
include some examples of the activities novice students
will undertake. We conclude with some of the open

2 http://www.robofesta.net, www.robofesta-uk.org
3 http://www.robocup.org

questions and challenges raised by using robotics in the
curriculum and show where robotics may be used to help
teach other subjects.

2. ROBOTICS HOME EXPERIMENT KITS

The Open University has always tried to give its students
an experience of laboratory work comparable to that
provided in other universities. We have a long tradition
of designing Home Experiment Kits, (HEKs), which
include everything students need to conduct hands-on
experiments. For example, as part of a Mechatronics
course, from 1994 to 2002, we distributed a Lego-based
robot designed and manufactured for students. Using a
borrowed HEK, a student could conduct various hands-on
experiments in perception, cognition, and execution,
including intelligent control.

Annual refurbishment costs and limits on the number of
kits in stock meant that the Mechatronics HEK was
expensive and limited student numbers. Yet our
experience with Lego-based teaching materials has made
us well disposed toward the Lego Mindstorms4 Robotics
Invention System™. The set includes a programmable,
industry-standard microcontroller with ready access to I/O
ports. It was developed from a prototype produced at the
MIT Media Lab and is expandable. Additionally Lego
Mindstorms is widely used in other universities [1].

We are currently investigating the possible use of Lego
Mindstorms as the basis of a set of HEKs that students
would keep as part of the course materials; retaining the
HEKs for further courses. Lego Mindstorms would form
the hardware platform for undergraduate courses in
robotics, engineering, and computing at first, second, and
third levels5.

At Level 1 students would perform some elementary but
exciting experiments, and be introduced to the basic
technologies of robots, and hence basic technology. At
Level 2 robotics would be the motivating force for a
course in electronics, instrumentation, control, and
communications. The students would design and build
add-on hardware to increase the functionality of the Lego
Mindstorms brick, which by default can only read three
sensors and drive three actuators. ‘Instrumentation’ may
include machine vision, and there are exciting
possibilities for building robots using the extended
functionality. At Level 3, a new course in intelligent
machines would replace the existing Mechatronics course.

There are obvious benefits to having the same HEK
platform for at least three courses. First, the learning
overhead is reduced, because the students can transfer
their skills with the HEK from one year to the next.

4 http://mindstorms.lego.com
5 Equivalent to first, second and third year undergraduate courses at a
conventional university.

Second, the total cost is reduced, with the HEK for each
course costing the equivalent of one third of a Lego
Mindstorms kit. This is less than the refurbishment costs
for the current Mechatronics HEK. Other gains include
reduced overall development costs for the University,
especially software, and the development of consistent
user interfaces. As an additional benefit the students keep
their HEK at the end of their studies.

We expect this robotics curriculum to be popular. The OU
system makes it feasible to attract and support many
thousands of students each year. For example, each of our
introductory level courses in technology and other
disciplines regularly attract 8,000 to 13,000 students from
across Europe and other countries.

3. ROBOTICS TASTER COURSE

As part of the development of the new curriculum, we
have devised an introductory ‘taster’ course; encouraging
students to experiment with our materials and report their
experiences. The course consists of approximately 10
hours of study per week for 10 weeks. Each week of study
is broken down into units lasting no more than 2-3 hours
each. This course will have no prerequisites other than
basic numeracy, literacy and IT skills (such as using a
computer to install software and connect to the Internet).
Students will build robots, construct robot behaviours
using software objects, test them, and record their
observations to be shared with others. At the end of each
unit students will be able to watch (by CD-ROM video,
streaming Internet, or television) an exciting real world
example of the technology they have just taught
themselves.

The first section of the course encourages students to
explore the issues surrounding robot navigation in a
controlled environment (such as their kitchen or
bedroom). Students explore the difference between
remote-controlled and autonomous robots. We conclude
this section by looking at real-world examples such as
bomb-disposal robots, robot soccer, and a proposed
planetary rover.

The next part of the course introduces a few of the basic
mechanical concepts behind robot locomotion. Students
build a number of example robots, test them, and record
their observations using a scientific method. Students are
encouraged to ask questions such as “how can we build
robots with legs?” Based on their experimental evidence,
students will write a short justification for the design of a
locomotion system for a robot intended to explore an
unknown environment.

Later sections of the course expand on the links between
biological systems and robotics. A series of lessons will
compare and contrast the sensors that have evolved in the
natural world and their man-made equivalents. Students
begin giving behaviour to their robots by adding

independent, yet communicating objects (later they will
discover that they have learned object-oriented
programming). This is an ideal point to move on to the
question of ‘thinking machines’ and an introduction to
artificial intelligence. This discovery is integrated with an
examination of human and machine memory, learning,
and simulating intelligence.

The course concludes with a choice of assessed projects,
each of which is meant to have a real-world significance,
such as a can-collecting robot or a robot soccer player.

After this ‘taster’ course, students will be able to study
traditional courses in computing, engineering and
artificial intelligence, or continue to use their kit with
dedicated robotics courses at higher levels.

One of the biggest concerns within distance education is
student retention, both within courses, and continuing to
study at higher levels. By using the proven medium of
intelligent mobile robots, we believe we motivate students
to complete their courses. Our goal is to make learning so
enjoyable that students will want to continue the ‘taster’
course, and move on to other studies (some of which will
involve this kit that they will already be familiar with).

4. WHY USE ROBOTICS TO TEACH?

Mature students are often inhibited from experimenting
freely with unfamiliar equipment for fear of breaking it.
Our work with both children and adults has shown that
building and programming robots made from children’s
building blocks is both inviting and non-threatening.
Because Lego Mindstorms is designed for use by 8-year-
olds, it is built to withstand all forms of abuse. Students
recognise this and tend to be more willing to explore and
‘play’ – and hence venture beyond prescribed activities.

Some have argued that robotics is a passing fashion, but
our research shows that it is significantly different from
other technologies used for teaching [3]. We know of no
other medium that can simultaneously and transparently
support the teaching of algebra and trigonometry, design
and innovation, electronics and programming, forces and
laws of motion, as well as materials and physical
processes. Robotics itself is multi-disciplinary,
encompassing subjects such as mechanical engineering,
electronics, control, communication, vision, real-time
parallel computing, and systems design. All these are
relevant in our teaching.

4.1 Teaching computing through robotics

Introducing students to core computing concepts has
always been a challenge. Traditional methods of teaching
computing tend to favour abstractions, and students often
have difficulty reasoning about program behaviour and
recognizing the relevance of their activities. Many
computer courses have concentrated on providing learners

with some skill in a programming language. This can be
problematic as general-purpose languages are complex, in
order to afford necessary richness to the programmer.
Unfortunately for the novice, this often means ‘you need
to know a lot to do a little’. (In contrast, languages
intended to teach newcomers are often very constrained
and of limited use at higher levels. ‘You don’t need much,
but you can’t do much either.’) Either students have to
learn the syntax before they can write any programs
(which is frustrating), or they have to enter code that is
effectively meaningless to them. Furthermore, many
languages require the users to type in a large amount of
code to produce relatively trivial results.

Students’ first programs typically print a few words, sort
some numbers or draw a square. These programs are
rarely useful and are often frustratingly limited. In
contrast, a robot can be given interesting behaviour with
relatively little effort. Who wants to print ‘hello, world’
when they can get a robot to zip around a room following
a light source?

Traditional methods of teaching computing tend to
concentrate on abstract concepts and procedures. Students
often have difficulty extrapolating program behaviour
from these concepts. When students write programs and
have to debug them, they must often resort to placing
statements throughout the program to print its internal
state – a task requiring additonal overheads for the
student. By comparison, much of a robot’s state is evident
from its behaviour.

An object-based approach is now considered the basis of
sound software engineering. Our experience in teaching
computing [4, 5] using object oriented programming has
shown that it is easier to represent and present complex
behaviours to novices [4]. Object principles are highly
abstract, and, even though our existing teaching uses
familiar objects (such as frogs on the computer display) as
examples to explain behaviour, it is easier to explain
object concepts when you can hold the physical objects
and observe their behaviours first-hand. A robot is a real-
world object that can send and receive messages, just like
a computing abstraction of the robot. The difference
between the two is that students can observe the effects of
their actions directly, as opposed to interrogating a
software object.

4.2 Teaching engineering through robotics

Students appreciate mechanical engineering issues when
they are faced with problems and have to overcome them.
Simple scientific principles such as conservation of
momentum can be taught through concrete example and
experience. For example, students are given very fast but
weak motors and are tasked with moving a heavy load.
By putting a large gear on the wheel and a smaller gear on
the motor the student produces a slow but powerful output
with high torque.

One early experiment that students undertake in the taster
course is to study the behaviour of a robot on a sloping
surface. An incline is built by propping a plank of wood
or a hard-backed book at an angle; the steepness of the
slope can be easily adjusted. The student would use a
simple robot at differing angles of slope, recording their
results at each stage.

When they have found a maximum slope that the robot
could climb, the student would substitute softer tires for
the default wheels, or replace the wheels with caterpillar
tracks and re-run the experiment. Later the student
examines the effect of different gear ratios.

By the end of the experiment the student should be able to
make predictions about the behaviour of the robot under
differing conditions and identify suitable terrains for
different robot designs.

We wrap each of our exercises in such a procedure to
encourage scientific thinking. Students are encouraged to
hypothesize the behaviour of the robot they build, record
principled observations, and make conclusions as to the
reasons behind the behaviour. In the case of gears,
students should be able to eventually conclude a
relationship between the torque and the size of the gears.
We then present them with a steeper slope and ask them
to predict what size gear will be necessary for their robot
to climb the slope. The students then test their prediction
and observe the results.

Students are often taught programming and design on
powerful computers with large amounts of memory and
broadband connections. In the real world, embedded
systems require the developer to work with resource
constraints such as the limited memory, power and
input/output limitations. The robot brings home these
limitations in a concrete fashion.

Using a robot as the teaching domain forces students to
‘take ownership’ of their learning and how they apply
their knowledge to achieve a particular goal. We have
observed that students are often more committed to
getting something that exists in physical space to work,
than something in logical space (i.e., a tradition al
computer program).

5. TEAMWORK AT A DISTANCE?

Almost all the benefits of using robotics for teaching
apply to distance learning. There are of course some
disadvantages peculiar to distance learning. The most
obvious example is that students study at home and do not
have daily face-to-face interaction with other students.
Surely they must miss out on an essential benefit of
teaching with robotics reported by most researchers:
learning how to work in teams?

5.1 Teaching teamwork on Technology courses

Teamworking has been addressed directly by the course
TU170 Computing with Confidence, where it is an
integral part of the course. TU170 is an Internet-based
‘taster’ course, intended to provide basic computer and
learning skills for students new to the OU. Part of the
philosophy of the course is that students work together to
create a support network.

The course begins with a face-to-face tutorial at which
students get to know their tutor and other students. This
is followed by intense interaction through the electronic
conferences and email. This course actually teaches some
of the theory of group dynamics.

Like conventional students, distance students become
confused, fall behind their peers, lose files, and so on.
And, like conventional students, they help one another by
offering advice and sympathy. Some of the groups work
very well, some do not, for a variety of reasons. Perhaps
a leader has not emerged, or perhaps too many.

An interesting aspect of group work is the subtle
interventions of the tutor. He or she knows the desired
outcome of the activity, and can see where the group may
be going astray. The tutor also knows that a major part of
the learning process is for students to apply the team-
working principles they are learning to find their own
solutions. The tutor is generally only required to give a
hint toward the correct solution, or perhaps to suggest that
the students revisit a particular piece of study to get the
weaker groups back on track. Even if this interaction
does not resolve the problem, it encourages the students to
reflect on their experience, and learn for themselves how
their team might have had a better outcome.

5.1 Teaching teamwork on Computing courses

The previous team-working example focussed on
information sharing, which is ideal for remote
collaboration. Can the same success in remote
collaboration be achieved in design-and-build projects?

Since 1995 we have implemented a variety of CSCW
techniques in our teaching of Computing; including
asynchronous electronic text conferencing, synchronous
text and video conferencing, and fully electronic student
assignments where tutors mark up a student document and
return it to them [6] [7] [8]. We have surveyed a range of
student project work in computer science and engineering
involving team working, including projects incorporating
robotics [9] [10] [11].

This experience demonstrates that team working succeeds
if:
• The project is well organized and orchestrated: the

task must be clearly defined and marked by deadlines
and deliverables, guidance should be given to

participants on how to approach the project,
including both the task and the group interaction, the
group must be supervised by a person qualified to
resolve problems, and there must be mechanisms for
resolving problems that arise.

• The group should be of the right size: too large a
group and some will not contribute as they can rely
on the work of others; too small a group and there
may be a shortage of skills or diversity of input,
making it difficult for the group to maintain
momentum.

• The problem being solved is engaging: The problem
should be both rich and reasonably solvable. It
should be sufficiently general as to interest the vast
majority of participants, be directly relevant to the
other course material, and add value to the remainder
of the course.

• There is sufficient reward for individual contribution:
Some, or all of the mark for the project should come
from the student’s contribution to the group. There
should be rewards for participation even if the task is
only partially completed or not completed correctly.

• The problem being solved is conducive to a group
working solution: some problems are better solved
by individuals, designers of group working should
not try to forced unsuitable problems into the group
working environment.

Our experiences of remote team working have illuminated
five basic models that illustrate different degrees of
collaboration and can be related to the learning of team
working skills. These are summarized in Table1.

Collaboration Model Description students experience:
co-operative problem-
solving

tightly-coupled, synchronous
activity; approximates a face-to-face
environment, with all the problems
that entails

teamwork throughout the
development process

divide-and-conquer Mixes synchronous communication
(usually used for planning and
resolving integration issues) with
asynchronous communication and
off-line development

collaboration throughout the
development process: planning,
negotiation, role identification,
discourse

component handover Loosely-coupled asynchronous
activity where each student completes
a part and hands it on to the next
student to work on

negotiation and critical skills;
development using others’ products

component critiquing Loosely-coupled asynchronous
activity where each student reads and
openly criticizes the code of another

focuses on critical and discourse
skills

individual projects that
interact after completion
(e.g., in competition)

Mixes asynchronous (used to
code/build robot) with synchronous
(each student competes against
another, e.g. football)

project work is independent, but
students are able to compare and
discuss designs/implementations
based on public performances

Table 1: Some Models of Remote Teamworking

We propose to use a mix of loosely-coupled approaches
for our robotics curriculum.

5.3 Proposed team-working in robotics

We propose to try the following model in our third-level
course on designing intelligent machines. We shall
require students to:
• conduct a group design project;
• distribute subtasks in the team;
• conference and manage the team project;
• build, test, and critique subsystems;
• assemble the subsystems into the whole robot;
• build and test the whole robot;
• compete with other teams.

How can we do these things? The first three are well-
established in our system through courses like TU170.
The others have been demonstrated through other remote
computing projects [10]

The robot design tasks will be formulated so that they can
be broken down into subtasks. For example, one student
might be responsible for the sensing subsystem, while
another might be responsible for designing the gear train
and propulsion subsystem. Other students may be the
team programmers, and so on. Each student builds a piece
of the whole and presents it to the team for criticism,
before repeating the design cycle. This is directly
comparable to tasks in traditional universities and in
industry.

Each student will build and assemble all the parts at home
using the instructions and program code provided by their

fellows. Every student would have a more-or-less
identical copy of the group robot that can be used to
perform a task. Establishing that the copies are
comparable will provide practical lessons in
benchmarking and testing. Experience leads us to believe
that this is a feasible approach; we plan to evaluate it in
detail in a series of experiments with remote students.

Finally, how can the team's robots compete remotely?
We expect to set the students a task that can be monitored
objectively by their own computer in their own home,
with results being assembled over the Internet. Again
there are exciting possibilities for a Web-enabled
competition finals day, with the teams competing in real-
time against other teams.

Assessment is an important question, especially in
distance teaching. We agree with Beer et al that the result
of the competitions is not the important thing; it is the
keeping of design notebooks, the quality and originality
of the designs, the quality of the analysis, and the
students' reflections on the team-design process. We
already have well-established procedures for assessing
these factors.

6. SUMMARY

In this paper we have discussed a number of issues
surrounding the teaching of computing, science, and
engineering at a distance and we have identified robotics
as a useful teaching vehicle. The benefits of using
robotics include:

• Robotics can be used to teach many aspects of the

computing, engineering and science curricula at all
educational levels. It encourages students to expand
their learning beyond the immediate confines of any
particular discipline.

• Robotics encourages the exploration and

understanding of abstract concepts in these
disciplines and may well prove to be a superior
method of teaching more difficult ideas.

• Robot kits can be used for distance learning

education provided they are used alongside suitable,
dedicated materials.

• Our experience with other courses has demonstrated

the feasibility and benefits of remote team working; a
robotics-based curriculum has the potential to
combine the best aspects of individual and team-
based learning to give students experience of real-
world software and hardware engineering.

We believe all of this is feasible, and will make hands-on
experimental team robotics available to tens of thousands

of students who could get this experience by no other
means.

REFERENCES

[1] R.D. Beer, H.J. Chiel, and R.F. Drushel, Using
Autonomous Robotics to Teach Science and Engineering,
Communications of the ACM, 42(6), 1999, 85-99.

[2] E. Wasserman, Why Industry Giants Are Playing
with Legos, Fortune, 144(10), 2002, 101-106.

[3] J. Johnson, Children, Robotics, and Education, Proc.
The Seventh International Symposium on Artificial Life
and Robotics (AROB 7), Beppu, Oita, Japan, 2002. 491-
496.

[4] R. Griffiths, S. Holland, M. Woodman, M.
Macgregor, and R. H., Separable UI Architectures in
Teaching Object Technology, Proc. Thirtieth
International Conference on Technology of Object-
Oriented Languages and Systems, (TOOLS'99), Santa
Barbara, 1999.

[5] M. Woodman, R. Griffiths, H. Robinson, and S.
Holland, An Object-oriented Approach to Computing,
Proc. ACM Conference on Object-oriented Programming,
Systems and Languages (OOPSLA '98), Vancouver, 1988.

[6] M. Petre, L. Carswell, B.A. Price, and P. Thomas,
Innovations in large-scale supported distance teaching:
transformation for the Internet, not just translation,
Journal of Engineering Education, 1999.

[7] R. Griffiths, M. Woodman, and H. Robinson, Group
Working for Budding Software Developers, Proc.
EdMedia, 1999.

[8] M. Petre and B.A. Price, Programming practical
work and problem sessions via the Internet, Proc. ACM
SIGCSE/SIGCUE Conference on Introducing Technology
into Computer Science Education (ITiCSE '97), Uppsala,
Swedon, 1997.

[9] S. Fincher, M. Petre, and M. Clark, Computer
Science Project Work: Principles and Pragmatics,
(London: Springer-Verlag, 2001). 267.

[10] M. Daniels, M. Petre, V. Almstrum, L. Asplund, C.
Björkman, C. Erickson, B. Klein, and M. Last,
RUNESTONE, an International Student Collaboration
Project., Proc. Foundations In Education, Tempe AZ,
1998.

[11] M. Last, V. Almstrum, C. Erickson, B. Klein, and
M. Daniels, An International Student/Faculty
Collaboration: The RuneStone Project, Proc. ITiCSE
2000, Helsinki, Finland, 2000.

