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Abstract. Complexity science is characterised by computational irreducibility,
chaotic dynamics, combinatorial explosion, co-evolution, and multilevel lattice
hierarchical structure.  One of its main predictive tools is computer-generated
distributions of possible future system states.  This assumes that the system can
be represented inside computers.  Robot soccer provides an excellent laboratory
subject for complexity science, and we seek a lattice hierarchical vocabulary to
provide coherent symbolic representations for reasoning about robot soccer
systems at appropriate levels.  There is a difference between constructs being
human-supplied and them being abstracted autonomously.  The former are
implicitly lattice-hierarchically structured.  We argue that making the lattice
hierarchy explicit is necessary for autonomous systems to abstract their own
constructs.  The ideas are illustrated using data taken from the RoboCup
simulation competition.

1  INTRODUCTION

Robot soccer is an excellent laboratory subject for the emerging new science of
complexity characterised by computational irreducibility, chaotic dynamics,
combinatorial explosion, co-evolution, and multilevel lattice hierarchical structure.
The earlier benchmark problem of computer chess also has many of these properties,
with the exception of it not being chaotic.  Start a game of chess in a given position,
compute each of a sequence of moves, and the result is always the same.

Fig. 1. Structured space in robot chess
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Chess players use structure in order to play the game.  Some of these structures are
so fundamental that they have been given names such as the ranks, files, and
diagonals illustrated in Figure 1. These names reflect spatial properties such as
contiguity, and the functional properties of the pieces, e.g. rooks move on ranks and
files, bishops move on diagonals, while kings and queens do both. 

The space of the chessboard is divided into micro-units at the level of a player.
These micro-units are aggregated into structures (e.g. ranks, files, diagonals)
reflecting the modes of movement of the players.  Thus the space of chessboard is
hierarchically structured, with a well-defined set of areas, the squares, at the lowest
level.  Soccer and robot soccer do not have such an obvious lowest level of
aggregation.  At higher levels the space is structured by the goal area, the halves of
the pitch, the penalty spots, the centre spot, and the centre circle, etc.  All of these
areas are defined because they play roles in the rules.  

In robot soccer the positions of the players and ball are assumed to be on an x-y
grid.  Even when the positions are represented by floating point numbers, this grid is
finite.  In this respect, the soccer pitch is like an enormous chessboard.  The
chessboard has 8 x 8 squares, while in robot soccer there are typically 1680 x 1088
pixels.

In chess, the players use a hierarchical representation that includes the ranks, files,
diagonals and other more ambiguous areas such the right, left and centre of the board.
Even though the number of squares and the number of these constructs is relatively
small, chess is characterised by combinatorial explosion as chess players attempt to
predict future system states.  The 1.8 million pixels of the robot soccer pitch present
an even more formidable combinatorial explosion in the way that the pixels can be
grouped to form coherent and relevant areas of the pitch.

Our research is based on the premise that complex systems have hierarchically
structured vocabulary reflecting the relational structure at micro- and macro-levels.
By their nature, complex systems have to be investigated using computers, and this
means that their representation must be explicit.  In the case of robot soccer, this
means there must be vocabulary for representing relationships between dynamically
forming parts of the pitch, and dynamically forming relationships between players,
opponents, and the ball.

Fig. 2. The Knight-Fork

Just as in chess there are ‘interesting’ structural relationships with names such as
the ‘knight fork’ (Fig. 2), there are ‘interesting’ structural relationships in robot
soccer.  In Figure 2 the knight, N, checks the opponents king, K, and threatens the
more valuable rook, R.  This structure is so dangerous in chess that it has its own
name, the ‘knight fork’.  When players reason about chess, the ‘knight fork’ is an
entity in its own right, with emergent properties not possessed by the individual
pieces.  

R K
N

N – kNight
K – King
R – Rook



Figure 3 illustrates a similar well-known structure in soccer.  In this case,
defending player 3 threatens to take the ball from player-1.  If player-1 feigns a pass
to player-2, then player-3 must move to intercept that pass.  In so-doing, player-2
moves out of position, and player-1 can slip past.  This structure has its own
vocabulary, e.g. player-2 ‘draws out of position’ player-3, allowing player-1 to pass.

(a)  Player-3 threatens Player-1                  (b) Player-1 feigns a pass to player 2

Fig. 3. Player 3 is drawn out of position by the relationship between players 1 and 2.

The richer the vocabulary of these structures, the greater will be the advantage
possessed by teams using that vocabulary.  There are of course astronomic numbers
of possible configurations of players and the ball on a soccer pitch.  How can the
‘interesting’ structures be found?  One answer to this is analyse many soccer games,
and observe which configurations occur at ‘interesting’ times.  These include the
scoring of goals, but also include events such as the ball being lost, or even large
areas of space opening up. 

Early work in the analysis of RoboCup agents concentrated on the offline analysis
of statistics gleaned from game logs, such as the work of Takahashi and Naruse [1]
who measured statistics for teams at RoboCup 1997 such as number of goals, assists,
kicks, own goals, and so on. Takahashi [2] continued this work and found no
relationship between scoring and collaboration between agents when looking at the
basic statistics as above. He did find, however, that collaborative actions, such as the
number of 1-2 passes (player A passes to team-mate B in order to avoid defending
player D, then B passes back to A once A has passed D), correlated highly with team
ranking.

Tanaka-Ishii and colleagues [3] did a detailed offline statistical analysis of teams
from 1997 with teams from 1998 with respect to 32 evaluations features, such as
number of pass chains, average distance covered by one play, average pass length,
and so on. They also compared the robustness of teams by replaying games with a
reduced squad and found that some teams performed better with fewer players. They
conclude that teams that perform poorly may not be the worst teams, but merely
teams that have been let down badly by one aspect of their play. They argue for a
collaborative modular team which can take the best performing parts of each team and
also point towards the benefits of the online coach, which was introduced the
following year.

Raines et al. [4] developed a system called ISAAC for post-hoc offline analysis of
the events leading up to key events, such as shots on goal in the case of the RoboCup
soccer simulation. ISAAC analyses the situations when the defence of the goal
succeeds or fails with respect to a number of variables, such as the distance of the
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closest defender, the angle of the closest defender with respect to the goal, and the
angle of the attacker from the centre of the field, the angle of the shot on goal and the
force of the kick. The user is able to do a perturbation analysis to determine which
changes in a rule will increase the goal success rate (e.g. changing the angle at goal,
increasing the force of the kick). This enables analysing teams to seek improvements.

A similar off line approach is described by Wünstel et al. [5] who analysed player
movement with respect to the ball to determine what kinds of movements a given
player tends to make, although without reference to the context the player is in.

The online coach of Visser et al. [6] compared the formation patterns of opponent
players from past games with a set of pre-defined formation patterns in an attempt to
predict opponent formations. This allowed the coach to direct its own players to deal
with the anticipated behaviour.

The online coach of Riley and Veloso [7] used pre-defined movement models and
compared them with the actual movement of the players to predict future behaviour
and advise its players accordingly.

Recent work in the analysis of agents in RoboCup has centred on predicting
opponent behaviour.  Kaminka et al. [8] used a system to identify and learn sequences
of coordinated agent behaviour over one or more games for a given team. This was a
post-hoc offline method which analysed logs of games after they were played. They
ran experiments to show that the system was able to pick sequences that were
characteristic of the team rather than arbitrary.  Visser and Weland [9] developed a
system that works on live games as opposed to a post-hoc analysis. Their system
looks at the behaviour of the opponent goalkeeper as it leaves the goal as well as the
passing behaviour of opponent players in order to find rules which characterise these
agents.  It updates these rules every 1000 cycles with the intention of making it
available to the on-line coach to take advantage of the data.

Our work differs from that discussed above in our search for a coherent vocabulary
through algebraic structures.  This reflects our motivation in complexity science, and
the desire to discover a methodology for representing complex systems in general,
using robot soccer as a well defined, well researched, and replicable laboratory
subject.

2  COMPLEXITY SCIENCE

Complexity science is characterised by computational irreducibility, chaotic
dynamics, combinatorial explosion, co-evolution, and multi-level lattice hierarchical
structure.  Each of these suggests that predicting the future behaviour of complex
systems will require relatively high levels of computation:
• computational irreducibility means that the computational load on making

predictions is relatively high.  
• deterministic chaos means that a high level of computation will be required for

making useful predictions.  A single point sample in the space of future
possibilities has almost no useful information, and many future states have to be
computed to gain information on the distributions of  possible future system states.

• co-evolving systems tend to be both chaotic and computationally irreducible.



• combinatorial explosion, of its nature, implies high levels of computation for the
search techniques used to explore large spaces of possibilities

• complex systems are usually multi-level with micro- and macro-subsystems.  The
vocabulary to represent these systems should be coherent with respect to
hierarchical aggregation, so that higher and lower level data are consistent.

This means that the representation of the system must be absolutely explicit to support
computation. Paradoxically, many complex social systems are currently administered
by people, with nearly all the computation and much of the data being in their heads.
Such intuitive human processing supports many predictions in business and social
administration.  It even characterises human soccer.  By comparison, the
representation for robot soccer is explicit – it has to be because the system is
autonomous and implemented on machines. For this reason we are interested in the
simulation competition of RoboCup, since we believe that this will give new insights
applicable more generally in complexity science and its applications.

3  THE LATTICE HIERARCHY AND REPRESENTATION 

Fig. 4. The arch is a structure built from a set of parts, and has emergent properties not
possessed by its parts.

Systems are characterised by wholes assembled from parts.  This is illustrated in
Figure 4, in which a set of three blocks is assembled to form a structure that we will
call an arch.  The arch is clearly more than the sum of its parts since it has emergent
features, such as the possibility of walking through it on the path between α and β.

Here, the set of blocks is represented by an Euler ellipse, a variant of the Euler
circle used to represent the set properties of intersection, subset, and union. 

In Figure 4, the arrow labelled R indicates that the set is mapped to the whole by
the relation R between the blocks.  If the blocks are labelled a, b, and c, then the set is
represented in the usual way by the notation { a, b, c }.  We will denote the R-
structured set of blocks as 〈 a, b, c; R 〉. Then, { a, b, c } ≠ 〈 a, b, c; R 〉. 

The hierarchical cone construction then has the Euler ellipse as base and the name
of the structure as its apex.  The structured set, 〈 a, b, c; R 〉, is then mapped to a single
named element at a higher hierarchical level by the hierarchical naming mapping, as
illustrated in Figure 5.
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Fig. 5. The hierarchical cone construction.

When analysing any system there is the problem of building a coherent
representation between the highest level construct , ‘the system’, and the lowest level
atoms such as the players or the pixels in simulated robot soccer.  Generally there is a
pre-existing vocabulary in vernacular language made up of terms that are more or less
well defined.  For example, in soccer the terms ‘goal area’ and ‘Red’s half’ can be
defined precisely, while ‘the left wing’ and ‘the goal mouth’ may be less well defined.

Terms in the vocabulary may exist at many levels and the ‘set’ containing them
will be called the hierarchical soup.  As with the computer analysis of other complex
systems, robot soccer has The Intermediate Word Problem of lifting a coherent
hierarchically structured vocabulary out of the soup.

The term hierarchy is often misunderstood to mean a tree-like structure.  More
commonly, hierarchies have a ‘lattice’ structure, since things may aggregate into more
than one structure at higher levels.  Figure 6 provides a simple example in which three
players define a subset of the pitch according to the pixels they are closest to.  For
example, the pixels closest to player a are shown by a Euler ellipse in Figure 6(a).
Some pixels will be equidistant to some players, and so belong to both their areas, as
shown by the intersecting ellipses for the players a and b, and the players b and c.
These areas have been given the names Area-a, Area-b, and Area-c.  The union of
these areas, together with that for all the other Red team members, makes up the part
of the pitch controlled by the Red team, called the Red-Area.  This simple hierarchy
has three levels.

When constructing hierarchical vocabularies, often there is no obvious bottom
level. Also it sometimes necessary to define new structures between existing levels,
thereby creating new levels.  For this reason, levels are usually given the denotation
Level N+k, emphasising the relative nature of the levels (Fig. 6(b)).

arch hierarchical
naming
mapping, h

Level N

Level N+1

R
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(a) Player areas aggregate into side’s area

(b) lattice hierarchy of sub-areas

Fig. 6. A lattice hierarchy

Figure 6(b) shows a graph of the ‘part-of’ relation implicit in the assembly
structure in Figure 6(a), illustrating the notion of lattice.  A lattice hierarchy is
defined to be a class of objects with a part-of relation.  This is anti-symmetric, so that
x part-of y implies not y-part-of x.  This is a partial-order on the class, and in graph
theory its graph is called a lattice.  

4  STRUCTURE IN ROBOT SOCCER

We have experimented with a number of RoboCup games, investigating
‘interesting’ relational structure. 

One kind of structure concerns passes between players.  A ‘pass’ is a pair of
players and a relation between them, written 〈player-1, player-2; Rpass〉.  A set of
passes between player of the same side is clearly an interesting structure in soccer.
Here, a pass is structure between a pair of players, and Figure 7 shows a ‘pass-
sequence’ as a structure on the set of passes.

Figure 7 shows a particularly long sequence of passes, which results in a goal
being scored.  The path forms as a consequence of the movements of the players, both
on and off the ball, and the relationships that this creates between them.

a b c

Area-a Area-b Area-c

Red-Area

Level N

Level N+1

Level N+2 Key:
  ab = Area-a ∩ Area-b
  bc = Area-b ∩ Area-c
  x  = Area-a – ab
  y = Area-b – ab – bc
  z = Area c  –  bc

Red-Area

Area-a Area-b Area-c

x         ab          y          bc          z



Fig. 7. A set of passes as a structure

Figure 8(a) shows a ‘nearest opponent’ relationship between the players.  As can
be seen, the graph has five components, reflecting the interactions between the
players.  Figure 8(b) shows a ‘nearest team-mate’ relationship.  Inspection of the
graph shows that Blue’s structure is most highly connected, with two components.
By comparison, Red’s structure has four components.  In some sense, Blue’s structure
hangs together better that Red’s structure.

   
(a) nearest-opponent relation                   (b) nearest team-mate relationship

Fig. 8. Relational structure in robot soccer

Related to these structures, there are relations between parts of the pitch and the
players.  The parts of the pitch are squares, where sets of pixels make up the squares,
and the set of squares cover the whole pitch.

Figure 9(a) shows a relation between the players and the pitch squares.  Figure 9(b)
shows how the blue team, (B), dominates the game by owning almost all the pitch.
This resonates with positional chess, when the players are not seeking tactical
material advantage, but seeking to control the board.  Here it can be seen that the blue
team owns almost all the pitch.  This whole game showed a similar dynamic pattern,
with the blue area rapidly growing after the kick-off.  Not surprisingly the blue team
won by many goals. 



 (a) the relation between players and the pitch

 (b) the pitch structured by the teams

Fig. 9. Spatial relational structure.

5  CONSTRUCT FORMATION

Each of the names or words in a lattice hierarchy vocabulary represents a structure.
In most of the programs that people craft, the constructs exist a priori in the human
mind.  One of the goals for intelligent systems is to have them abstract their own
constructs from their interaction with their environment, to create their own
vocabulary.

The lattice hierarchical structure is potentially a meta-representation for this
process.  With this architecture, autonomous systems can investigate structured sets
and keep information on those that are ‘interesting’.  We would argue that the
relational structure underlying the lattice hierarchy will characterise any vocabulary,
and therefore the lattice hierarchy will be fundamental in automatic construct
abstraction. 



6. CONCLUSIONS

In this paper we have defined lattice hierarchies as fundamental structures in complex
system.  For us, the intermediate word problem is fundamental in robot soccer.  We
have investigated relational structure in simulated robot soccer games, and shown
how it fits into lattice hierarchies.  The ultimate goal of the research is to have the
lattice hierarchical vocabulary emerge automatically as the robots interact with their
environment [10,11]. This would make a significant contribution to complexity
science and its application in other areas.
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