The Automatic Animation of Concurrent
Programs

BLAINE A. PRICE, RONALD M.

Dunamic Graphics Project,

University of Toronto, CANADA,

Computer Systems

BAECKER

Research Institute,
M55 1AI

Email: r mb@dgp.toronto.edu

Abstract

Much of the program visualization research to date has
been devoted to hand-crafted animations of small
sequential programs for use in computer science
éducation. Instead, our work focuses on the development
of automatic concurrent program visualization tools for
use in software engineering. This paper describes a
framework for concurrent program animation and a
prototype tool based on this framework. Our user testing
experiments with the prototype showed a significant
increase in programmer insights when compared with
conventional tools.

Introduction

Effective communication of complex ideas is one of the
most important contributions to human progress.
Because scientists and engineers build upon the work of
others, it is vital that they present their work in a
language that is concise, unambiguous, and expressive.
Mathematicians use special symbols to state theorems and
proofs. Engineers and architects use diagrams to specify
how a structure is to be built. Computer scientists use
programming languages to specify what a computer
program is 10 do, but these languages are primarily
designed as a communication vehicle from human to
machine, not from machine to human,

Program visualization (PV) facilitates the human
understanding and effective use of computer programs; it
relies on the crafts of typography, graphic design,
animation, cmematography, and ‘interactive computer
graphics. In effect, PV ig an attempt to create an interface
that allows one programmer to understand the work of
another. Examples include a professor explaining a
sorting algorithm to a class and a software engineer
working with a team of thousands o produce a million
tines of code.

1 Author’s current address: Human Cognition Reslaarch
Laboratory, Open University, Milton Keynes MK7 4AA,
England.

‘Very little work was done in the field of PV until the

1980's. Haibt developed a system in 1959 that created
flowcharts from FORTRAN programs [Haibt 1939]. In
1966, Knowlion created a black and white motion picture
that animated list manipulations [Knowlton 1966]. Work
in the 1970's led to the production of the colour motion
picture Sorting Cut Sorting [Baecker 1981] which
illostrates the operation of nine different sorting .
algorithms. It is still widely used in high schools and
universities as a teaching tool.

The major work of the 1980's was Brown's ACM
Dissertation Award-winning thesis [Brown 1988] which
describes the BALSA algorithm animation system.
BALSA allows programmers to mark “interesting events”
in their Pascal programs with calls to animation routines.
The wser may then run the program using BALSA on a
workstation and observe a frace of the program's execution
as it runs. Statements are highlighted as they are
executed. The user can control the speed of the program
as well as run it backwards if desired. A graphical
animation is also displayed as the program runs. This
animation is driven by the “interesting event” calls
inserted by the programmer.

Several workstation-based interactive systems were
developed in the latter half of the 1980's, including Pecan
[Reiss 1985], the Transparent Prolog Machine [Eisenstadt
and Brayshaw 1987], and Amethyst [Myers et al. 19881.
Other systems developed during this period, such as VIPS
[Isoda et al. 1987}, are advertised as “visual debuggers” or
“visual program tracers” and serve much the same purpose
as the other PV systems, Unfortunately, these systems
are only capable of displaying small “toy” programs and
are not appropriate for large scale software engineering.

With the escalating cost of software development,
especially on large projects, interest has increased in
computer-aided software engineering tools. Fred Brooks
claims that there is “no silver bullet” to attack this
problem and that PV in particular cannot express the
complexity of a large computer program (Brooks 19871,
This view is unrealistically pessimistic since it assumes
that sofiware engineering is so difficult a task that a
clearcr cxpression of the problem™ cannot help.

~ 128 -

he

e
ik
on
ch
ng
nd

™
ich
M.
its”
1€8.
ma
Hon
are
ram
ical
This
alls

vere

xan | .

stadt
188].
/1PS
§” or
pOSE
tems
; and

nent,
i in-
00ks
_ this
s the
987].
ames - -

Visual
Programming

Pregramming
By

. Example.

Figure 1:

Cartographers and chemists have developed notations for
expressing very large and complex sets of data from nature
in a concise form — why should man-made data be more

_difficult to express? Programn Visualization is not a

panacea for all of the problems in software engineering,
but it does have the potential to increase 31gn1f1cantly the

- communication bandwidth between software engineers and

to lead fo a better understanding of how large systems

work.

A Brief Taj;ononiy of Program Visualization

- Program visualization is often confused with two related

areas: visual programming -and programming by

example: Visual programming is the specification of a -

computer program. using graphics® while program
visualization is the use of graphics to enhance the
understanding of a program (that has already been wriiten).
Programming by example involves specifying a program
by giving (possibly graphical) examples of the input and

“output data and having the computer infer the program, It
is cIear that visunal programmmg overlaps with

—_—

sz “graphics” we mean displays that use more than

“single-font, single-colour text.

Program

Vnsuahzatiﬁn

The Relationship Between Program Vlsuahzatlon, Vlsual Prngrammmg, and
Programming By Examp]e

programming by example in cases where the examples are
given graphically. If aprogram is specified graphically,
then the specification itself is a graphic image that
enhances the understanding of the programin some way,
so visual programming is a proper subget of program
visualization, as indicated in Figure 1.

One o‘f the first complete taxonomies in this area was that
of Myers who divided PV systems along two axes:
whether they illustrate the code or the data of the program
and whether the display is static or dynamic [Myers 1986]
{updated as [Myers 1990]). Brown further divided dynamic
displays [Brown 1988] into.those that are passive (such as
a molicn piciure) or interactive (such as those requiring
user intaraction at a workstation). Brown also introduced
the term algorithm animation to describe dynamic
displays that show the fundamental operations of the
algorithm in the program, as opposed to program
animation where the details of the code itgelf are
illnstrated.

The. taxonomies of Myers and Brown were relevant in the
1980's when the common workstation had a rélatively
slow (one MIPS) processor with a 1000x1000 pixel

~ single colour display, a simple windowing system

supporting a few fonts, with a single “beep” sound
available. This was a tremendous improvement over the

technology of the 1970's when the common workstation

was a VT-100 style ierminal which had a 24x80 chaxgcter
display in a single colour (either green or amber) using a
single font and a single “beep” sound.

Today, the common workstation is RISC based and has a
relatively fast (minimum 25 MIPS) processor with a
separate high speed graphics engine and at least 8 bits of
colour. Modern windowing systems are network
transparent and support a large number of fonts while the
hardware supports multi-voice digital waveform sound. It
is significant that this technology is highly underutilized
by software engineers. In a typical software engineering
laberatory, one finds that the processors are virtually idle
as programmers use a simple editor in several windows to
view parts of their program in a single colour, single font
text. The only sound that the editor makes is a simple
“beep,” even though the workstation can address the full
16,000 Hz of human hearing. The programmer still uses
much the same interface as he did rwenty years ago, albeit
with more real estate.

With the hardware support provided by this new
technology, colowr and sound have become important PV
categories for increasing the communication bandwidth
between machine and programmer. Several authors have
suggested how colour [Tufte 1990] and sound [Gaver and
Smith 1990] may be used to communicate tremendous
amounis of complex real-time information, yet few PV
systems take advantage of either.

Although high speed computers have led to great advances
in scientific visualization of natural phenomena, software
engineers have been resistant to using to using the
technology that they helped to create. One reason that PV
‘technology is not employed in software engineering is the
perceived cost. The best program and algorithm
vignalizations have been custom designed and require a
greai deal of manual code annotation. Since most PV
systems only work for small “roy” programs, a software
project manager would be unlikely to devote scarce
manpower to annotating code or designing visualizations.
A good software engineering tool must have a low
overhzad in relation to the service that it provides. Thus

maryal systems are inappropriate and awtomatic (or nearly

automatic) program visualization systems are required.

By “automatic program visualization,” we mean a system
that is capable of producing a useful default visualization

from an arbitrarily large piece of unannotated software

with little or no human effort. A good PV system allows
the user 1o select desired views from the defauit
visualization and customize them to his needs. Some
anthors have argued that automatic visualizations contain
too little information to be useful. Yet Baecker and
Marcus showed how static typographic techniques could
be used to make C programs more readable using a simple
parsing procedwre {Baecker and Marcus 1990]. Since we
now have fast processors which spend most of their time
idle, it is possible to apply computationally expensive
artificial intelligence techniques to analyze “plans” in
source code and deiermine the underlying algorithm
automatically for visualization.

Most PV systems have been designed to deal with
sequential programs only, even though concurrent
programs are becoming more popular due o the
increasing use of parallel architectures to increase
performance. Concurrent programs are among the most
complex both to write and debug and are thus likely to
benefit from good visualization technigues. It should also
be possible for a concurrent PV system to visualize any
sequential program (to some extent) since these are a
special case of concurrent programs.

Alshough PV research has been active since the 1970’s, it
was not until the late 198(0’s that PV work began to deal
with concurrent programs. In 1986, Delisle and Schwartz
animated the message passing behaviour of
Communicating Sequential Processes [Hoare 1978] using
two view windows [Delisle and Schwartz 1986].
Zimmermann et al. animated process behaviour in Portal
(a Modula-like language) [Zimmermann et al. 1988] while
Socha et al. developed the Voyeur system [Socha et al.
1989] which allows users to manually create views of
running concurrent programs using a toolkit. It is
important to note that each of these systems lacks a
coherent framework from which views are derived: the
choice and design of displays appear arbitrary.

One of the problems with the visualization of concurrent

" programs is the observation effect: adding visualization

code can change the relative execution rates of parallel
processes so that a visualized program runs differently
from a non-visualized program. Although sequential PV
systems like BALS A cause cede to be added to programs,
they are actually benign since there is only one thread of
control in a sequential program and the addition of code
merely slows the whole program down. A visualization

- would be truly disruptive if it caused a concurrent program

to synchronize differently than it would have without the
visnalization. Zimmermann et al. avoided the observation
effect by using a special piece of hardware to monitor the
program at the bus level so the visualization is benign.
Although this effect is important, a cosrect concurrent
program that does not rely on real-time evenis will aiways
synchronize correctly no matter how much a process is
delayed by visualization. -

The remainder of this paper describes a framework for
autcmatically animating concurrent programs based on a
simple epistemological approach, an implementation
based on the ideas in this framework, and an experiment
designed to test the utility of our ideas.

A Framework for the Automatic Animation of
Concurrent Programs

We base our framework for aniomatically animating
concurrent procedural programs on an’ epistemological
approach: what can one know automatically about a
concurrent program? We begin by looking for places -
where information about the program may be found, the
most obvious of which is the program source code. Since
we know the implementation language, it is easy to parse
the program to determine such things as:

- 136 -

with
rrent
y the
rcase
maost
xly to
d also
& any
are a

O’s, it
3 deai
\wartz
r of
using
986].
Portal
while
et al.

ws of -

It is
ks a
i: the

qIrent
zation
arallel
rently
ial PV
grams,
ead of
f code

ization .

ogram

yut the

‘vation
tor the
enign.
wurrent
always
cess is

wk for

dona

itation
riment

on of |

mating

logical :
bout a "
places
nd, the - |

Since - 5|
o parse |

- the names and types of data structures

- the names of modules, monitors, and
subroutines ’

» the hicrarchical relationships

+ the caller-callee relationships

= the data import/export relationships.

All of this information is static and may be used as a
“background” upon which other information is animated
as the program runs. A second cbvious source of
information is the hardware plaiform upon which the
program runs. Since the hardware configuration does not
change for a given visualization, it is possible to know
such things as:

- the number of processors (CPUs)

« the amount and type of memory available
(shared/non-shared)

- the way in which processors communicate with
each other and memory.

There is a third element of information which gives life to
the ‘other two in a running program: the process. A
running process is an executing instance of some position
in the code for a particular program on a specific CPU. A
running process will cause the program counter in the
CPU to change as subsequent instructions are executed,
which corresponds to the execution of statements in the
high level language of the source code. These
instructions might canse the CPU to modify the contents
of memory, which would correspond to changes in the
contents of data structures. Since processes are the
“driving force™ in a concurrent program they are often an
informative element to visnalize.

Our framework has three distinct, concurrent views: the
source-based view, the process-based view, and the
hardware-based view. For each view, the named element
remains static while the other elements animate around it.
Ey keeping one element stationary, one is able to see how
all of the other elements interact with the static element:
one gets a sense of “what life ig like™ from iis point of
view. Each view may also be collapsed to an icon if it is
not of interest to the nser.

The static version of the source-based view provides a
hierarchical call graph diagram of the source code
beginning atthe highest level of abstraction. The user
may manipulate this view and look at deeper levels in the
abstraction, including the code itself. This diagram
becomes a background for the animation, which appears

while the program is running. The animation represents
cach of the processes and their current location in the
diagram.

The process-based view contains a static representation of
each process with the software state (running, blocked, or
waiting) and hardware state (which CPU it is using)
animated during execution. The hardware-based view
shows a static diagram of the hardware (CPUs, memory,
and devices) with an animated representation of each
process indicaiing which resources a process is using.

A Prototype Implementation

We implemented a prototype of this framework, called
“Paradocs,” Tor the source-based and process-based views
using the language Turing Plus [Holt and Cordy 1988]
(which is similar to Ada or Modula III} on a Sun 3/60
using the X Window System [Scheifler and Gettys 1986].
Before compilation, the source code was parsed to obtain
the static information for these views. ‘The dynamic
information vsed in the animation was captured by
inserting light-weight calls to Paradocs in the source code
during the parsing phase. A more benign approach using
special hardware was unnecessary at the prototype stage
because the programs we visualized were unaffécted by the
changes in the code.

Since the animation is tied directly 10 program execution, -
it always indicates the current state of the program. The
user adjust the speed and even stop the program (and thus
the animation) at any time through the use of a control
panel (Figure. 2). Our “Replay” feature allows the user to
stop the program and watch a section of the animation
again at a different speed, cither forwards or backwards.

Figure 3 shows the static source-based view for an
example program solving the Dining Philosopher's
Problem [Dijkstra 1965]. Each rectangular icon with a
drop-shadow represents a module. The module with the
double border, labelled “Chopsticks,” is a monitor [Hoare
1974]. A monitor is a special kind of module which
faciliates process synchronization by allowing only one
process o execute within it at any time. In the diagram,
the module called “Output™ has been opened by the user 1o
reveal the data and subroutine that it encapsulates (which
may in tun be opened). The user has also selected the
info button for this. module, which revealed. a pop-up
window explaining the module's function. This
information was gathered from the module's leading
comments, extracted when the source code was parsed.

ISpeed: 20%|

[Live Mode |

[Run Reverse | Fast

SN Replay Mode .

Figore 2:

The Paradocs Control Panel (program stopped in replay mode)

Main

Output info

| psi

Figure 3:

When the program is running, each new process appears
on the diagram as a numbered, coloured circle. The
circle's number corresponds to the process's number and
different colours are used to visually differentiate each of
the processes. For a given process, the circle appears in
the jcon representing the module or subroutine where the
process is currently executing. If many circles appear
inside an icon then a high degree of paratlelism is being
achieved in that area.

fl The Output Module
? Isends status
messages from

g (ot her modules to

g [the output devices.

The Paradocs

{Queue for waiting

Static Source-Based View

Processes entering a monitor must queue since only one
is allowed inside at a2 time. Figure 4 shows whers the
circles are positioned depending on their statns. The one
process cumrently executing in the monitor appears inside
the icon while the processes waiting to enter the monitor
for the first time appear on top of the icon at the point of
the incoming atrow. If a process running in the monitor
is blocked on a condition then it must move outside the
manitor to a condition gueue and wait to be signalled by

- .- processes that have| = [Entry queue for processes |
|signalled others trying to enter the moniter
- for the first time

IProcess blocked
n a concition

Two queues
> for blocked
processes

Process executing in the monitor|

Figure 4 Processes Quening Around a Monitor

— 132 -

y one
e the
8 one
nside
mitor
int of
ynitor
1e the
ed by

another process. The condition queue appear along the
sides of the monitor icon with a separate queue for each
condition. ‘When one process signals another that bis
blocked, the signaliing process immediately leaves the
menitor, thus allowing the blocked process to run. The
signaller waits temporarily in a queue at ihe top left
cornter of the icon,

The source-based view is useful for showing problems
with recursion and process synchronization since the state
of each process is visible at all times. A process in
infinite recursion will appear to continuously re-enter a
subroutine, while a poorly synchronized algorithm will
have many processes queueing at a monitor and a low
degree of parallelism. Table 1 summarizes some ways in
which the views in this framework may be uscd to
analyze concurrent program behavionr.,

The process-based view uses a notation consistent with
the source view: the static representation of a process is a
large, numbered, coloured circle, Each large circle in the
process-based view cormresponds to one of the animated
circles in the source view and the same colour is used for
quick visual identification. A circle appears when a new

process is forked and remains visible for the life of the
process. The large process circle may be moved to any
position on the screen that the user desires, or it may be
collapsed into an icon if it is not of interest. Figure 5
shows the process view positioned for the Dining
Philosophers Problem to reflect the circular arrangement
of philosophers.

When the program runs, the process-based view indicates
the state of each process and its position in the code. The
state of each process is expressed by its border, with a
solid border showing that the process is running on a
CPU, while an idle process will have a discontinuous
border. In Figure 5, processes 2 and 4 are using CPLJ
while processes 1, 3, and 5 are not. The thickness of the
border indicates the process's software state: processes
ready to run have a thin border, medium borders show a
process that is waiting, and blocked processes use a thick
border, The latter two states do not require a CPU so they
are likely to appear as discontinuous lines. Line
thickness and continuity were chosen to represent these

- items becaunse they easily catch the eye and draw attention

to blocked and CPU-starved processes.

Activity / Views
Problem Source-Based Process-Based Hardware-Based
’_ISeep process remains in the same | call stack grows very large, | high CPU usage
Recursion place; upon close inspection § but eventually peaks and
it appears to re-enter the begins shrinking
same procedure repeatedly _
Infinite process remains in the same | call stack grows without high CPU usage
Recursion place; upon close inspection } bound :
it appears to re-enter the
same procedure repeatedly
Infinite a group of processes move in a cyclic pattern of
Chatter a cyclic pattern without process/processor
- making anv progress . ‘ communication
Deadlock processes appear motionless, §all processes are blocked CPUs are idle
waiting on conditions. outs:de (bave thick borders); no
monitors process can signal them
Starvation ONe O MOKES processes cerlain processes never certain processes never use
remains motionless, blocked 1 unblock (always have thick | CPU
on a condition border) _ L
Slow process reinains motionless | processes remain in same a particular process uses a
Device in a particular area state or take a long time to | device excessively
Access) change state
Long a process remains motionless | the process continues to use
Comput- in an area; close inspection { CPU
ation shows that it is simply
n executing a lot of code
Poor processes spend a lot of time § lots of processes in wait state | low CPU usage
Synchron- 1n a monitor; many processes | (medium thick border)
ization are trying to get in

Table 1:

Activities and Problems Indicated by Views

Figure 6 shows two processes from the Dining
Philosophers Program. Process 2 on the left is running

on a CPU since it has a thin, solid border. The names of

the module and procedure where it is currently executing
are shown at the top and bottom of the circle while the

left side shows a diamond shaped icon indicating the CPU -
where the process is running. The icon at the right of the -

circle shows the current number of levels of subroutine
nesting for the process. Process 3 on the right has a thick
discontinuous border which quickly identifies it as a
blocked process that is not asing a CPU. The additional
box at the bottom of the circle gives the name of the
condition that it is blocked on. ‘

User Testing

A common complaint about PV systems is that they are
simply toys and that they are not useful outside the
limited domain of novice to intermediate computer science
instruction. “Proving” the usefulness of a PV system as
a software engineering tool, however, is a difficalt task.
The scientific method states that the only way to prove a
hypothesis is to test it through reproducible experiments,
yet few authors have checked their systems with formal
user testing experiments. One reason for this is the lack
of good experimental methodology in the field of software
psychology, which has been described as “an unholy
mixture of mathematics, literary criticism, and folklore”
[Sheil 1981).

Figure 5:

Source-Based and Process-Based Views Positioned By User

(Dining Philosophers Problem)

- 134 —

are
the
nce
1 as
ask.
ve a
nits,
‘mal
lack
ware
holy

¥

ore

Figure 6:

We performed a user esting experiment using Paradocs to
determine if it aided in software comprehension for a large
modular program. We chose a debugging task to test
program comprehension (since one must unsually
understand a program in order to debug it). Based on
experience with pilot subjects and advice from experts, we
inserted a bug in a large {7500 lines in 12 modules)
operating system simulator called Mini Tunis. We used a
between-subjects strategy: one group attempted to find
the bug using conventional methods while the second
group used Paradocs.”

The subject pool consisted of graduate and senior
undergraduate students taking a computer science course
on operating systems. Al of the students had been
working with Mini Tunis for six weeks while doing
course assignments. A total of 20 volunteers from the
class were tandomly assigned to two groups: the controi
group (using conventional tools) and the Paradocs group.
Each group had identical preparation for the experiment,
including a familiarization session with Paradocs.

Both groups began using conventional debugging tools to

_solve the .problem, but at the fifteen minute mark the

Paradocs group was allowed to use Paradocs to continue
debugging. Subjects from either group who did not find

condlei_on

Two Processes in Process-Based View

the bug after forty-five minutes were stopped and they
were recorded as not finding the bug.

The initial fifteen minute period was designed to catch
high-ability subjects who could find the bug with or
without software aids, Two subjects (one from each
group) found the bug before the fifteen minnte mark, and
their resuits were not counted further. Of the remaining
nine subjects in each group, the raw numerical results for
both groups were identical: five subjects found the bug
within forty-five minutes and four subjects did not find
the bug (the mean and medium times to compleuon were
also identical).

The apparently neutral results only represent a portion of
the data, however. All of the sessions were videotaped
and the subjects were asked to “think aloud” as they
worked. A basic analysis of the videotape revealed that
some of the subjects who ran out of time were “close”™ to
finding the bug: those in the conrtrol group were
examining the routine containing the bug while those in
the Paradocs group were replaying the animation at the
point where the bug was occarring. The verbal protocol
from these subjects revealed that they understood the cause

of the problem and would lixely have found the bug.

The remainder of the subjects who ran out of time were

Control Paradocs
Solved 3 5
“Close” 1 3
“Lost” 3 1

Tahle 2:

Numerical User Testing Results

clearty “lost” and had little hope of finding the bug. The
verbal protocol analysis indicated that they had little idea
as to the cause of the bug and the videotape indicated that
they were looking in the wrong area of the program.
Table 2 shows the numerical results for those who found
the bug, were “close,” or were “lost.”

Further analysis of the videotape revealed that subjects in
the Paradocs group had more insights into the cause of the
bug and made more leaps of understanding than those in
the control group. Paradocs subjects had a great deal more
confidence in their verbal assertions whereas control
subjects tended to guess at conjectures without any
evidence. Paradocs subjects also made extensive use of
the “replay™ feature to narrow down the location of the
bug, as shown by the following excerpt from the
transcript of a session:

Ch, something interesting
here. —indicates process betng
signalled—rewinds animation and
replays the sequence again slowly—
That’s not supposed to
happen! The init process
already signallied ancther
envelope to come in, so the
bug is somewhere here.. —
indicates subroutine where bug has
been inserted

Many Paradocs subjects also spent a ot of time staring at
the animation in an almost mesmerized state. This was

probably due to their lack of familiarity with the system

and it likely contributed to their debugging time.

Conclusions

We have argued that the capabilities of modern
workstation technology far exceed the degree to which
they are exploited by program visualization interface
designers. We have also asserted the need for automatic
concurrent program visualization systems as software
engineering tools. By building a prototype system based

on a systematic framework and performing user testing =

experiments, we have illustrated that program
visualization can benefit from an organized rather than an
ad hoc approach. Despite the serious problems with
methodology, it is important for PV system designers to
scrutinize their work through experimenis, even if the
mesults are only qualitative.

Researchers developing concurrent PV systems must be
careful to use benign methods in sensitive systems and
address the issues of different architectures and paradigms.
While scroiling and zooming techniques may work well
in simple documents, automatic PV systems must
provide tools for effective navigation through the
enormous information spaces of large software projects.
Despite these tesearch issues, our work suggests that the
effective uge of graphic design principles, colour, and
audio will lead to concise and expressive notations for
communicating about complex computer programs.

Acknowledgments

We are indebted to Abigail Sellen for her advice on the
design of user testing experiments. We also wish to
thank the Natural Sciences and Engincering Resgarch
Council of Canada, the Information Technology Research
Centre of the Province of Ontario, and Apple Computer,

Ine. for their support,

References

{Baecker 1981]

[Baecker and Marcus 19901 -

[Brooks _1987]

Brown 1988]

[Brown 1988]

[Delisle and Schwartz 1986]

[Dijkstra 1965]

[Eisenstadt and Brayshaw 1987]

- 136 —

_ Netherlands. 1965.

Baecker, Ronald M. Sorting Qut Sorting.
Dynamic Graphics Project, Computer
Systems Research Institute, University of
Toronto. 16 mm colour sound film, 25
minutes, presented at ACM SIGGRAPH
‘81, 1981.

Baecker, Ronald M., and
Aaron Marcus. Human. Factors and
Typography for More Readable Programs.
Reading, MA: Addison-Wesley, 1990.

Brooks, Fred P. “No Silver Bullet: Essence
and Accidents of Software Engingering.”
IEEE Computer 20(4): 10-19, 1987. ‘

Brown, Marc H. Algorithm Animation.
ACM Distinguished Dissertations.
Cambridge, MA: MIT Press, 1988,

Brown, Marc H. “Perspectives on
Algorithm Animation.” In Proceedings of .
CHI ‘88 Human Factors in Computing .
Systems, pages 33-38, Washingtan, D.C,,

May 15-19, 1988, '

Delisle, Norman, and -
Mayer Schwartz. “A Programming '
Environment for CSP.” In Proceedings of -
ACM SIGSOFTISIGPLAN Software
Engineering Svmposium on Practical |
Software Development Environments,
pages 34-41, Palo Alio, CA, December 9- -
11, 1986, Published In ACM SIGPLAN -
Notices 22(1), January 1987.

Dijkstra, EXW. “Cooperating Sequential
Processes,” Technical Report EWD-123, .
Technological University, Eindhoven, The |

Eisenstadt, Marc, and.
Mike Brayshaw, “The Transparent Prolog

Machine,” Technical Report 21a, Homan -
Cognition Reseéarch Laboratory, Opei
University, Milton Keynes, England. 1987.

[Gaver and Smith 1990] Gaver, William W., and Randall
B. Smith. *“Auditory Icons in Large-Scale
Collaborative Environments.” In
Proceedings of Human Computer
Interaction — Interact '90, pages 735-740,
Cambridge, UK., August 27-31, 199G.

Haibt, Lois M. “A Program to Draw
Multi-Level Flow Charts.” In Proceedings
of The Western Joint Computer
Conference, pages 131-137, San Francisco,
CA, March 3-5, 1959,

[Haibt 1959]

(Hoare 1978] Hoare, C. A. R. “Communicating
Sequential Processes.” Communications of
the ACM 21(8): 666-677, August, 1978.
[Hoare 1974] Hoare, C.AR. “Monitors: An Operating
Systemm Structuring Concept.”
Communications of the ACM 17(10):
549-557, October, 1974,

[Holt and Cordy 1988] Holt, Ric C., and James R.
Cordy. “The Turing Programming
Langnage.” Comumunications of the ACM
31(12): 1410-1423, December, 1988.

[Isoda et al. 1987] Isoda, Sadahiro et al. “VIPS: A
Visual Debugger.” IEEE Software 4(3): 8-
19, May, 1987.

[Knowlton 1966] Knowlton, Kenneth C, L6: Bell
‘ Telephone Laboratories Low-Level Linked
List Language. Technical Information
Laboratories, Bell Laboratories, Inc. 16
mm black and white sound film, 16
minutes. 1966. '
[Myers 1990] Myers, Brad A. “Taxonomies of Visual
Programming and Program Visualization.”
Journal of Visual Languages and
Compuring 1(1): 97-123, March, 1990,

Myers, Brad A. “Visual Programming,
Programming by Example, and Program
Visnalization: A Taxonomy.” In
Proceedings of CHI ‘86 Human Factors in
Computing Systems, pages 59-66, Boston,
MA, April 13-17, 1986.

[Myers 1986]

[Myers et al, 1988] Myers, Brad A. et al. “Automatic
' ' Data Visualization for Novice Pascal
Programmers.” In Proceedings of The
IEEE Workshop on Visual Languages,
pages 192-198, The University of
Pitésaburgh, Pennsylvania, October 10-12,

1988.

- 137 -

‘[Socha et al. 1989]

Reiss, Steven P. “Pecan: Program
Development Systems that Support
Multiple Views.” IEEE Transactions on
Software Engineering 11(3): 276-285,
March, 1985,

fReiss 1985]

[Scheifler and Gettys 1986] Scheifler, RW., and J.
Gettys. “The X Window System”, ACM

Transactions on Graphics 5(2): 79-109, ‘:7' ‘

April, 1986,

Sheil, B.A. “The Psychological Study of
Programming.” ACM Computing Surveys
13(1): 101-120, 1981.

[Sheil 1981]

Socha, David et al. *“Voyeur:
Graphical Views of Parallel Programs.”
ACM SIGPLAN Notices 24(1): 206-215,
January, 1989,

Tufte, Edward Rolf. Envisioning
Infarmation. Cheshire, CT: Graphics
Press, 1990.

[Tufte 1990]

[Zimmermann et al. 1988] Zimmermann, M. et al.
“Understanding Concurrent Programming
through Program Animation.” In
Proceedings of The Nineteenth ACM
SIGCSE Technical Symposium on
Computer Science Education, pages 27-35,
Atlanta, GA, 1988, Published In ACM
SIGCSE Bullezin 20(1), February 1988,

