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The week at a glance

Sunday: 14:00–21:00 Arrival and registration in Collingwood College
(Conference office in Room CM103 from Monday)

19:00–21:00 Dinner in Collingwood

Monday Tuesday Wednesday Thursday Friday

07:45 Breakfast in Breakfast in Breakfast in Breakfast in Breakfast in
Collingwood Collingwood Collingwood Collingwood Collingwood

09:00 WELCOME

09:15 Sokal Seymour Scott Österg̊ard Steger
CG93 CG93 CG93 CG93 CG93

10:15 Refreshments Refreshments Refreshments Refreshments Refreshments

10:45 Contributed Contributed Contributed Contributed Contributed
talks talks talks talks talks

(4 slots) (4 slots) (4 slots) (4 slots) (4 slots)

12:30 Lunch in Lunch in Lunch in Lunch in Lunch in
Collingwood Collingwood Collingwood Collingwood Collingwood

13:30 Excursion to Editorial
Beamish Museum meeting

14:00 Contributed Contributed Contributed Contributed
talks talks talks talks

(5 slots) (5 slots) (3 slots) (2 slots)
15.00 Green

CG93
15:15 Problem

session
CG93

16:00 Refreshments Refreshments Refreshments Refreshments

16:30 King Serra Penttila END
CG93 CG93 CG93

17.45 Business
meeting
CG93

18:30 Reception in Reception in
Collingwood Collingwood

JCR JCR
19:00 Dinner in Dinner in CONFERENCE

Collingwood Collingwood DINNER
19:15 Dinner in Collingwood

Collingwood Dining Hall

20:15 Durham
walking tour

20:30 ICA BCC committee
meeting meeting
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The programme in detail





Sunday

14:00–21:00 Arrival and registration in Collingwood College
(Conference office in Room CM103 from Monday)

19:00–21:00 Dinner in Collingwood

Monday

07:45–08:30 Breakfast in Collingwood

09:00–09:10 Welcome CG93

Sir Kenneth Calman, Vice Chancellor

09:15–10:15 Alan Sokal (Chair: Mark Jerrum) CG93

The multivariate Tutte polynomial (alias Potts model)
for graphs and matroids

10:15–10:45 Refreshments

10:45–12:20 Contributed talks (4 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

12:30–13:30 Lunch in Collingwood

14:00–16:00 Contributed talks (5 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

16:00–16:25 Refreshments

16:30–17:30 Oliver King (Chair: Bridget Webb) CG93

The subgroup structure of finite classical groups
in terms of geometric configurations

18:30–19.00 Reception in Collingwood JCR

19:15–20:15 Dinner in Collingwood

20:30 ICA meeting
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Monday morning contributed talks
CG93

10:45–11:05 M. Johnson

Connectedness of graphs of vertex-colourings

11:10–11:30 L. Cereceda

Connectedness of graphs of 3-colourings

11:35–11:55 P. Wang

The equitable colouring of plane graphs with large girth

12:00–12:20 R. Häggvist

A ∆ + 4 bound on the total chromatic number for graphs

with chromatic number on the order of
√

∆/ log ∆

CG60

10:45–11:05 M. Cera

Average degree and extremal problems for infinite graph

11:10–11:30 P. Garćıa-Vazquez

Optimal restricted connectivity and superconnectivity
in graphs with small diameter

11:35–11:55 X. Marcote

On the connectivity of a product of graphs

12:00–12:20 J.C. Valenzuela

New results on the Zarankiewicz problem

CG83

10:45–11:05 D.H. Smith

Cyclically permutable codes and simplex codes

11:10–11:30 S.K. Houghten

Bounds on optimal edit metric codes

11:35–11:55 T. Maruta

On optimal non-projective ternary linear codes

12:00–12:20 M. Shinohara

Constructing linear codes from some orbits of projectivities
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CG85

10:45–11:05 A. Yeo

Total domination in graphs

11:10–11:30 M.D. Plummer

Domination in a graph with a 2-factor

11:35–11:55 V.E. Zverovich

A generalised upper bound for the k-tuple domination number

12:00–12:20 D. Mojdeh

Domination number of some 3-regular graphs

CG232

10:45–11:05 A. de Mier

The lattice of cycle flats of a matroid

11:10–11:30 M. Jerrum

Two remarks concerning balanced matroids

11:35–11:55 C.J. Colbourn

Covering Arrays of Strength Two

12:00–12.20 R.A. Walker II

Tabu search for Covering Arrays using permutation vectors

Summary of Monday morning speakers

CG93 CG60 CG83 CG85 CG232

10:45–11:05 M. Johnson Cera Smith Yeo de Mier
11:10–11:30 Cereceda Garćıa-Vazquez Houghten Plummer Jerrum
11:35–11:55 Wang Marcote Maruta Zverovich Colbourn
12:00–12:20 Häggvist Valenzuela Shinohara Mojdeh Walker II
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Monday afternoon contributed talks
CG93

14:00–14:20 S. Ball

A new approach to finite semifields

14:25–14:45 A. Cossidente

Ovoids of the Hermitian surface and derivations

14:50–15:10 G. Marino

Special sets of the Hermitian surface and Segre invariants

15:15–15:35 R. Shaw

Grassmann and Segre varieties over GF(2): some graph theory links

15:40–16:00 T.L. Alderson

Optical orthogonal codes: new constructions

CG60

14:00–14:20 K. Cameron

Coflow and covering vertices by directed circuits

14:25–14:45 K. Mynhardt

Maximal increasing paths in edge-ordered trees

14:50–15:10 Y. Egawa

Existence of disjoint cycles containing specified vertices

15:15–15:35 K. Yoshimoto

The number of cycles in 2-factors of line graphs

15:40–16:00 J. Fujisawa

Long cycles passing through a linear forest

CG83

14:00–14:20 D. Kahrobaei

A graphic generalisation of Arithmetic

14:25–14:45 M. Tsuchiya

Chordal double bound graphs and posets

14:50–15:10 A. Lev

Bertrand Postulate, the Prime Number Theorem and product
anti-magic graphs

15:15–15:35 H. Fernau

A sum labelling for the flower fq,p

15:40–16:00 C. Balbuena

Consecutive magic graphs
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CG85

14:00–14:20 B.S. Webb

Representing (d, 3)-tessellations as quotients of Cayley maps

14:25–14:45 A.V. Gagarin

Structure and enumeration of toroidal and projective-planar
graphs with no K3,3’s

14:50–15:10 M. Šajna

Self-complementary two-graphs and almost self-complementary
double covers over complete graphs

15:15–15:35 G. Mazzuoccolo

Doubly transitivity on 2-factors

15:40–16:00 E.V. Konstantinova

Reconstruction of permutations from their erroneous patterns

CG232

14:00–14.20 P.E. Chigbu

Admissible permutations for constructing Trojan squares
for 2n treatments with odd-prime n side

14:25–14.45 A. Drápal

surgeries on latin trades

14:50–15:10 A.D. Keedwell

A new criterion for a Latin square to be group-based

15:15–15:35 L.-D. Öhman

The intricacy of avoiding arrays

15:40–16.00 N. Cavenagh

A superlinear lower bound for the size of a critical set
in a latin square

Summary of Monday afternoon speakers

CG93 CG60 CG83 CG85 CG232

14:00–14:20 Ball K. Cameron Kahrobaei Webb Chigbu
14:25–14:45 Cossidente Mynhardt Tsuchiya Gagarin Drápal
14:50–15:10 Marino Egawa Lev Šajna Keedwell

15:15–15:35 Shaw Yoshimoto Fernau Mazzuoccolo Öhman
15:40–16:00 Alderson Fujisawa Balbuena Konstantinova Cavenagh
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Tuesday

07:45–08:30 Breakfast in Collingwood

09:15–10:15 Paul Seymour (Chair: Nigel Martin) CG93

The structure of claw-free graphs

10:15–10:45 Refreshments

10:45–12:20 Contributed talks (4 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

12:30–13:30 Lunch in Collingwood

14:00–16:00 Contributed talks (5 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

16:00–16:25 Refreshments

16:30–17:30 Oriel Serra (Chair: Peter Rowlinson) CG93

An isoperimetric method for the small subset problem

17.45–18.30 Business meeting in CG93

19:00–20:00 Dinner in Collingwood

20:15 Durham walking tour
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Tuesday morning contributed talks
CG93

10:45–11:05 J.E. Dunbar

One small step towards proving the PPC

11:10–11:30 M. Frick

A new perspective on the Path Partition Conjecture

11:35–11:55 K.L. McAvaney

The Path Partition Conjecture

12:00–12:20 D.A. Pike

Pancyclic PBD block-intersection graphs

CG60

10:45–11:05 P. Butkovič

Max-algebra: the linear algebra of combinatorics?

11:10–11:30 M. Giudici

All vertex-transitive locally-quasiprimitive graphs have
a semiregular automorphism

11:35–11:55 A. Miralles

On the Frobenius problem of three numbers: Part I

12:00–12:20 F. Aguiló

On the Frobenius problem of three numbers: Part II

CG83

10:45–11:05 F. Benmakrouha

Validation of a particular class of bilinear systems

11:10–11:30 P. Lisoněk

Combinatorial families enumerated by quasi-polynomials

11:35–11:55 R. Johnson

Universal cycles for permutations and other combinatorial
families

12:00–12:20 M. Nakamura

Broken circuits and NBC complexes of convex geometries
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CG85

10:45–11:05 M. Luz Puertas

On the metric dimension of graph products

11:10–11:30 O. Oellermann

The strong metric dimension of graphs

11:35–11:55 P. Dankelmann

Distance and Inverse Degree

12:00–12:20 C. Seara

On monophonic sets in graphs

CG232

10:45–11:05 L. Gionfriddo

Hexagon Biquadrangle systems

11:10–11:30 S. Küçükçifçi

Maximum packings for perfect four-triple configurations

11:35–11:55 E.J. Billington

Equipartite and almost-equipartite gregarious 4-cycle systems

12:00–12:20 K. Ushio

Balanced C4-quatrefoil designs

Summary of Tuesday morning speakers

CG93 CG60 CG83 CG85 CG232

10:45–11:05 Dunbar Butkovič Benmakrouha Luz Puertas Gionfriddo
11:10–11:30 Frick Giudici Lisoněk Oellermann Küçükçifçi
11:35–11:55 McAvaney Miralles R. Johnson Dankelmann Billington
12:00–12:20 Pike Aguiló Nakamura Seara Ushio
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Tuesday afternoon contributed talks
CG93

14:00–14:20 A.J.W. Hilton

(r, r + 1)-factorizations of multigraphs with high minimum degree

14:25–14:45 R.J. Waters

Some list colouring problems in the reals

14:50–15:10 F.C. Holroyd

Multiple chromatic numbers of some Kneser graphs

15:15–15:35 M. Škoviera

Factorisation of snarks

15:40–16:00 E. Máčajová

On the strong circular 5-flow conjecture

CG60

14:00–14:20 M. Liazi

Polynomial variants of the densest/heaviest k-subgraph problem

14:25–14:45 K. Vušković

Combinatorial algorithm for finding a clique of maximum weight
in a C4-free Berge graph

14:50–15:10 S. Zenia

Quasi-locally P ∗(ω) graphs

15:15–15:35 H. Ait Haddadène

Perfect graphs and vertex colouring problem of a graph

15:40–16:00 B. Yalaoui

On related combinatory problems in information cartography

CG83

14:00–14:20 C. Elsholtz

Maximal sets of unit-distance points

14:25–14:45 C.H. Cooke

Bounds on element order in rings Zm with divisors of zero

14:50–15:10 S. Bouroubi

Bell’s number in the Alekseev inequality

15:15–15:35 I-C. Huang

Variable changes in generalized power series

15:40–16:00 C.G. Rutherford

Coprime polynomials over GF (2)
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CG85

14:00–14:20 Z. Radosavljević

On bicyclic reflexive graphs

14:25–14:45 D. Cvetković

Signless Laplacians and line graphs

14:50–15:10 S.K. Simić

Some new results on the index of trees

15:15–15:35 F. Bell

On graphs with least eigenvalue -2

15:40–16:00 P. Rowlinson

Independent sets in extremal strongly regular graphs

CG232

14:00–14:20 E. Ş. Yazici

Minimal homogeneous Steiner triple trades

14:25–14:45 A.P. Street

Defining sets of full designs and other simple designs

14:50–15:10 J.C. Bate

Group Key distribution Patterns

15:15–15:35 S. Huczynska

Frequency Permutation Arrays

15:40–16.00 M. Sawa

An additive structure of BIB designs

Summary of Tuesday afternoon speakers

CG93 CG60 CG83 CG85 CG232

14:00–14:20 Hilton Liazi Elsholtz Radosavljević Yazici
14:25–14:45 Waters Vušković Cooke Cvetković Street
14:50–15:10 Holroyd Zenia Bouroubi Simić Bate
15:15–15:35 Škoviera Ait Haddadène I-C. Huang Bell Huczynska
15:40–16:00 Máčajová Yalaoui Rutherford Rowlinson Sawa
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Wednesday

07:45–08:30 Breakfast in Collingwood

09:15–10:15 Alex Scott (Chair: Graham Brightwell) CG93

The Rado Lecture
Judicious partitions and related problems

10:15–10:45 Refreshments

10:45–12:20 Contributed talks (4 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

12:30–13:30 Lunch in Collingwood

13:30–18.30 Excursion to Beamish Museum

19:00–20:00 Dinner in Collingwood

20:30 BCC committee meeting
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Wednesday morning contributed talks
CG93

10:45–11:05 A. Berrachedi

Cycle regularity and Hypercubes

11:10–11:30 S. Ouatiki

On the domatic number of the 2-section graph of the
order-interval hypergraph of a finite poset

11:35–11:55 P.-G. Tsikouras

Dominating sequences and traversals of ordered trees

12:00–12:20 H. Matsumura

On spanning trees with degree restrictions

CG60

10:45–11:05 O. Pikhurko

Fragmentability of bounded degree graphs

11:10–11:30 J. Wojciechowski

Edge-bandwidth of grids and tori

11:35–11:55 B. Zmazek

Retract-rigid strong graph bundles

12:00–12:20 J. Žerovnik

Hypercubes are distance graphs

CG83

10:45–11:05 R.F. Bailey

Permutation groups, error-correcting codes and uncoverings

11:10–11:30 J. Moori

Codes, Designs and Graphs from Finite Simple Groups

11:35–11:55 M.J. Grannell

A flaw in the use of minimal defining sets for secret
sharing schemes

12:00–12:20 U. Grimm

On the number of power-free words in two and three letters
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CG85

10:45–11:05 H.J. Broersma

Matchings, Tutte sets, and independent sets

11:10–11:30 G. Rinaldi

One-factorizations of the complete graph with
a prescribed automorphism group

11:35–11:55 N.E. Clarke

The ultimate isometric number of a graph

12:00–12:20 D.F. Manlove

“Almost stable” matchings in the Roommates problem

CG232

10:45–11:05 Q. Kang

More large sets of resolvable MTS and DTS

11:10–11:30 W-C. Huang

The Doyen-Wilson Theorem for Extended Directed Triple
systems

11:35–11:55 J. Arhin

On the structure of equireplicate partial linear spaces
with constant line size

12:00–12:20 A. Vietri

Difference families from infinite translation designs

Summary of Wednesday morning speakers

CG93 CG60 CG83 CG85 CG232

10:45–11:05 Berrachedi Pikhurko Bailey Broersma Kang
11:10–11:30 Ouatiki Wojciechowski Moori Rinaldi W-C. Huang
11:35–11:55 Tsikouras Zmazek Grannell Clarke Arhin
12:00–12:20 Matsumura Žerovnik Grimm Manlove Vietri
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Thursday

07:45–08:30 Breakfast in Collingwood

09:15–10:15 Patric Östergard (Chair: Stephanie Perkins) CG93

Constructing combinatorial objects via cliques

10:15–10:45 Refreshments

10:45–12:20 Contributed talks ( 4 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

12:30–13:30 Lunch in Collingwood

13:30–14:30 Editorial meeting

14:00–15:10 Contributed talks (3 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

15:15–16.00 Problem session in CG93

16:00–16:25 Refreshments

16:30–17:30 Tim Penttila (Chair: Simeon Ball)

Flocks of circle planes

18:30–19:00 Reception in Collingwood JCR

19:00 Conference Dinner in Collingwood Dining Hall
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Thursday morning contributed talks
CG93

10:45–11:05 G. Sabidussi

Deletion-similarity versus similarity of edges in graphs
with few edge-orbits

11:10–11:30 M. Priesler

Partitioning a graph into two pieces each isomorphic to
the other or to its complement

11:35–11:55 H.C. Swart

Minimal claw-free graphs

12:00–12:20 I.A. Vakula

claw-free graphs with non-clique µ-subgraphs and
related geometries

CG60

10:45–11:05 M.G. Parker

Graph equivalence from equivalent quantum states

11:10–11:30 A. Mohammadian

On the zero-divisor graph of a ring

11:35–11:55 N. Lichiardopol

Cycles in a touirnament with pairwise zero, one or two
given common vertices

12:00–12:20 R. Tsaur

Contractible digraphs, fixed cliques and the Cop-robber games

CG83

10:45–11:05 A.C. Burgess

Colouring even cycle systems

11:10–11:30 I. Anderson

A general approach to constructing power-sequence
terraces for Zn

11:35–11:55 L. Ellison

Logarithmic terraces

12:00–12:20 D.A. Preece

Some Zn+2 terraces from Zn power-sequences, n being
an odd prime power
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CG85

10:45–11:05 E.L.C. King

Comparing subclasses of well-covered graphs

11:10–11:30 C.A. Whitehead

Minimum dominating walks on graphs with large
circumference

11:35–11:55 E. Prisner

k-pseudosnakes in n-dimensional hypercubes

12:00–12:20 A. Finbow

On well-covered planar triangulations

CG232

10:45–11:05 L.A. Goldberg

Approximate counting: Independent sets and Ferromagnetic
Ising

11:10–11:30 V. Grout

Initial results from a study of probability curves for
shortest arcs in optimal ATSP tours with application
to heuristic performance

11:35–11:55 N. Zagaglia-Salvi

On very sparse circulant (0,1) matrices

12:00–12:20 A. Alipour

Negative Hadamard Graphs

Summary of Thursday morning speakers

CG93 CG60 CG83 CG85 CG232

10:45–11:05 Sabidussi Parker Burgess King Goldberg
11:10–11:30 Priesler Mohammadian Anderson Whitehead Grout
11:35–11:55 Swart Lichiardopol Ellison Prisner Zagaglia-Salvi
12:00–12:20 Vakula Tsaur Preece Finbow Alipour
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Thursday afternoon contributed talks
CG93

14:00–14:20 S. Brandt

Triangle-free graphs whose independence number equals
the degree

14:25–14:45 T. Kaiser

The circular chromatic index of graphs of high girth

14:50–15:10 D. Paulusma

The computational complexity of the parallel
knock-out problem

CG60

14:00–14:20 B. Montágh

New bounds on some Turán numbers for infinitely many n

14:25–14:45 P. Borg

Graphs with the Erdös-Ko-Rado property

14:50–15:10 A. Abbas

A family of large chordal ring of degree six

CG83

14:00–14:20 F.E.S. Bullock

Connected, nontraceable detour graphs

14:25–14:45 J.E. Singleton

Maximal nontraceable graphs of small size

14:50–15:10 S.A. van Aardt

Maximal non-traceable oriented graphs
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CG85

14:00–14:20 M. Abreu

Graphs and digraphs with all 2-factors isomorphic

14:25–14:45 D. Labbate

Pseudo 2-factor isomorphic regular bipartite graphs

14:50–15:10 N. Martin

Unbalanced Kp,q factorisations of complete bipartite graphs

CG232

14:00–14:20 C. Merino

On the number of tilings of rectangles with T-tetraminoes

14:25–14:45 D. Stark

Random preorders

14:50–15:10 R.W. Whitty

Rook polynomials on 2-dimensional surfaces

Summary of Thursday afternoon speakers

CG93 CG60 CG83 CG85 CG232

14:00–14:20 Brandt Montágh Bullock Abreu Merino
14:25–14:45 Kaiser Borg Singleton Labbate Stark
14:50–15:10 Paulusma Abbas van Aardt Martin Whitty

29





Friday

07:45–08:30 Breakfast in Collingwood

09:15–10:15 Angelika Steger (Chair: Keith Edwards) CG93

The sparse regularity lemma and its applications

10:15–10:45 Refreshments

10:45–12:20 Contributed talks (4 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

12:30–13:30 Lunch in Collingwood

14.00–14.45 Contributed talks (2 slots) in 5 parallel sessions
Rooms CG93, CG60, CG83, CG85, CG232

15:00–16:00 Ben Green (Chair: Peter Cameron)

Finite field models in additive combinatorics

16:05–16:30 Refreshments

16:30 End of Conference
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Friday morning contributed talks
CG93

10:45–11:05 D.R. Woodall

Recent results on total choosability and edge colourings

11:10–11:30 C. Greenhill

Bounds on the generalised acyclic chromatic numbers
of bounded degree graphs

11:35–11:55 H. Bielak

Chromatic zeros for some medial graphs

12:00–12:20 T.J. Rackham

Local nature of Brooks’ colouring

CG60

10:45–11:05 V.I. Levenshtein

Reconstruction of graphs from metric balls of
their vertices

11:10–11:30 N. López

Eccentricity sequences and eccentricity sets
in digraphs

11:35–11:55 P. van den Berg

The number of edges in a bipartite graph of given
order and radius

12:00–12:20 M. Aı̈der

Balanced almost distance-hereditary graphs

CG83

10:45–11:05 C. McDiarmid

Random planar graphs and related structures

11:10–11:30 B.D. McKay

Short cycles in random regular graphs

11:35–11:55 D.B. Penman

Extremal Ramsey graphs

12:00–12:20 A. Jamshed

A degree constraint for uniquely Hamiltonian graphs
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CG85

10:45–11:05 L.K. Jørgensen

Extremal results for rooted minor problems

11:10–11:30 S. Bonvicini

Live one-factorizations and mixed translations
in even characteristic

11:35–11:55 A. Bonisoli

Factorizations with symmetry

12:00–12:20 I.M. Wanless

Perfect 1-factorisations and atomic Latin squares

CG232

10:45–11:05 P. Danziger

More balanced hill-climbing for triple systems

11:10–11:30 M. Dewar

Ordering the blocks of a design

11:35–11:55 Y. Fujiwara

Constructions for cyclic 4- and 5-sparse Steiner
triple systems

12:00–12:20 A.D. Forbes

6-sparse Steiner triple systems

Summary of Friday morning speakers

CG93 CG60 CG83 CG85 CG232

10:45–11:05 Woodall Levenshtein McDiarmid Jørgensen Danziger
11:10–11:30 Greenhill López McKay Bonvicini Dewar
11:35–11:55 Bielak van den Berg Penman Bonisoli Fujiwara
12:00–12:20 Rackham Aı̈der Jamshed Wanless Forbes
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Friday afternoon contributed talks
CG93

14:00–14:20 P.J. Cameron

An orbital Tutte polynomial

14:25–14:45 J.D. Rudd

Orbits of graph automorphisms on proper vertex colourings

CG60

14:00–14:20 P. Keevash

The rôle of approximate structure in extremal combinatorics

14:25–14:45 A. Sapozhenko

On the number of independent sets in graphs

CG83

14:00–14:20 H. Pollatsek

Quantum error correction codes invariant under
symmetries of the square

14:25–14:45 S. Severini

Permutations and Quantum Entanglement

CG85

14:00–14:20 C.A. Baker

Graphs with the n-e.c. adjacency property constructed
from affine planes

14:25–14:45 T.S. Griggs

Steiner triple systems and existentially closed graphs

CG232

14:00–14:20 T. Adachi

Construction of a regular group divisible design

14:25–14:45 H. Shen

Mendelsohn 3-frames and embeddings of resolvable
Mendelsohn triple systems

Summary of Friday afternoon speakers

CG93 CG60 CG83 CG85 CG232

14:00–14:20 P. Cameron Keevash Pollatsek Baker Adachi
14:25–14:45 Rudd Sapozhenko Severini Griggs Shen
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Abstracts of contributed talks





A family of large chordal ring of degree six

A. Abbas

(joint work with T. Bier)

MSC2000: 05C35

This paper discusses the covering property and the Uniqueness Property
of Minima (UPM) for linear forms in an arbitrary number of variables, with
emphasis on the case of three variables. It also studies the degree-diameter
problem for undirected chordal ring graphs of degree six. We focus upon
maximizing the number of vertices in the graph for given diameter and degree.
We improve the result in [1] by finding that the family of triple loop graphs
of the form G(6d2 − 2d + 1; 1; 3d + 1; 3d + 2) has a larger number of nodes
for diameter d than the family G(3d2 + 3d + 1; 1; 3d + 1; 3d + 2) given in
[1]. Moreover we show that both families have the Uniqueness Property of
Minima. This paper is going to answer the following questions

(1) What is the maximum number of nodes in a chordal ring of degree six
(triple loop graph) for given diameter d?

(2) What is Uniquness Property of Minima (UPM)?

(3) What is the bound for number of nodes in the triple loop graph for
diameter d ?

Reference.

[1] Yebra,J.L.A., Fiol, M.A., Morillo, P.,Alegre, I. The diameter of undirected
graphs associated to plane tesselations. Ars Combinatoria, 20B(1985), pp.
159-172.
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Graphs and digraphs with all 2–factors isomorphic

M. Abreu

(joint work with R. Aldred, M. Funk, B. Jackson, D. Labbate, J. Sheehan)

MSC2000: 05C70, 05C75, 05C20

Let U(k) be the family of all (connected) k–regular graphs G such that
G has a 2–factor and all 2–factors of G are isomorphic. We use BU(k) to
denote the set of graphs in U(k) which are also bipartite, HU(k) is the
set of graphs in U(k) which are also hamiltonian, and HBU(k) are those
graphs in U(k) which are also hamiltonian and bipartite.

In previous works the coauthors proved that BU(k) = ∅ for k ≥ 4 and
constructed an infinite family of graphs in HBU(3). Furthermore, they con-
jectured that all 3–connected graphs in HBU(3) belong to this family and
that all 3-connected graphs in BU(3) belong to HBU(3). Diwan has shown
that there are no planar graphs in HU(3).

Here we present the following results:

1. A digraph which contains a directed 2–factor and has minimum in–
degree and out–degree at least four has two non-isomorphic directed
2–factors.

And as a corollary

2. Every graph which contains a 2–factor and has minimum degree at least
eight has two non-isomorphic 2–factors. This is U(k) = ∅ for k ≥ 8.

In addition we construct: an infinite family of strongly connected
3–diregular digraphs with the property that all their directed 2–factors are
isomorphic, an infinite family of 2–connected 4–regular graphs with the prop-
erty that all their 2–factors are isomorphic, and an infinite family of cyclically
6–edge–connected cubic graphs with the property that all their 2–factors are
hamiltonian cycles.
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Construction of a regular group divisible design

T. Adachi

MSC2000: 05B05, 05B30, 05C20

In this talk, we characterize the combinatorial structure of some class of
group divisible (GD) designs and develop some new construction methods
leading to more GD designs.

For a singular GD design r = λ1 holds, while in case of a nonsingular GD
design r > λ1 holds. It may be natural to investigate the case of r = λ1 + 1,
since it may have some interconnecting property (the next saturated case)
between singular and nonsingular cases.

The combinatorial property of a GD design with r = λ1 + 1 was first in-
vestigated by Shimata and Kageyama (2002) who showed that a GD design
with r = λ1+1 must be symmetric and regular. Jimbo and Kageyama (2003)
completely characterized a GD design with r = λ1 +1 in terms of Hadamard
tournaments and strongly regular graphs. Furthermore, Adachi, Jimbo and
Kageyama (2003) characterized the combinatorial structure of GD designs
without “α-resolution class” in each group in terms of Hadamard tourna-
ments and strongly regular graphs. The result given by Jimbo and Kageyama
(2003) is included in the result given by Adachi, Jimbo and Kageyama (2003)
as a special case.

Here, we provide some constructions of regular GD designs based on such
characterization.
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On the Frobenius problem of three numbers: Part II

Francesc Aguiló

(joint work with A. Miralles and M. Zaragozá)

MSC2000: 05C20, 10A50, 11D04.

Given a set A = {a1, ..., ak} ⊂ N, with gcd(a1, ..., ak) = 1, let us define

R(A) = {
k∑

i=1

λiai| λ1, ..., λk ∈ N},

and R(A) = N\R(A). It can be easily seen that |R(A)| <∞. The Frobenius
problem related to A, FP(A), consists on the study of the set R(A). The
solution of FP(A) is the explicit description of R(A), however this is a difficult
task. Usually partial solutions are given, like the cardinal |R(A)| and/or the
Frobenius number f(A) = maxR(A).

We develop the ideas given in the Part I of this work to extend the method
given there. In the first work a method to solve FP(A) is given, provided
that the MDD related to A is a MDDE also. Now, in this second work, when
the MDD is not a MDDE, we propose a technique to find the MDDE from
the MDD.

Therefore parts I and II of this work give a generic method to solve
the Frobenius problem of three numbers. To give some applications of the
method, we solve several symbolical Frobenius problems which improve some
known results in the bibliography.
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Bipartite almost distance-hereditary graphs

Méziane Aı̈der

MSC2000: 05C12

The notion of distance-hereditary graphs has been extended to construct
the class of almost distance-hereditary graphs (an increase of the distance
by one unit is allowed by induced subgraphs). These graphs have been char-
acterized in terms of forbidden induced subgraphs. Since the distance in
bipartite graphs can not increase exactly by one unit, we have to adapt this
notion to this case.

In this talk, we define the class of bipartite almost distance-hereditary
graphs (an increase of the distance by two is allowed by induced subgraphs).
We obtain a characterization of these graphs in terms of forbidden induced
subgraphs.
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Perfect graphs and vertex colouring problem of a graph

H. Ait Haddadene

MSC2000: 05C85, 68Q20

The concept of perfect graph was introduced by C.Berge at the beginning
of the Sixties, introduced it while being interested in work of C.Schannon in
information theory on the capacity of a channel of communication. He had
defined:A graph γ-perfect (respectively α-perfect) as being a graph such as,
for any induced subgraph H of G, the chromatic number γ(H) of H is equal
to the size ω(H) of a largest clique of H (respectively cardinality minimum
θ(H) of a cover by cliques of H is equal to the size α(H) of largest stable). It
proposed two conjectures: The first known as being the weak conjecture of
the perfect graphs was shown by L.Lovasz (1972) and was become since the
theorem of perfect graph: “A graph G is γ-perfect if and only if G is α- per-
fect”. These two concepts became since identical and are signed by perfect
graph. The second is known as the strong perfect graph conjecture: A graph
is perfect if and only if it contains no odd hole and no odd antihole (a hole is
a chordless cycle of length at least four and an antihole is the complementary
graph of a hole). M.Chudnovsky et al are proved the strong perfect graph
conjecture in 2002 and it became the strong perfect graph theorem.A color-
ing of the vertices of a graph G with ω(G) colors is called optimal coloring
or minimum coloring of the graph G. The problem to determine an optimal
coloring of a graph is NP-complete. This problem becomes polynomial in
the case of the perfect graphs. Grotschel et al (1984) developed polynomial
algorithm to solve this problem for the whole of the perfect graphs. This
algorithm uses an alternative of the method of the ellipsoids for the resolu-
tion of linear programs. The interest of the result of Grotschel et al is not
algorithmic so much. Indeed their algorithm is not practically effective, be-
cause it do not take account of the combinatorial structure of perfect graphs.
Thus, the search for very effective polynomial algorithms to solve this prob-
lem in the case of the perfect graphs or, more modestly, in subfamilies of
perfect graphs continues to have a practical interest.In this paper, we will
try to present the history of the advance of the study of perfect graphs and
its bond with the vertex colouring problem of a graph. Our contribution in
this framework and some bonds will be also presented.
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Optical orthogonal oodes: new constructions

T.L. Alderson

(joint work with K. Mellinger)

MSC2000: 51E21, 51E14, 94A99

An (n,w, λa, λc)-optical orthogonal code (OOC) is a family of binary se-
quences (codewords) of length n, with constant Hamming weight w satisfying
the following two conditions:

• (auto-correlation property) for any codeword c = (c0, c1, . . . , cn−1) and
for any integer 1 ≤ t ≤ n− 1 there holds

∑n−1
i=0 cici+t ≤ λa

• (cross-correlation property) for any two distinct codewords c, c′ and for
any integer 1 ≤ t ≤ n− 1 there holds

∑n−1
i=0 cic

′
i+t ≤ λc

where each subscript is reduced modulo n.
One of the first proposed applications of optical orthogonal codes was to op-
tical code-division multiple access communication system where binary se-
quences with strong correlation properties are required. Subsequently, OOCs
have found application for multimedia transmissions in fiber-optic LANs.
Optical orthogonal codes have also been called cyclically permutable con-
stant weight codes in the construction of protocol sequences for multiuser
collision channels without feedback.
An (n,w, λa, λc)-OOC with λa = λc is denoted (n,w, λ)-OOC. The number
of codewords is the size of the code. For fixed values of n, w, and λ, the
largest size of an (n,w, λ)-OOC is denoted Φ(n,w, λ). From the Johnson
bound for constant weight codes it follows that

Φ(n,w, λ) ≤
⌊

1

w

⌊
n− 1

w − 1

⌊
n− 2

w − 2

⌊
· · ·

⌊
n− λ

w − λ

⌋⌋
· · ·

⌋
(1)

(n,w, λ)-OOCs meeting this bound are said to be optimal. If C is an
(n,w, λa, λc)-OOC with λa 6= λc then we obtain a (perhaps naive) bound
on the size of C by taking λ = max{λa, λc} in (1).
For λ = 1, 2 optimal OOCs are known to exist. It is still unknown as
to whether optimal codes exist with λ > 2. Certain families of conics in
PG(2, q) give rise to (n, q + 1, 2)-OOCs which are close to optimal. We dis-
cuss generalizations whereby OOC’s are constructed using Baer subplanes
and families of arcs in PG(k,q). Among the codes constructed are some new
large (n,w, 3)-OOC’s.
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Negative Hadamard Graphs

A. Alipour

MSC2000: 05B20, 11T71, 15A63, 94B25, 94B65

In 1985 Hadamard graphs were defined by Ito Noboru, [!], [2]. An
Hadamard Graph ∆(n) is a graph whose vertices are all -1,1-vectors of length
n and two vertices are adjacent if their inner product is zero. We note that
there is an Hadamard matrix of order n if and only if the clique number
of ∆(n) is n. In this paper we introduce the negative Hadamard graphs.
Let Vn = {±1}n. We construct a graph Γn with vertex set Vn in which two
vertices u and v are adjacent if u · v < 0. We call this graph the negative
Hadamard graph of order n+1. We prove that if the clique number of Γn is at
least n, then it is n+1 and there is an Hadamard matrix of order n+1. Also
we prove that this graph is vertex transitive and determine the domination
number, the edge chromatic number and the structure of the automorphism
group of this graph. In particular we prove that for n ≥ 4 and n ≡ 2 or 3
(mod 4), the automorphism group of Γn is isomorphic to Sn × Zn

2 .

References.

[1] I. Noboru, Hadamard graphs. I. Graphs Combin. 1 (1985), no. 1, 57–64.

[2] I. Noboru, Hadamard graphs. II. Graphs Combin. 1 (1985), no. 4,
331–337.
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A general approach to constructing power-sequence terraces
for Zn

Ian Anderson

(joint work with D.A. Preece)

MSC2000: 11A07, 05B30

A terrace for Zn is an arrangement (a1, a2, . . . , an) of the n elements of
Zn such that the sets of differences ai+1−ai and ai−ai+1 (i = 1, 2, . . . , n−1)
between them contain each element of Zn\{0} exactly twice. For n odd, many
procedures have been published for constructing power-sequence terraces for
Zn; each such terrace may be partitioned into segments one of which contains
merely the zero element of Zn whereas each other segment is either (a) a
sequence of successive powers of an element of Zn or (b) such a sequence
multiplied throughout by a constant. We now present a new general power-
sequence approach that yields Zn terraces for all odd primes n less than 1000
except for n = 601. It also yields terraces for some groups Zn with n = p2

where p is an odd prime, and for some Zn with n = pq where p and q are
distinct primes greater than 3. Each new terrace has at least one segment
consisting of successive powers of 2, modulo n.
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On the structure of equireplicate partial linear spaces with
constant line size

John Arhin

MSC2000: 05B15

A partial linear space S = (P ,L) consists of a set P of points together
with a set L of lines, where each line is a subset of P (of cardinality greater
than or equal to 2), such that every pair of points is contained in at most
one line.

A partial linear space is said to be equireplicate if every point is contained
within the same constant number of lines. We then call this constant the
replication number.

A PLS(v, n; r) is a equireplicate partial linear space, where the set of
points has size v, each line has size n and the replication number is r.

Let S = (P ,L) be a PLS(v, n; r).
A decomposition of S is a partition {L1, . . . ,Lm} of L, such that each

(P ,Li) is an equireplicate partial linear space.
Note that by the definition of S, each (P ,Li) is a PLS(v, n; ri), for some

ri.
Now {L} is one decomposition of S. If {L} is the only decomposition of S,

then S is said to be indecomposable; otherwise S is said to be decomposable.
An unrefinable decomposition of S is a decomposition {L1, . . . ,Lm} of S,

such that each (P ,Li) is indecomposable.
In this talk, we discuss the result that every PLS(n2, n; r) has a unique

unrefinable decomposition, and provide an efficient algorithm to compute
it. Not only does this result imply that every affine plane has a unique
unrefinable decomposition, but it also has important implications for the
structure of SOMAs (a generalisation of mutually orthogonal Latin squares).
We then briefly look at the structure of a PLS(v, n; r), when v < n2 and
v > n2.
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Permutation groups, error-correcting codes and uncoverings

R.F. Bailey

MSC2000: 94B99, 20B20, 05B40

We replace the traditional setting of error-correcting codes (namely vector
spaces over finite fields) with that of permutation groups, using permutations
written in list form as the codewords. We will describe some groups which
are suitable for this purpose, and introduce a decoding algorithm which in
turn uses what we call an uncovering. These are objects which are closely
related to covering designs.

This is a continuation of work presented at BCC19 in 2003.

47



Graphs with the n-e.c. adjacency property constructed from
affine planes

C.A. Baker

(joint work with A. Bonato, J.M.N. Brown, and T. Szőnyi)

MSC2000: 05C99, 05B25, 05C80

Adjacency properties of graphs were first studied by Erdős and Rényi
in their classic work on random graphs. One such adjacency property is
the n-existentially closed property: for a positive integer n, a graph G is
n-existentially closed or n-e.c. if for all n-subsets S of vertices of G, and all
subsets T of S, there is a vertex not in S joined to all the vertices of T and
not joined to any of the vertices in S \ T . Erdős and Rényi proved in 1963
that almost all graphs (with fixed edge probability 0 < p < 1) are n-e.c.
Despite this fact, few explicit classes of graphs with the n-e.c. property are
known. In 1981, Bollobás and Thomason proved that sufficiently large Paley
graphs are n-e.c., while P. Cameron and Stark recently used affine designs
and probabilistic methods to construct examples of many non-isomorphic
strongly regular n-e.c. graphs.

We use methods from finite geometry to construct new examples of n-e.c.
graphs. Our techniques employ collinearity graphs of partial planes derived
from even order affine planes. The strongly regular graphs we obtain are
distinct from both the Paley graphs and the graphs of Cameron and Stark.
In addition, our proofs (unlike proofs for earlier constructions) are elementary
in that they do not use any specialized machinery beyond basic properties
of affine planes, counting, and probability theory. If time permits, then we
will describe a new n-e.c. preserving operation using switching. For certain
orders the new operation provides an exponential number of non-isomorphic
n-e.c. graphs.
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Consecutive magic graphs

C. Balbuena

(joint work with K.C. Das, Y. Lin, M. Miller, J. Ryan, Slamin, K. Sugeng,
M. Tkac)

MSC2000: 05C78

Let G be a graph with order n and size e. A vertex-magic total labelling
is an assignment of the integers 1, 2, . . . , n+ e to the vertices and the edges
of G so that at each vertex, the vertex label and the labels on the edges
incident at that vertex add to a fixed constant called magic number of G.
Such a labelling is a-vertex consecutive magic if the set of the labels of the
vertices is {a + 1, a + 2, . . . , a + n}, and is b-edge consecutive magic if the
set label of edges is {b + 1, b + 2, . . . , b + e}. In this paper we prove that
every a-vertex consecutive magic graph, other than the union of a vertex and
a path of length two, has degree at least one and at least as many edges as
the number of vertices minus one. As a consequence, we show that every
tree with even order is not a-vertex consecutive, and if a tree of odd order
is a-vertex consecutive, then a = n − 1 = e. Furthermore, we show that
every a-vertex magic graph with e > n and n odd, or 2e 6∈ {3n− 2, 3n} and
n even, has minimum degree two if a < e, or has minimum degree three if
a < (e− n− 1)/2. Finally, we state analogous results for b-edge consecutive
magic graphs.
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A new approach to finite semifields

Simeon Ball

(joint work with Michel Lavrauw and Gary Ebert)

MSC2000: 51E15

A finite pre-semifield is a finite set S with two operations, addition (+)
and multiplication (◦), such that (S,+) is an additive group, both distributive
laws hold and

x ◦ y = 0 implies x = 0 or y = 0.

A pre-semifield can be used to coordinatise a projective plane of order |S|
and we are interested in finding pre-semifields that produce non-isomorphic
projective planes. Two pre-semifields are said to be isotopic if they coordina-
tise isomorphic planes. A semifield is a pre-semifield that has a multiplicative
identity. There is always a semifield isotopic to any pre-semifield. There are
less than roughly 20 known families of (mutually non-isotopic) semifields.
Unless it is immediate that two semifields are not isotopic it is generally dif-
ficult to establish whether or not they are. Above all, the goal in this area is
to construct many more families of non-isotopic semifields. The first semi-
fields were discovered by Dickson, roughly 100 years ago with more examples
given later by Albert (1950’s), Knuth (1960’s), Cohen and Ganley (1980’s)
and various families due to Kantor, amongst others, have been constructed
in the last twenty years.

It can be shown that |S| = qn for some prime power q and that S can
viewed as a vector space of rank n over Fq, where multiplication is given by
aijk ∈ Fq by the rule

ei ◦ ej =
n∑

k=1

aijkek,

where {e1, e2, . . . , en} is a basis for S over F. Knuth was first to note that
any permutation of the subscripts produces another semifield, so there are
six semifields associated with any semifield.

In this talk I shall present a new way to construct finite semifields of order
qn from two subspaces of a vector space of rank (r+ 1)n over Fq, for some r.
In fact any finite semifield can be constructed in this way for some r ≤ n−1,
moreover [probably] all known semifield of order qn can be constructed from
two subspaces of a vector space of rank 2n or rank 3n over Fq.

The construction also provides us with a new operation (not one of the
six due to Knuth) which produces more semifields in the case when r = 1.
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Group Key Distribution Patterns

J.C. Bate

(joint work with SeonHo Shin)

MSC2000: 05B30, 51E30

Key Distribution Patterns (KDPs), as introduced by Mitchell and Piper
in 1987 provide an efficient method of secure communication between every
pair of users in a large network. Every user in the network stores a small set
of subkeys and the key required for a pair of users to communicate securely
can be made up from a combination of some of the subkeys already held in
common by that pair.

However, what if it wasn’t every pair of users wishing to communicate, but
some other predefined subsets of users from within the network?

Group Key Distribution Patterns are generalized KDPs displaying many
interesting characteristics inherited from Mitchell and Pipers KDPs, whilst
at the same time providing a method of secure communication between all
predefined subsets of users from within the network.

On graphs with least eigenvalue −2

F.K. Bell

(joint work with E.M. Li Marzi and S.K. Simić)

MSC2000: 05C50

Let µ be an eigenvalue of a graph G, with multiplicity k. A star comple-
ment for µ in G is an induced subgraph H = G −X, where |X| = k and µ
is not an eigenvalue of H.

The class of graphs with least eigenvalue −2 has been studied extensively
in recent years. We characterise the possible star complements for −2 of such
graphs.
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Validation of a particular class of bilinear systems

F. Benmakrouha

(joint work with C. Hespel)

MSC2000: 05A05

We study the validation of a family (Bk) of bilinear system, global mod-
elling of an unknown dynamical system (Σ).

Two formal power series in noncommutative variables are used for de-
scribing (Σ) : the generating series for the system’s behavior (G) and the
Chen series for the system’s input. The family (Bk) of bilinear systems is
described by its rational generatrice series (Gk) such that the coefficients of
(G) and (Gk) coincide up to order k.

We propose a symbolic computation of coefficients of (Gk). These coeffi-
cients are powers of an operator Θ which is in the monoid generated by two
linear differential operators ∆ and Γ .

We give according to [1] a combinatorial interpretation of these powers.
The n-th power of Θ is equal to the sum of the labels of all forests of increasing
trees on {1, · · · , n}.

Bounding these coefficients, one obtains an estimation of the error due
to the approximations by (Bk). This error computation allows one to better
measure the impact of noisy inputs on the convergence of (Bk). Indeed, one
can determine the contribution of the inputs and of the system in the error
computation.

Reference.

[1] F. Bergeron,C Reutenauer,Combinatorial interpretation of the powers of
a linear differentiel operator Rapport de recherche Université du Québec
Montréal. Mars 1986.
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Cycle regularity and Hypercubes

A. Berrachedi

(joint work with N. Kahoul)

MSC2000: 05C15, 05C17, 05C69, 05C85

It is known that the subgraph Hk, induced by the two central levels of
the hypercube of odd degree 2k− 1, is of maximum order among the graphs,
in which each path of length three belongs to one single cycle of length three.
In this paper, we show that Hk is of maximum diameter in the same class.
Moreover, we consider graphs for which each induced path of length three,
with distinct ends belongs to exactly one induced cycle of length three. This
class generalizes the class defined above and contains the hypercubes. We
give several properties for these classes of graphs and a new characterization
of HK .

References.

[1] I.Havel: Semi paths in directed cubes. Rostocker Mathematishes Kollo-
qium, (Avr,1 1981) 101–108.

[2] M.Mollard: Les invariants du n-cube, Thèse 3ème cycle, Université Joseph
Fourier, Grenoble 1981.

[3] M.Mollard: Quelques problèmes combinatoires sur l’Hypercube et les
graphes de Hamming, Thèse Doctorat es-Science, Université Joseph Fourier,
Grenoble 1989.

[4] H.M.Mulder: (0,λ)-graphs and n-cubes, Discrete . Math, 28 (1979) 179–
188.
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Chromatic zeros for some medial graphs

H. Bielak

MSC2000: 05C15

The chromatic polynomial P (G, λ) of a graph G in the variable λ counts
for positive integers λ the proper vertex λ−colourings of G.

In this paper we study the location of chromatic complex zeros (i.e., zeros
of chromatic polynomials) for some medial graphs. A medial graph M(G) is
defined for a plane embedding of a planar graphG = (V (G), E(G)) as follows:
V (M(G)) = E(G) and two vertices in M(G) are adjacent if and only if the
respective edges are incident and belong to the boundary of the same region
of G. In particular, we give an infinite family of hamiltonian medial graphs
with chromatic complex zeros in the disk |z − 3/2| ≤ r, where r > r0 and
r0−1/2 is maximum positive root of the equation x4−2x3−5x2−6x−1 = 0.
Note that r0 belongs to the interval (4.25, 4.375).

Equipartite and almost-equipartite gregarious 4-cycle systems

Elizabeth J. Billington

(joint work with Dean Hoffman)

MSC2000: 05B30, 05C38

Let Kn(m) denote a complete multipartite graph with n parts of size m,
and let Kn(m),t denote a complete multipartite graph with n + 1 parts: n of
size m and one of size t.

A gregarious 4-cycle decomposition of a complete multipartite graph is
a decomposition into 4-cycles such that each cycle has its four vertices in
different partite sets of the graph (as long as the complete multipartite graph
has at least four parts). If there are precisely four parts, it is easy to see that
they must all have the same (even) size. However, this is not so if there are
more than four parts. Here we consider gregarious 4-cycle decompositions of
the graphs Kn(m) and Kn(m),t, and show existence of such a decomposition if
and only if there is an “ordinary” 4-cycle decomposition, and in the case of
the graph Kn(m),t, the part of size t is bounded: t ≤ m(n− 1)/2.
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Factorizations with symmetry

A. Bonisoli

MSC2000: 05C70, 51E20

Let F be a 1–factorization of K2n. Already in the seventies it was pointed
out that a random choice of F will probably yield an object with a total lack
of symmetry, which means Aut(F) = {id}.

On the other hand, the “standard” textbook constructions aiming to show
that a 1–factorization of K2n exists for an arbitrary value of n are usually
based on symmetry arguments: typically a single 1–factor is constructed, the
other ones are obtained from it by rotation or reflection. Similar arguments
hold when F is a 2–factorization of Kv, v odd.

An automorphism group G of F is by definition a permutation group on
the set of vertices of the complete graph leaving the factorization invariant,
regardless of whether F is a 1–factorization or a 2–factorization or even some
other kind of decomposition. Consequently G acts on the vertices but also
on the edges of the complete graph and on the factors of the factorization.

It was precisely by imposing conditions on these actions that the best
classification results were obtained, as in the case of 1–factorizations admit-
ting an automorphism group acting doubly transitively on vertices. On the
other hand, even the most powerful construction techniques such as those
based on starters do require some group acting in a prescribed manner.

Does there exist a primitive 1–factorization of K2n which is not doubly
transitive? Is it possible to have a construction for infinitely many values of
n? These questions have affirmative answers.

Doubly transitive 2–factorizations of Kv have been recently classified. It
can be shown that they all arise from the affine line–parallelism of AG(d, p)
for some odd prime p in a standard manner. The assumption can be weakened
to “doubly homogeneous.”
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Live one–factorizations and mixed translations in even
characteristic

S. Bonvicini

MSC2000: 05C70, 51E20

A one–factorization F of K2n is said to be live if each one of its one–
factors, when viewed as a fixed–point–free involution on the set of vertices,
induces an automorphism of F .

The affine line–parallelism of AG(d, 2) is an example of such a one–factor-
ization, since the involution corresponding to a class of parallel lines yields a
translation.

In this talk we present an example of a live one–factorization which is
NOT an affine line–parallelism. To this purpose we develop the notion of a
mixed translation in AG(d, 2), that is namely a transformation which suit-
ably moves the points of a given hyperplane in one direction and the points of
the complementary hyperplane in another direction. These transformations
always come in pairs. If we replace the two translations in the given direc-
tions by the corresponding pair of mixed translations we obtain the required
live one–factorization. In geometric terms, that amounts to replacing half of
the lines in one parallel class by the lines of the other parallel class in the
complementary hyperplane.

Do live one–factorizations exist when the number of vertices is NOT a
power of 2?
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Graphs with the Erdős-Ko-Rado property

Peter Borg

(joint work with Fred Holroyd)

MSC2000: 05C35, 05D05

A pairwise intersecting family of sets is non-centred if the intersection of
all sets of the family is empty. A graph G is said to have the (strict) Erdős-
Ko-Rado property, or to be (strictly) r-EKR, if no such family of independent
r-sets of vertices is (as large as) larger than the largest family of independent
r-sets containing v for any vertex v.

The Erdős-Ko-Rado Theorem states that En is r-EKR for all r ≤ n/2,
and strictly so for r < n/2, where En is the empty graph on n vertices.
Holroyd and Talbot conjectured that if (r < µ(G)/2) r ≤ µ(G)/2 then G is
(strictly) r-EKR, where µ(G) denotes the minimum cardinality of a maximal
independent set of G. Apart from empty graphs, this conjecture is known to
hold for graphs that belong to some other classes. For example, Holroyd and
Talbot demonstrated the conjecture for the case when G is a disjoint union
of two complete multipartite graphs, and they also showed that G is strictly
r-EKR for r < µ(G)/2.

We verify the conjecture for the case when G is a disjoint union of an
arbitrary number of complete multipartite graphs and at least one isolated
vertex. We also distinguish all the cases in which such a graph is strictly
r-EKR or not, when r = µ(G)/2).
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Bell’s number in the Alekseev inequality

S. Bouroubi

MSC2000: 06B30

Let Pn be the partition lattice on n elements and let r be it’s rank func-
tion. A representation of Pn is a function X : P → R so that p > q implies
X(p)−X(q) ≥ 1. The mean and the variance of X are defined respectively
by :

µX =
1

Bn

∑
π∈Pn

X (π) & σ2
X =

1

Bn

∑
π∈Pn

(X (π)− µX)2

where Bn denotes the nth Bell number.
A representation X∗ is said to be optimal if σ2

X∗ ≤ σ2
X for every repre-

sentation X of P .
V.B. Alekseev showed that r is optimal iff

µr (F ) ≥ µr, for every filter F of Pn (1)

In this work we present a proof of the Alekseev inequality (1) on every fil-
ter generated by one element, using some new properties of the Bell’s number
sequence.
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Triangle-free graphs whose independence number equals the
degree

Stephan Brandt

MSC2000: 05C15, 05C35

In a triangle-free graph, the neighbourhood of every vertex is an inde-
pendent set. We will investigate the class S of triangle-free graphs where the
neighbourhoods of vertices are maximum independent sets. Such a graph
G must be regular of degree d = α(G) and the fractional chromatic number
must satisfy χf (G) = |G|/α(G). We indicate that S is a rich family of graphs
by showing that for every rational number c between 3 and 4 and for every
rational number c ≥ 30/7 there is a graph G ∈ S with χf (G) = c. For
4 < c < 30/7 we can only prove that the conclusion is true for a dense subset
of the rational numbers in this range. For 2 ≤ c < 3, only constants of the
type c = (3i − 1)/i can be fractional chromatic numbers of graphs in S for
positive integers i.

The statements for c ≥ 3 are obtained by using, modifying, and re-
analysing constructions of Sidorenko, Mycielski, and Bauer, van den Heuvel
and Schmeichel, while the case c < 3 is settled by a recent result of Brandt
and Thomassé. We will also investigate the relation of other parameters of
certain graphs in S like chromatic number and toughness.
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Matchings, Tutte sets, and independent sets

H.J. Broersma

(joint work with D. Bauer, A. Morgana, and E. Schmeichel)

MSC2000: 05C70, 05C75

We define a Tutte set of a graph G = (V,E) as a set S ⊆ V such that
ω0(G−S)−|S| = def(G) = maxX⊆V {ω0(G−X)−|X|}, where the maximum
is taken over all proper subsets of V , where ω0(G) denotes the number of
odd components, and where def(G) denotes the deficiency of G. By classical
results due to Tutte and Berge, def(G) is equal to the number of vertices of
G unmatched by a maximum matching in G. We study maximal Tutte sets,
and introduce the D-graph D(G) of a graph with a perfect matching. We use
the Edmonds-Gallai decomposition of a graph G to show how maximal Tutte
sets in G relate to maximal independent sets in D(G), and we characterize
isomorphisms between iterated D-graphs. As a surprising consequence we
obtain that D3(G) ∼= D2(G) for every graph G with a perfect matching.
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Connected, nontraceable detour graphs

F.E.S. Bullock

(joint work with M. Frick and G. Semanǐsin)

MSC2000: 05C38

A graph G such that each vertex of G is an endvertex of a longest path
in G is called a detour graph. The difference between the order of G and
the order of a longest path in G is called the detour deficiency of G, and
a detour graph with detour deficiency zero is called homogeneously trace-
able. Detour graphs are therefore a natural generalisation of homogeneously
traceable graphs. Nonhamiltonian, homogeneously traceable graphs were
investigated by Skupień in [2] and by Chartrand, Gould and Kapoor in [1].

In this talk we consider connected detour graphs with detour deficiency
greater than zero. There are no such graphs with order less than 10, but we
give constructions for connected detour graphs of all orders greater than 17
and all detour deficiencies greater than zero.

References.

[1] G. Chartrand, R.J. Gould, S.F. Kapoor, On homogeneously traceable non-
hamiltonian graphs, 2nd International Conference on Combinatorial Mathe-
matics, Ann. N.Y. Acad. Sci. 319 (1979), 130–135.

[2] Z. Skupień, Homogeneously traceable and hamiltonian connected graphs,
Demonstratio Mathematica 17 No. 4 (1984), 1051–1067.
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Colouring even cycle systems

Andrea C. Burgess

(joint work with David A. Pike)

MSC2000: 05C15, 05B30

An m-cycle system of order n is a partition of the edges of the com-
plete graph Kn into m-cycles. An m-cycle system S is said to be weakly k-
colourable if its vertices may be partitioned into k sets (called colour classes)
such that no m-cycle in S has all of its vertices the same colour. The smallest
value of k for which a cycle system S admits a weak k-colouring is called the
chromatic number of S. We study weak colourings of even cycle systems (i.e.
m-cycle systems for which m is even), and show that for any integers r ≥ 2
and k ≥ 2, there is a (2r)-cycle system with chromatic number k.
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Max-algebra: the linear algebra of combinatorics?

Peter Butkovič

MSC2000: 15A15, 90C27

Let a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. By
max-algebra we understand the analogue of linear algebra developed for the
pair of operations (⊕,⊗) extended to matrices and vectors formally in the
same way as in linear algebra, that is if A = (aij), B = (bij) and C = (cij)
are matrices with elements from R of compatible sizes, we write C = A⊕B
if cij = aij ⊕ bij for all i, j, C = A ⊗ B if cij =

∑⊕
k aik ⊗ bkj for all i, j and

α⊗ A = (α⊗ aij) for α ∈ R.
We present an overview of strong links between max-algebraic problems

and combinatorial or combinatorial optimisation problems. These links in-
dicate that max-algebra may be regarded as a linear-algebraic encoding of
a class of combinatorial problems. Instances of such problems are: the set
covering (which in max-algebra is the solvability of a linear system), the
minimal set covering (unique solvability of a linear system), existence of a
directed cycle (strong regularity of a matrix), existence of an even directed
cycle (regularity of a matrix), maximal cycle mean (eigenvalue), longest-
distances (eigenvectors), best principal submatrices (coefficients of a char-
acteristic polynomial), transitive closure (matrix power series), etc. Due to
these links, max-algebra enables in some cases to find connections between
combinatorial problems which would otherwise not be visible. A selection of
open problems will be provided.

63



Coflow and covering vertices by directed circuits

Kathie Cameron

(joint work with Jack Edmonds)

MSC2000: 05C38, 05C70, 90C27, 68R10

Let G be any digraph such that each edge and each vertex is in a dicircuit.
Let d(v) be non-negative integers for vertices v, and d(e) be non-negative in-
tegers for edges e. The capacity d(C) of a dicircuit C means the sum of the
d′s of the vertices and edges in C. A version of the Coflow Theorem (1982)
says:

The max cardinality of a subset S of the vertices of G such that each dicircuit
C of G contains at most d(C) members of S

equals

the minimum of the sum of the capacities of any subset H of dicircuits of G
plus the number of vertices of G which are not in a dicircuit of H.

A feedback set in G means a subset F of its edges (minimal by inclusion)
such that G− F is acyclic. It is interesting to apply the Coflow Theorem to
G and a feedback set F by letting d(e) = 1 for each e in F and letting the
other d′s be 0.

A feedback set F is called coherent if every edge of G is in some dicircuit
which contains at most one member of F . That any G has a coherent feed-
back set is equivalent to a theorem of Bessy and Thomassé. Applying the
Coflow Theorem to G with a coherent F yields immediately the following
recent theorem of Bessy and Thomassé, conjectured by Gallai in 1963:

For any digraph G such that each edge and each vertex is in a dicircuit, the
maximum number of vertices in G such that no two of them are joined by an
edge is at least as big as the minimum number of dicircuits which together
cover all the vertices.
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An orbital Tutte polynomial

P.J. Cameron

(joint work with B. Jackson and J. Rudd)

MSC2000: 05C15, 05C25, 20B25

The two-variable Tutte polynomial of a graph Γ specialises to one-variable
polynomials which count the numbers of nowhere-zero flows or tensions on
Γ with values in an abelian group A. (These numbers depend only on the
order of A, not on its structure.) We present a polynomial in two infinite
sets of variables which specialises in the same way to polynomials counting
the number of orbits of G on nowhere-zero tensions or flows, where G is a
group of automorphisms of Γ. In this more general case, the numbers depend
on the structure of A; specifically, we substitute for the ith variable in the
polynomial the number of solutions of ia = 0 in the group A. Some properties
of these polynomials, and some generalisations, will also be mentioned.

A superlinear lower bound for the size of a critical set in a
latin square

N.J. Cavenagh

MSC2000: 05B15

A critical set is a partial latin square that has a unique completion to a
latin square, and is minimal with respect to this property. In this talk we
outline a proof that any critical set in a latin square of order n has size at
least n(log n)1/3/2.
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Average degree and extremal problems for infinite graphs

M. Cera

(joint work with C. Balbuena, A. Diánez and A. Márquez)

MSC2000: 05C35, 05C99

There exist many problems in Extremal Graph Theory for finite graphs
relating the number of vertices to the number of edges, and therefore, related
to the average degree. In this paper, we extend the concept of average degree
for a family of infinite graphs that we call average-measurable. For infinite
graphs we also extend the problem of determining the maximum number
of edges of such a graph with no subgraph homeomorphic to a complete
graph. Besides we study the relationship between this problem and the same
problem in finite graphs.
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Connectedness of graphs of 3-colourings

Luis Cereceda

(joint work with Jan van den Heuvel and Matthew Johnson)

MSC2000: 05C15, 05C85, 05C40

For a vertex 3-colourable graph G, let C3(G) be the graph of 3-colourings
of G. This is the graph with node set the proper 3-colourings of G, and two
nodes adjacent whenever the corresponding colourings differ on precisely one
vertex of G. Given G, what can we say about the structure of C3(G)? In
particular, how easily can we decide if C3(G) is connected? We give necessary
and sufficient conditions for C3(G) to be connected in terms of the structure
and possible 3-colourings of G, and consider the complexity of this decision
problem for various classes of 3-colourable graphs.

Admissible permutations for constructing Trojan squares for
2n treatments with odd-prime n side

P.E. Chigbu

MSC2000: 05B15, 62K05

The (n × n)/2 Trojan squares for odd-prime n side are examined with
the view of establishing the admissible permutations of the symmetric group,
Sn, for directly constructing them via the group-theoretic approach of Bailey
and Chigbu (1997). The unique group properties of the admissible permuta-
tions are also made evident while an algorithm, which would determine these
permutations for constructing the Trojan squares is given and automated.
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The ultimate isometric path number of a graph

Nancy E. Clarke

MSC2000: 05C70, 05C99, 91A43

The game of Cops and Robber is a pursuit game played on a reflexive
graph. The cops choose vertices to occupy, then the robber chooses a vertex.
The two sides then move alternately, where a move is to slide along an edge
or along a loop, i.e. pass. Both sides have perfect information, and the cops
win if any of the cops and the robber occupy the same vertex at the same
time. The minimum number of cops that suffice to win on a graph G is the
copnumber of G. The game has been considered on infinite graphs but, in
this talk, we only consider finite graphs.

We consider the Cops and Robber game when the cops are restricted
to moving on assigned “beats” or subgraphs, and bound the copnumbers of
powers of graphs under a variety of products. In many cases, the results are
shown to be asymptotically exact.
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Covering Arrays of Strength Two

Charles J. Colbourn

MSC2000: 05B15

A covering array CA(N ; t, k, v) is an N × k array whose entries are from
a v-set, in which every N × t subarray contains (as a row) every ordered
t-tuple of the v symbols at least once. Recent research on covering arrays of
strength two has focussed on

• improved product-type constructions (Colbourn, Martirosyan, Mullen,
Shasha, Sherwood, and Yucas (2005));

• effective heuristic search techniques (Cohen (2004); Nurmela (2004));

• using automorphisms to accelerate computational search (Meagher and
Stevens (2004); Meagher (2004); Colbourn (2005)); and

• constructions from orthogonal arrays.

This flurry of activity has had the unfortunate effect of making it quite
difficult to determine the utility of the various constructions, since existing
tables are out-of-date and restricted to very small orders. In this talk we
therefore describe the computation of tables for the smallest N for which
a CA(N ; 2, k, v) exists whenever 3 ≤ k ≤ 20000 and 3 ≤ v ≤ 25. In the
process, we describe a new method for producing covering arrays of non-
prime-power order v from orthogonal arrays of larger prime-power order.
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Bounds on element order in rings Zm with divisors of zero

Charlie H. Cooke

MSC2000: 13M99, 11A99

If p is a prime, integer ring Zp has exactly φ(φ(p)) generating elements ω,
each of which has maximal index lp(ω) = φ(p) = p− 1. But, if m = ΠR

J=1p
aj

j

is composite, it is possible that Zm does not possess a generating element;
and the maximal index of an element is not easily discernible. Here it is
determined when, in the absence of a generating element, one can still with
confidence place bounds on the maximal index. Moreover, general informa-
tion about existence or non-existence of a generating element often can be
predicted from the bound. A result is established which greatly reduces in
the computational requirements for numerically deciding whether ring Zm

has a generating element.

Ovoids of the Hermitian surface and derivations

A. Cossidente

(joint work with G. Marino)

MSC2000: 51E21, 51E14

Some new derivation techniques of ovoids of the Hermitian surfaceH(3, q2)
of PG(3, q2) are introduced and discussed. Moreover, connections between a
special class of ovoids of H(3, q2) and spreads of PG(3, q) are presented.
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Signless Laplacians and line graphs

D. Cvetković

MSC2000: 05C50

The spectrum of a graph is the spectrum of its adjacency matrix. Cospec-
tral graphs are graphs having the same spectrum. In this paper we study the
phenomenon of cospectrality in graphs by comparing characterizing proper-
ties of spectra of graphs and spectra of their line graphs. We present some
arguments showing that the latter perform better. In this comparison we
use spectra of signless Laplacian (the adjacency matrix modified by putting
vertex degrees on the diagonal) of graphs. Some properties of eigenvalues of
signless Laplacian are given.

Distance and Inverse Degree

P. Dankelmann

(joint work with H.C. Swart and P. van den Berg)

MSC2000: 05C12

Let G = (V,E) be a connected, finite graph of order n. The average
distance µ(G) of G is defined as the average of the distances between all
unordered pairs of vertices, The inverse degree R(G) of G, is defined as the
sum of the inverses of the degrees of the vertices of G,

R(G) =
∑
u∈V

1

(degv)
,

where degv is the degree of v in G.
The computer program GRAFFITI conjectured that µ(G) ≤ R(G). Erdös,
Pach, and Spencer proved the upper bound on the diameter of G,

diam(G) ≤ (6R(G) + o(1))
log n

log log n
,

which, by µ(G) ≤ diam(G), is also an upper bound on the average distance.
Moreover, they constructed an infinite family of graphs with average distance
at least 2R(G) log n

9 log log n
, thus disproving the GRAFFITI conjecture.

In our talk, we improve the upper bound by a factor of approximately 2.
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More balanced hill-climbing for triple systems

P. Danziger

(joint work with D. Heap and E. Mendelsohn)

MSC2000: 05B07

Exhaustive enumeration of Steiner triple systems is not feasible, due to
the the combinatorial explosion of instances. The next-best hope is to quickly
find a sample that is representative of isomorphism classes. Stinson’s hill-
climbing algorithm certainly finds a sample quickly, but we find that the
sample is far from uniformly distributed with respect to the isomorphism
classes of the STSs, at least for v ≤ 19. No analysis of the non-uniformity of
the distribution with respect to isomorphism classes or the intractability of
obtaining a representative sample for v > 19 is known.

We also investigate some modifications to hill-climbing that make the
sample it finds closer to the uniform distribution over isomorphism classes
without unduly degrading its performance.

The lattice of cyclic flats of a matroid

Anna de Mier

(joint work with J. Bonin)

MSC2000: 05B35

The lattice of flats of a matroid is a well-understood object: it is a geo-
metric lattice, and every geometric lattice is the lattice of flats of a matroid.
In this talk we focus on a particular type of flats, cyclic flats, which also
give rise to a lattice. A flat of a matroid is called cyclic if it is a union of
circuits. It is easy to check that cyclic flats form a lattice under inclusion.
But this lattice is far from having the nice properties that the lattice of flats
has; for instance, it is not necessarily geometric and all maximal chains need
not have the same length. We show that in fact every lattice is isomorphic to
the lattice of cyclic flats of some matroid (and moreover, of a matroid that
is both transversal and cotransversal).

A matroid is uniquely determined by the set of its cyclic flats together
with their ranks. We give a necessary and sufficient condition for a family
of sets Z and a function ρ : Z → N to be the collection of cyclic flats of a
matroid and their ranks, thus providing another axiom scheme for matroids.
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Ordering the blocks of a design

Megan Dewar

(joint work with Brett Stevens)

MSC2000: 05B05, 05B07

The study of the presence or absence of configurations among consecutive
blocks in an ordering of the blocks of a design was initiated by M. Cohen
and C. Colbourn in 2003 [1]. An (n, l)-configuration is a set system with
n elements and l blocks in which every element is contained in at least one
block. Let C be a set of configurations, each consisting of l blocks. A C-
ordering of the blocks of a design is an ordering such that every l consecutive
blocks form a configuration isomorphic to one of those in C.

In this talk we will discuss the possibility of listing all blocks of a design
such that every consecutive pair of blocks intersects in exactly one point and
any set of three consecutive blocks in the list has an empty intersection. This
is a C-ordering where C is the set of configurations consisting of the path
and the triangle but not containing the claw. We prove that every cyclic
TS(v, λ) is C-orderable. The proof method is constructive and therefore,
similar techniques can be applied to BIBDs with k > 3 and to PBDs.

Reference.

[1] M. Cohen and C. Colbourn, Optimal and pessimal orderings of Steiner
triple systems in disk arrays, Theoretical Computer Science 297 (2003) 103-
117.

73



Surgeries on latin trades

Aleš Drápal

MSC2000: 05B15

The latin trade is usually defined as a partial latin square to which there
exists a mate with the property that (1) the same cells are filled in both
mates, (2) no cell is filled in both of the mates in the same way and (3)
both the rows and columns are balanced (a row is balanced if the sets of
elements appearing in the row are the same in both mates). A pair (K,K ′)
consisting of a latin trade and its mate will be called a latin bitrade. For
each row consider the permutation that moves a cell with entry e in K to
the cell with entry e in K ′. Similar permutations can be formed for columns
and for transversals induced by the entry values. Each latin bitrade can
be associated with an oriented combinatorial surface in which the cycles
of the permutations form one kind of faces, while the other kind of faces
are the triangles that are obtained from every triple of cycles that pairwise
intersect each other (one of the three cycles is induced by a row, another
by a column and the last by an entry value) [2, 3]. Call a latin bitrade
spherical, if the genus of the associated surface is equal to 0. We shall report
two constructions, one of which allows to obtain all spherical latin bitrades
from those with four entry cells, while the other one yields latin bitrades
of arbitrary genus starting from the spherical bitrades. These are not the
only ways how one can construct new latin bitrades from simpler ones [1].
However, the presented constructions seem to be the first ones with clear
geometric interpretation.

References.
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One small step towards proving the PPC

J.E. Dunbar

(joint work with M. Frick)

MSC2000: 05C38

The order of a longest path in a graph G, called its detour order, is
denoted by τ(G). If (a, b) is a pair of positive integers, a partition (A,B) of
the vertex set of a graph G is called an (a, b)-partition if τ(G〈A〉) ≤ a and
τ(G〈B〉) ≤ b. If a graph G has an (a, b)-partition for every pair of positive
integers (a, b) such that a+ b = τ(G), then G is called τ -partitionable.

The Path Partition Conjecture (PPC) is the following: Every graph is
τ -partitionable.

We show that in order to prove the PPC is true, it is sufficient to show
that all non-separable graphs are τ -partitionable.

Upper bounds on planarization of bounded degree graphs

Keith Edwards

(joint work with Graham Farr)

MSC2000: 05C99, 05C10

It is known that every graph of maximum degree 3 can be planarized (i.e.
made planar) by removing at most 1

4
of its vertices, and that the proportion

1
4

is the least for which this is true.
When the maximum degree is some d ≥ 4, we know upper and lower

bounds on the corresponding minimum fraction of the vertices whose removal
can be guaranteed to planarize the graph, but the precise minimum fraction
is not known.

We will describe some progress on finding better upper bounds.
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Existence of disjoint cycles containing specified vertices

Y. Egawa

MSC2000: 05C38

In 1997, it was implicitly conjectured by several people that if G is a graph
with σ2(G) ≥ |V (G)| and δ(G) ≥ k+1, v1, · · · , vk ∈ V (G), and if there exist
vertex-disjoint cycles D1, · · · , Dk such that vi ∈ V (Di) for each 1 ≤ i ≤ k,
then there exist vertex-disjoint cycles C1, · · · , Ck such that vi ∈ V (Ci) for
each 1 ≤ i ≤ k and V (G) =

⋃
1≤i≤k V (Ci). The conjecture was disproved in

2002. On the other hand, the conjecture becomes true if we add the assump-
tion that Σ1≤i≤k|V (Di)| is sufficiently large. For example, it is fairly easy to
prove the following proposition.

Proposition. Let k ≥ 2, and let G be a graph with σ2(G) ≥ |V (G)|
and δ(G) ≥ k+ 1. Let v1, · · · , vk be distinct vertices of G, and suppose that
there exist vertex-disjoint cycles D1, · · · , Dk such that vi ∈ V (Di) for each
1 ≤ i ≤ k. Suppose further that Σ1≤i≤k|V (Di)| ≥ 4k. Then there exist
vertex-disjoint cycles C1, · · · , Ck such that vi ∈ V (Ci) for each 1 ≤ i ≤ k
and V (G) =

⋃
1≤i≤k V (Ci).

The lower bound 4k on Σ1≤i≤k|V (Di)| in the assumption of the Proposi-
tion seems far from best possible. In fact, we can show that there exists a
constant ε > 0 such that the conclusion of the Proposition holds even if we
replace the condition that Σ1≤i≤k|V (Di)| ≥ 4k by the weaker condition that
Σ1≤i≤k|V (Di)| ≥ (4− ε)k. In this talk, I will overview recent efforts toward
the determination of the best possible lower bound.
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Logarithmic terraces

L. Ellison

(joint work with Ian Anderson)

MSC2000: 11A07, 05B30

Let p be an odd prime, and let x be a primitive root of p. Suppose that
we write the elements of Zp−1 as 1, 2, ..., p− 1, and that, when we evaluate xl

modulo p, we always write it as one of 1, 2, ..., p− 1. Let l =(l1, l2, . . . , lp−1)
be a terrace for Zp−1. Then l is said to be a logarithmic terrace if e =
(e1, e2, . . . , ep−1), defined by ei = xli (mod p), is also a terrace for Zp−1. We
study properties of logarithmic terraces, in particular investigating terraces
which are simultaneously logarithmic for two different primitive roots of p.

Maximal sets of unit-distant points

C. Elsholtz

(joint work with W. Klotz)

MSC2000: 51K05, 52C35

We study maximal sets of points mutually distance 1 apart. Let F denote
a field, and f(Fn) be the cardinality of a maximal set in dimension n. The
regular simplex shows that f(Rn) = n+ 1. For which n can this simplex be
rotated such that all coordinates are rational? A full evaluation of f(Qn) is
given, depending only on the prime factorizations of n and n+1. Our results
imply that for almost all even n one has f(Qn) = n and for almost all odd n
one has f(Qn) = n− 1.

This apparently geometric or algebraic question is solved by methods
from number theory and design theory. We also study the case of general
fields.
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On the symmetric Ashkin-Teller model and Tutte-Whitney
functions

G.E. Farr

MSC2000: 05C99

In this talk we describe a family of functions that generalise the usual
Tutte-Whitney polynomial of a graph or matroid. These may be viewed as
forming a continuum between the Tutte-Whitney polynomials of a graph (or
binary matroid) and its dual. We then discuss a connection with statistical
mechanics. The partition function of the symmetric Ashkin-Teller model on a
graph is not a partial evaluation of the Tutte-Whitney polynomial, although
two of its specialisations (the partition functions of the Ising and Potts mod-
els) are. We show that the symmetric Ashkin-Teller partition function is a
partial evaluation of a generalised Tutte-Whitney function drawn from the
continuum mentioned above.
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Algorithmic aspects of Queen domination

H. Fernau

MSC2000: 05C69

Many papers have been devoted to the study of the following two problems
on the positioning of queens on a chessboard:

1. What is the minimum number of queens that dominate an n×n chess-
board?

2. In how many ways can n queens be positioned on an n× n board?

Observe that such problems are often posed as introductory examples for
backtracking algorithms in Introduction to Programming lectures, but little
seems to be known about their actual computational complexity.

In this talk, we exhibit progress on the computation of the queen dom-
ination number from the viewpoint of parameterized complexity, using the
natural parameter k upperbounding the number of queens we allow to be
positioned on the board.

To this end, we first show a kernelization result. Then, we compare
two natural approaches that easily beat the naive backtracking algorithm:
(a) dynamic programming on subsets and (b) a tree decomposition based
approach. Both approaches allow for O(ck + n) algorithms, where c = 225
with method (b) gives the better result.
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A sum labelling for the flower fq,p

H. Fernau

(joint work with J. Ryan, K.A. Sugeng)

MSC2000: 05C78

A sum labeling is a mapping λ from the vertices of G into the positive
integers such that for any two vertices u, v ∈ V (G) with labels λ(u) and
λ(v) respectively, (uv) is an edge if and only if λ(u) + λ(v) is the label of
another vertex in V (G). Any graph supporting such a labeling is called a
sum graph. Sum graphs are necessarily disconnected so in order to sum label
a connected graph it became necessary to add (as a disjoint union) a further
component. By convention this disconnected component is a set of isolated
vertices known as isolates and the labeling scheme that requires the fewest
isolates is termed optimal. The number of isolates required for a graph to
support a sum labelling is known as the sum number of the graph.

Sum labeling of graphs was introduced by Harary in 1990 and since that
time the problem of finding an optimal labeling for a family of graphs has
been shown to be difficult, even for fairly simple graphs.

The generalised friendship graph fq,p is a collection of p cycles (all of
order q), meeting at a common vertex. Note that f3,n is usually known as a
friendship graph. The generalised friendship graph is, because of its shape,
also referred to as a flower. In this nomenclature the cycles are referred to
as petals. We will present the following result:

The generalized friendship graph Fq,p has sum number 2.
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An optimal sum numbering for f7,4.
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On well-covered planar triangulations

Art Finbow

(joint work with B.L. Hartnell, R. Nowakowski and Michael D. Plummer)

MSC2000: 05C69, 05C10

A graph G is said to be well-covered if every maximal independent set of
vertices has the same cardinality. A planar (simple) graph in which each face
is a triangle is called a triangulation. The aim of this project is to characterize
the planar well-covered triangulations. At this point we have completed the
4- and 5-connected cases.
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6-sparse Steiner triple systems

A.D. Forbes

(joint work with M.J. Grannell and T.S. Griggs)

MSC2000: 05B07

A Steiner triple system of order v (STS(v)), is a pair (V,B) where V is a
set of v points and B is a set of triples, also called blocks, such that a pair of
distinct points occurs in precisely one triple. A configuration is a finite set
of triples where a pair of points occurs at most once.

For k ≥ 4, a Steiner triple system S of order v is called k-sparse if for 4 ≤
n ≤ k, every configuration in S of n blocks spans at least n+ 3 points. The
terminology originates from Erdős, who conjectured that for every integer
k ≥ 4, there exists v0(k) such that if v > v0(k) and v is admissible (that is,
v ≡ 1 or 3 (mod 6)), then there exists a k-sparse STS(v).

The Pasch configuration, {012, 034, 135, 245}, is the only case where a
configuration of 4 blocks has less than 7 points. Thus an STS(v) is 4-sparse
if and only if it is anti-Pasch. The resolution of the anti-Pasch problem and
therefore of the Erdős conjecture for k = 4 was established in a series of
papers: Brouwer (1977), Ling, Colbourn, Grannell and Griggs (2000), and,
finally, Grannell, Griggs and Whitehead (2000). There exists an anti-Pasch
STS(v) for all admissible v except 7 and 13.

The mitre, {012, 034, 135, 236, 456} is the only anti-Pasch configuration
of 5 blocks which has less than 8 points, and therefore an STS(v) is 5-sparse
if and only if it is both anti-Pasch and anti-mitre. Some progress has been
made with 5-sparse STS(v)s; it is now known that such systems exist for
v ≡ 1, 19 (mod 54) except possibly v = 109, and for some other sporadic v
(Ling (1997), Fujiwara (2005)).

Nothing was previously known about the next case, the subject of this
talk. Here we will take the initial steps towards the Erdős conjecture for
k = 6 by establishing the existence of 6-sparse STS(v)s for infinitely many
v.
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A new perspective on the Path Partition Conjecture

M. Frick

(joint work with C. Whitehead and I. Schiermeyer)

MSC2000: 05C38

The order of a longest path in a graph G is denoted by τ (G). If the
difference between the order of G and τ (G) equals p, we say that G is p-
deficient. A 0-deficient graph is called traceable. The following conjecture,
which was formulated in 1981 but has not yet been settled, is referred to as
the Path Partition Conjecture (PPC):

PPC: If G is any graph and (a, b) any pair of positive integers such that

a+ b = τ (G) , (1)

then G has a vertex partition (A,B) such that

τ(〈A〉) ≤ a and τ(〈B〉) ≤ b. (2)

We have proved that for each p ≥ 0 there exist at most a finite number
of p-deficient graphs satisfying (1) that do not satisfy (2).

Any vertex partition (A,B) of a graph satisfying (2) is called an (a, b)-
partition. If the PPC were true, it would be “best possible” in the sense that
if the condition (1) is weakened to a + b = τ (G) − 1, we cannot guarantee
that G has an (a, b)-partition. For example, if G is the complete graph
Ka+b+1 then a + b = τ (G) − 1 but G has no (a, b)-partition. We have also
constructed noncomplete traceable graphs with this property but we do not
know whether nontraceable ones exist. It might well be that a stronger result
than that conjectured in the PPC is true for non-traceable graphs. These
considerations motivate the following definition.

Definition. The path partition function f : Z+ ∪ {0} → Z is defined by:
f(p) is the greatest integer for which every p-deficient graph G has an (a, b)-
partition for every pair of positive integers (a, b) such that a+b = τ(G)−f(p).

The PPC is equivalent to the conjecture that f (p) ≥ 0 for all p ≥ 0.
We show that −p ≤ f(p) ≤ 1 for all p ≥ 0. Moreover, f(0) = 0,

f (1) = f (2) = 1 and 0 ≤ f(3) ≤ 1.
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Long cycles passing through a linear forest

J. Fujisawa

(joint work with T. Yamashita)

MSC2000: 05C38, 05C45

In 2001, Hu et al. proved a theorem which shows the existence of a long
cycle passing through a linear forest, using a degree condition which considers
the average degree of k + 1 independent vertices. Recently, it is proved that
we don’t need to consider all the vertices, and we can guarantee the length of
the cycle by the degree sum of two vertices of high degree in k+1 independent
vertices. In the talk I will present this new result, and I will also mention a
related conjecture.

Constructions for cyclic 4- and 5-sparse Steiner triple systems

Y. Fujiwara

MSC2000: 05B07

A Steiner triple system of order v, briefly STS(v), is an ordered pair
(V,B), where V is a finite set of v elements called points, and B is a set of
3-element subsets of V called blocks, such that each unordered pair of distinct
elements of V is contained in exactly one block of B. An STS(v) is said to
be r-sparse if it has no set of i blocks whose union contains precisely i + 2
points for 2 ≤ i ≤ r. An STS(v) is said to be cyclic if its automorphism
group contains a cyclic group of order v as a subgroup acting on V .

In this talk, we consider the existence problem on Steiner triple systems
which are both cyclic and r-sparse. Several recursive constructions for cyclic
r-sparse STSs with r = 4, 5 are developed.
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Structure and enumeration of toroidal and projective-planar
graphs with no K3,3’s

A.V. Gagarin

(joint work with P. Leroux and G. Labelle)

MSC2000: 05C10, 05C30, 68R10

By Kuratowski’s theorem, a graph G is non-planar if and only if it con-
tains a subdivision of K5 or K3,3. A graph G does not contain a K3,3-
subdivision if and only if it does not contain a K3,3-minor. Therefore such
a graph is called a graph with no K3,3’s. The graphs with no K3,3’s can be
described recursively in terms of K5’s and 2-connected planar graphs.

We provide structure theorems for toroidal and projective-planar graphs
with no K3,3’s in terms of 2-pole planar networks substituted for the edges of
canonically defined non-planar graphs. These non-planar graphs are respec-
tively called toroidal cores and projective-planar cores. The decompositions
imply algorithms to detect toroidal and projective-planar graphs with no
K3,3’s. The algorithms can be implemented to run in linear time.

A proper use of mixed generating functions with an edge counter is de-
scribed in detail for the operation of substitution of 2-pole networks into
the edges of a graph. As a result, we count labelled 2-connected toroidal
and projective-planar graphs with no K3,3’s, and labelled 2-connected home-
omorphically irreducible planar, toroidal and projective-planar graphs with
no K3,3’s. We are currently working on the unlabelled enumeration of these
graphs, and have already counted the isomorphism classes of toroidal cores.
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Optimal restricted connectivity and superconnectivity in
graphs with small diameter

P. Garćıa–Vázquez

(joint work with C. Balbuena, M. Cera, A. Diánez and X. Marcote)

MSC2000: 05C35, 05C40

For a connected graph G, the restricted connectivity κ′(G) is defined as
the minimum cardinality of a vertex-cut over all vertex-cuts X such that no
vertex u has all its neighbors in X; the superconnectivity κ1(G) is defined
similarly, this time considering only vertices u inG−X, hence κ1(G) ≤ κ′(G).
The minimum edge-degree of G is ξ(G) = min{d(u)+d(v)−2 : uv ∈ E(G)},
d(u) standing for the degree of a vertex u. A graph G is said to be κ′-
optimal if κ′(G) = ξ(G), and optimally superconnected if δ(G) < κ1(G) =
κ′(G) = ξ(G), δ(G) being the minimum degree of G. In this paper, several
sufficient conditions yielding κ1(G) ≥ ξ(G) are given, guaranteeing optimal
superconnectivity κ1(G) = κ′(G) = ξ(G) under some additional constraints
which are based on the relationship between the diameter and the girth of
G.
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Embeddings of trees and the best secretary problem

N. Georgiou

MSC2000: 06A07, 05A20

A rooted tree, or tree for short, is a partial order with a maximum element,
called the root, whose Hasse diagram is a tree. A binary tree is a tree such
that every element has at most two lower covers. The complete binary tree
T n of height n, is a ranked tree with n levels, such that every element except
for the leaves has exactly two lower covers. An embedding of a tree T into
T n is a map φ : T → T n such that φ(x) ≤ φ(y) in T n if and only if x ≤ y in
T .

We write CT (n) for the total number of embeddings of T into T n, and
write AT (n) for the number of those that map the root of T to the root of
T n. Kubicki, Lehel and Morayne have proved that, for fixed n, if T1, T2 are
binary trees with T1 a subposet of T2, then

AT1(n)

CT1(n)
≤ AT2(n)

CT2(n)
.

They also conjectured that the inequality holds for arbitrary trees T1, T2 with
T1 a subposet of T2.

We disprove their conjecture, giving a counterexample to the inequality.
As a consequence, we have the counter-intuitive result that, in a partial-
order version of the best secretary problem, where candidates are ordered as
a complete binary tree, the probability of the best-so-far candidate being the
best-of-all candidate is not increasing in the number of candidates already
interviewed. This contrasts with the total-order version of the problem.

87



Hexagon Biquadrangle systems

Lucia Gionfriddo

MSC2000: 05B05, 05B30

A hexagon biquadrangle system of order n and index ρ [HBQSρ(n)] is
a pair (X,H), where X is a finite set of n vertices and H is a collection of
edge disjoint hexagon biquadrangles (called blocks) which partitions the edge
set of ρKn, with vertex set X. A hexagon biquadrangle system is said to be
a 4-nesting [N(4)−HBQS] if the collection of all the 4-cycles contained in
the hexagon biquadrangles form a µ-fold 4-cycle system. It is said to be a 6-
nesting [N(6)−HBQS] if the collection of 6-cycles contained in the hexagon
biquadrangles is a λ-fold 6-cycle system. It is said to be a (4, 6)-nesting,
briefly a N(4, 6)−HBQS, if it is both 4-nesting and a 6-nesting.

It is said to be a (42, 6)-nesting if it is (4, 6)-nesting and the µ-fold 4-cycle
system, nested in it, is decomposable into two µ

2
-fold 4-cycle systems.

In this research we determine completely the spectrum of N(42, 6) −
HBQS for ρ = 7h, λ = 6h and µ = 8h, h positive integer.

All vertex-transitive locally-quasiprimitive graphs have a
semiregular automorphism

Michael Giudici

(joint work with Jing Xu)

MSC2000: 20B25, 20B05

A semiregular permutation is a permutation whose cycles all have the
same size. The polycirculant conjecture states that every transitive 2-closed
permutation group contains a semiregular element. The full automorphism
group of a graph is 2-closed but not every 2-closed permutation group is the
full automorphism group of some graph. In this paper we make substan-
tial progress on the polycirculant conjecture by proving that every vertex-
transitive, locally quasiprimitive graph has a semiregular automorphism. The
main ingredient of the proof is the determination of all biquasiprimitive per-
mutation groups which do not contain a semiregular element.
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Approximate counting: Independent sets and Ferromagnetic
Ising

Leslie Ann Goldberg

(joint work with Mark Jerrum)

MSC2000: 68W20, 05C85, 68Q15

We start by reviewing the computational difficulty of combinatorial count-
ing problems. Even though the complexity of many natural problems is un-
resolved (for example, we do not know whether the number of independent
sets in a bipartite graph can be efficiently approximated) we do know some
computational equivalences between problems. In this work we consider a
particular counting problem arising in statistical physics: namely, approxi-
mating the partition function of the ferromagnetic Ising model with varying
interaction energies and local external magnetic fields. Jerrum and Sinclair
provided an efficient approximation algorithm for the case in which the sys-
tem is consistent, in the sense that the local external fields all favour the
same spin. We show that the general problem is equivalent in complexity
to the independent set problem mentioned above. This implies that it is
complete in a logically-defined subclass of #P previously studied by Dyer,
Goldberg, Greenhill and Jerrum. In contrast, we show that approximating
the partition function of the q-state Potts model with q > 2 is as hard as
approximately solving any counting problem in #P — for example, it is as
hard as approximately counting independent sets in an arbitrary graph.
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A flaw in the use of minimal defining sets for secret sharing
schemes

M.J. Grannell

(joint work with T.S. Griggs and A.P. Street)

MSC2000: 94A62, 05B05

A defining set for a t− (v, k, λ) design is a collection of k-tuples which is
contained in a unique design with the given parameters. A minimal defining
set for a t − (v, k, λ) design is a defining set for the design, no proper sub-
collection of which is a defining set. However, we show that in some cases it
is possible to reconstruct a t−(v, k, λ) block design D uniquely from a proper
sub-collection S∗ of a minimal defining set S for D, given only the additional
information that S∗ is indeed a sub-collection of some minimal defining set
for a t − (v, k, λ) design. This surprising result has implications for the use
of minimal defining sets in secret sharing schemes.

Bounds on the generalised acyclic chromatic numbers of
bounded degree graphs

Catherine Greenhill

(joint work with Oleg Pikhurko)

MSC2000: 05C15, 05C38

The acyclic chromatic number A(G) of a graph G is the minimum number
of colours required to properly colour the vertices of G such that every cycle
has more than 2 colours. The quantity A(G) was introduced by Grünbaum in
1973, in the context of planar graphs. A similar definition for edge colourings
leads to the acyclic edge chromatic number A′(G) of G. These numbers can
be generalised as follows. Fix r ≥ 3 and let Ar(G) (respectively, A′r(G))
be the minimum number of colours required to properly colour the vertices
(respectively, edges) of G such that every cycle C in the graph G receives
min{|C|, r} colours. So A(G) = A3(G) and A′(G) = A′3(G).

We give upper bounds for the generalised acyclic chromatic number and
generalised acyclic edge chromatic number of graphs with maximum degree
d, as a function of d. We also produce examples of graphs where these bounds
are of the correct order.
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Steiner triple systems and existentially closed graphs

T.S. Griggs

(joint work with A.D. Forbes and M.J. Grannell)

MSC2000: 05C99, 05B07

A graph is said to be n-existentially closed, or n-e.c., if for every n-element
subset S of the vertex set, and every subset T of S, there exists a vertex x /∈ S
which is adjacent to every vertex in T , and is not adjacent to any vertex in
S \T . In 1963, Erdős and Rényi proved that for any fixed value of n, almost
all graphs are n-existentially closed. But relatively few specific examples are
known for n ≥ 2.

Recent research has focused on strongly regular graphs with existentially
closed properties. Baker, Bonato and Brown (2003) constructed 3-e.c. graphs
from affine planes and Bonato, Holzmann and Kharagani (2001) studied 3-
e.c. graphs obtained from Hadamard matrices.

In this talk, I will explore the existentially closed properties of the block
intersection graphs of Steiner triple systems. These naturally relate to ques-
tions concerning configurations. We are able to prove that the block inter-
section graph of every Steiner triple system except the unique systems on 7
and 9 points is 2-e.c. and obtain a characterization of those Steiner triple
systems whose block intersection graphs are 3-e.c.

This leads to the interesting result that there are at most two orders of
Steiner triple system, namely 19 and 21, for which the block intersection
graph can be 3-existentially closed. But they do exist and we identify two
such systems on 19 points. The case of 21 points remains elusive.
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On the number of power-free words in two and three letters

Uwe Grimm

MSC2000: 68R15, 05A15

An interesting problem in the combinatorics of words concerns the num-
ber of words that avoid certain powers. The best studied example is the set of
ternary square-free words. In this talk, we discuss methods that lead to im-
proved lower and upper bounds. Improved lower bounds can be obtained by
a suitable generalisation of Brinkhuis triples. Essentially this relies on iden-
tifying a selection of square-free morphisms that are mutually compatible,
such that any combination of the morphisms preserves the square-freeness of
words. Such a set of morphisms then provides an exponential lower bound.
This approach has been applied to improve the lower bound of the number
of square-free ternary words of length n from 2n/17, which was derived using
a ‘traditional’ Brinkhuis triple, to 65n/40 [1]. This bound was subsequently
verified independently, and, employing the same method, further improved
to 110n/42 [2]. An improved upper bound has been obtained by calculating
the full generating function of length-` square-free words for ` ≤ 24 [3].
We also report briefly on some interesting results concerning power-free bi-
nary words [4,5], and on preliminary results on the number of binary cube-free
words.
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Initial results from a study of probability curves for shortest
arcs in optimal ATSP tours with application to heuristic

performance

Vic Grout

MSC2000: 90C27, 90C59

Define the following Asymmetric Traveling Salesman Problem (ATSP)
classes on n cities:

• The k-Discrete TSP (kDTSP), Dk
n, with arc costs drawn randomly

(uniformly) from {0,1, . . . ,k-1}. A special case is the Binary TSP
(BTSP), Bn = D2

n, with arc costs in {0,1}.

• The Permuted TSP (PTSP), Pn, with arc costs drawn uniquely (per-
muted) from {0,1, . . . n(n-1)-1}.

• The Uniform TSP (UTSP), Un, with arc costs drawn from some con-
tinuous interval with uniform probability.

• The Normal TSP (NTSP), Nµσ
n , with arc costs drawn from some con-

tinuous interval according to a normal distribution with mean µ and
variance σ2.

Define ρ(i,An), ρ:{1,2, . . . n(n-1)}×An → [0,1], for a given ATSP class An,
to be the probability that the ith-shortest arc appears in the optimal tour
for any instance of An. Define η(j,An), η:{1,2, . . . n-1}×An → [0,1], for a
given ATSP class An, to be the probability that, for any city, the arc to its
jth-nearest neighbour appears in the optimal tour for any instance of An.

Some simple results may be conjectured or derived by exhaustion, such
as:

ρ(i,An) ≥ ρ(i+1,An)for all classes An,
ρ(1, TRIAL RESTRICTION ) = ρ(1,Bn) = 1
ρ(1,D3

2) = 1
ρ(1,P3) = 0.8
with corresponding results for η. However, for larger n and i (and j), this

approach is not viable.
The paper reports on initial results from large-scale empirical testing to

determine these probability curves and attempts to relate values obtained for
ρ and η to degrees of accuracy for various greedy and greedy-type heuristics
for different ATSP classes.
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A ∆ + 4 bound on the total chromatic number for graphs with
chromatic number on the order of

√
∆/ log ∆

R. Häggkvist

MSC2000: 05C15

The total chromatic number for a graph G is the least number of colours
needed to color the vertices and edges of G, such that no adjacent vertices,
no adjacent edges and no incident vertices and edges receive the same colour.
It has been conjectured by Behzad (1965) and Vizing (1968) that the total
chromatic number is at most ∆+2, where ∆ = ∆(G) is the maximum degree
of G. The upper bound ∆ + 1026 was established by Molloy & Reed (1998).
The method used in the present result differs from that of Molloy & Reed
in that, for instance, it does not require the existence of a special vertex
colouring with certain properties. Instead, the key result used in the proof
of the assertion in the title is that one may start from any proper vertex
colouring, with the single requirement that not too many colours are used.

Another result used in the proof is that every m-regular graph has a
spanning bipartite subgraph H with vertices of degree s or s − 1 for every
s ≤ b1

4

√
m/ log 3mc. It would be of interest to establish a best possible

version of this proposition. In particular, it might be that it holds for s as
large as m

4
, say.
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(r, r + 1)-factorizations of multigraphs with high minimum
degree

A.J.W. Hilton

MSC2000: 05C15, 05C70

For r ≥ 0, an (r, r+1)-factor of a multigraph G is a spanning subgraph of
G each of the degrees of which is either r or r+1. An (r, r+1)-factorization
of G is a decomposition of G into edge-disjoint (r, r + 1)-factors.

Let r ≥ 0, s ≥ 0 and let ψ(r, s) be the least integer such that, if G
is a multigraph (without loops) with minimum degree δ(G) ≥ ψ(r, s) and
maximum degree ∆ ≤ δ+ s, then G has an (r, r+ 1)-factorization. We show
that ψ(r, s) exists for all r, s, and give the upper bound:

ψ(r, s) ≤ 4(4r2 + 6r + 5)
(
s+ 8(4r2 + 6r + 5)

)
.

Semi-total graph colourings, the beta parameter, and total
chromatic number

Fred Holroyd

(joint work with Jini Williams)

MSC2000: 05C15

A semi-total colouring of a graph G with maximum degree ∆ uses ∆ + 1
colours, and has the properties of a total colouring except that adjacent
vertices need not have distinct colours.

Given such a colouring, µ, of G, a beta edge of G is an edge incident with
two similarly coloured vertices, and βµ(G) is the number of beta edges with
respect to µ. Finally, β(G) = min{βµ(G) : µ is a semi-total colouring of G}.

A graph G is nearly of type 1 if the deletion of just one edge not contained
in a triangle reduces the total chromatic number of G to ∆ + 1. We derive a
bound on β(G) for such a graph, that is log-linear in ∆.
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Multiple chromatic numbers of some Kneser graphs

Fred Holroyd

(joint work with Andonis Yannakopolous)

MSC2000: 05C15

The Kneser graph K(m,n) (where m > 2n) has the n-sets of an m-set as
its vertices, two vertices being adjacent whenever they are disjoint as sets.
The kth chromatic number of any graph G is the least integer t such that the
vertices can be assigned k-subsets of {1, . . . , t} with adjacent vertices always
receiving disjoint sets. Saul Stahl has conjectured that, if k = qn− r where
q ≥ 1 and 0 ≤ r ≤ n, then the kth chromatic number of K(m,n) is qm− 2r.
This is easily verified when r = 0; Stahl has also established its validity when
m = 2n+ 1 and when n = 2, 3.

We establish the validity of the conjecture in the following further classes
of cases:

(i) 2 ≤ m
n
< 2 + 1

r
;

(ii) 4 ≤ n ≤ 6 and 1 ≤ r ≤ 2;

(iii) 7 ≤ n ≤ 11 and r = 1;

(iv) (n, r,m) = (7, 2, 18), (12, 1, 37), (12, 1, 38) or (13, 1, 40).

General neighbour-distinguishing index
of a graph

M. Horňák

(joint work with E. Győri, C. Palmer and M. Woźniak)

MSC2000: 05C15

It is proved that edges of a graphG with no componentK2 can be coloured
using at most 2dlog2 χ(G)e+1 colours so that any two adjacent vertices have
distinct sets of colours of their incident edges.
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Bounds on optimal edit metric codes

S.K. Houghten

(joint work with D. Ashlock and J. Campbell)

MSC2000: 94B60, 94B65

The edit distance between two strings is the minimal number of substitu-
tions, deletions, or insertions required to transform one string into another.
An error correcting code over the edit metric includes features from deletion-
correcting codes as well as the more traditional codes defined using Hamming
distance. Applications of edit metric codes include the creation of robust tags
over the DNA alphabet.

While codes over the edit metric are analogous to similar codes over the
Hamming metric, little of the beautiful theory survives. The block structure of
a word is its partition into maximal subwords composed of a single character.
The size of a sphere about a word in the edit metric is heavily dependent on
the block structure of the word, creating a substantial divergence from the
theory for the Hamming metric.

This paper explores the theory underlying edit metric codes for small
alphabets. An optimal code is a code of maximal size for a given length
and minimum distance. We provide tables of bounds on code sizes for edit
codes with short length and small alphabets. We present several heuristics
for constructing codes.
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Variable changes for generalized power series

I-Chiau Huang

MSC2000: 05E99, 05A19, 13F25

Rings of formal power series and the operation of equating coefficients
provide an algebraic foundation for the method of generating functions. How-
ever, without employing the notion of Kähler differentials, the effect of vari-
able changes is not transparent. With meromorphic differentials, contour
integrations give an alternative way to take coefficients. While Jacobians
occurring in variable changes fit perfectly in such an analytic framework, di-
vergence of sequences may cause discomfort. Removing unnecessary analytic
restrictions, the author arrives at certain cohomology classes of separated dif-
ferentials [1]. The process of integration is replaced by residue maps, which
plan a significant role in Grothendieck duality theory. The new algebraic
foundation interprets naturally Lagrange inversion formulae [2] and inverse
relations [4].

The formalism of cohomology residues is simple. For a power series in
variables X1, · · · , Xn,

res

[
ϕdX1 · · · dXn

X1, ·, Xn

]
= constant coefficient of ϕ.

Although working well on wide range of problems in combinatorial analysis
[3], the derivation dX−1

i of the inverse of a variable Xi is not defined. In
the talk, we work on a field κ[[T G]] of generalized power series, where G is
a totally ordered Abelian group. The definition of derivation is extend to
dX−1

i . The logarithmic analogue

res

[
ϕd logX1 · · · d logXn

logX1, · · · , logXn

]
of residues is defined, even for a field of positive characteristic. The well-
known formula of Jacobi and various proofs of Dyson’s conjecture are inter-
preted naturally.

1. I-C. Huang. Applications of residues to combinatorial identities. Proc. Amer.
Math. Soc., 125(4):1011–1017, 1997.

2. I-C. Huang. Reversion of power series by residues. Comm. Algebra, 26(3):803–812,
1998.

3. I-C. Huang. Residue methods in combinatorial analysis. In Local Cohomology and
its Applications, volume 226 of Lecture Notes in Pure and Appl. Math., pages
255–342. Marcel Dekker, 2001.

4. I-C. Huang. Inverse relations and Schauder bases. J. Combin. Theory Ser. A,
97(2):203–224, 2002.
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The Doyen-Wilson Theorem
for

Extended Directed Triple Systems

Wen-Chung Huang

MSC2000: 05B07

An extended directed triple system of the order n, EDTS(n), is a pair
(V,B), where B is a collection of ordered triples from a n-set V (each ordered
triple may have repeated elements) such that every ordered pair of elements
of V , not necessarily distinct, is contained in exactly one ordered triple of B.

In this paper, it is shown that every extended directed triple system of
the order v can be embedded in an extended directed triple system of the
order n for all n ≥ 2v. This produces a generalization of the Doyen-Wilson
theorem for extended directed triple systems.

Frequency Permutation Arrays

S. Huczynska

(joint work with G. Mullen)

MSC2000: 94A29, 94A05

Motivated by recent interest in permutation arrays, we introduce and
investigate the more general concept of frequency permutation arrays (FPAs).
An FPA of length n = mλ and distance d is a set T of multipermutations
on a multiset of m symbols, each repeated with frequency λ, such that the
Hamming distance between any distinct x, y ∈ T is at least d. Such arrays
have potential applications in powerline communication. We establish basic
properties of FPAs, and provide direct constructions for FPAs using a range
of combinatorial objects. We also provide recursive constructions, and give
bounds for the maximum size of such arrays.
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Unique realizations of graphs

Bill Jackson

(joint work with Tibor Jordán)

MSC2000: 05C10, 05C62, 05C75

A d-dimensional framework is a straight line realization of a graph G
in Rd. We consider generic frameworks, in which the set of co-ordinates
of all the vertices of G is algebraically independent over the rationals. Two
frameworks for G are equivalent if corresponding edges in the two frameworks
have the same length. A framework is a unique realization of G in Rd if
every equivalent framework can be obtained from it by an isometry of Rd.
Bruce Hendrickson proved that if G has a unique realization in Rd then
G is (d + 1)-connected and redundantly rigid. He conjectured that every
realization of a (d+1)-connected and redundantly rigid graph in Rd is unique.
This conjecture is true for d = 1 but was disproved by Robert Connelly for
d ≥ 3. We resolve the remaining open case by showing that Hendrickson’s
conjecture is true for d = 2. As a corollary we deduce that every realization
of a 6-connected graph as a 2-dimensional generic framework is a unique
realization. Our proof is based on a new inductive characterization of 3-
connected graphs whose rigidity matroid is connected.
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A degree constraint for uniquely Hamiltonian graphs

A. Jamshed

(joint work with Sarmad Abbasi)

MSC2000: 05D40, 05C45

This paper is concerned with uniquely Hamiltonian graphs. As the name
suggests, a graph is called uniquely Hamiltonian if it contains exactly one
Hamilton cycle. In the Fifth British Combinatorial Conference (1975), J.
Sheehan asked if every uniquely Hamiltonian graph contains a vertex of low
degree. J. A. Bondy and B. Jackson proved that every uniquely Hamiltonian
graph contains a vertex of degree at most c′ log2 4n + 3 where c′ = (2 −
log2 3)−1 ≈ 2.41. This result improves the näıve argument based on Dirac’s
Theorem that uniquely Hamiltonian graphs must have a vertex of degree at
most n

2
+ 1 and an earlier observation of B. Jackson and R. W. Whitty that

uniquely Hamiltonian graphs must have a vertex of degree at most n+9
4

. We
prove that if G = (V,E) is uniquely Hamiltonian then

∑
v∈V

(
2

3

)d(v)−#(G)

≥ 1.

Where #(G) = 1 if G has even number of vertices and 2 if G has odd
number of vertices. It follows that every n-vertex uniquely Hamiltonian
graph contains a vertex whose degree is at most c log2 n + 2 where c =
(log2 3− 1)−1 ≈ 1.71 thereby improving the bound given by J. A. Bondy and
B. Jackson.

This method also gives some useful information about uniquely Hamil-
tonian graphs. We can also say something about the location of the small
degree vertices. For example, one can show that every uniquely Hamiltonian
graph either contains two vertices of small degree that are adjacent in the
Hamilton cycle or it contains reasonable number of vertices that have small
degree.
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Two remarks concerning balanced matroids

Mark Jerrum

MSC2000: 05B35, 05A15, 51E10, 68Q17

The property of balance (in the sense of Feder and Mihail) is investigated
in the context of paving matroids. The following examples are exhibited:
(a) a class of “sparse” paving matroids that are balanced, but at the same
time rich enough combinatorially to permit the encoding of hard counting
problems; and (b) a paving matroid that is not balanced. The computational
significance of (a) is the following. As a consequence of balance, there is an
efficient algorithm for approximating the number of bases of a sparse paving
matroid within specified relative error. On the other hand, determining the
number of bases exactly is likely to be computationally intractable.

Connectedness of graphs of vertex-colourings

Matthew Johnson

(joint work with Luis Cereceda and Jan van den Heuvel)

MSC2000: 05C15, 05C40, 05C85

For a graph G, the k-colour graph, Ck(G), has as its vertex set the proper
vertex k-colourings of G; two colourings in the vertex set of Ck(G) are adja-
cent if they differ on precisely one vertex of G.

We will show that

• for every 3-chromatic graph G, C3(G) is not connected,

• for all k ≥ 4, there exist k-chromatic graphs whose k-colour graph is
connected, and

• for all 2 ≤ p ≤ k, there are p-chromatic graphs whose k-colour graph
is not connected.

We will also show how to recognize, in polynomial time, whether, for any
3-colourable graph G, two vertices of C3(G) belong to the same connected
component, and how to find a path between them if they do.
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Universal cycles for permutations and other combinatorial
families

Robert Johnson

MSC2000: 05A99

A de Bruijn cycle of order n is a sequence in {0, 1}2n
in which each n-tuple

in {0, 1}n occurs exactly once as a cyclic interval. In 1992, Chung, Diaconis
and Graham introduced the notion of a universal cycle, which generalises
this idea to other combinatorial families. In this talk we describe some re-
cent work which answers a question of these authors on universal cycles for
permutations. We will also survey briefly some results and conjectures in the
area.

Extremal results for rooted minor problems

L.K. Jørgensen

(joint work with K. Kawarabayashi)

MSC2000: 05C83

We consider rooted minors in graphs, i.e., graph minors containing a
specified set of vertices. In particular if X is a set of k vertices in a graph
G then a rooted K`,k(X) minor consists of disjoint connected subgraphs
V1, . . . , V`,W1, . . . ,Wk of G so that G has a Vi − Wj edge for every pair
i, j, and |X ∩Wj| = 1 for every j.

We previously used an extremal result for rooted K2,4(X) minors to prove
an extremal result forK4,4 minors in 4-connected graphs. With Kawarabayashi
we now prove that every 4-connected graph with n vertices and at least 5n−14
edges has a rooted K3,4(X) minor. We also consider rooted K3,3(X) minors
and rooted K3,2(X) minors.
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A graphic generalisation of Arithmetic

Delaram Kahrobaei

(joint work with K. Bhutani and B. Khan)

MSC2000: 05C99, 11U10

In this talk, we extend the classical arithmetic defined over the set of
natural numbers N, to the set of all finite directed connected multigraphs
having a pair of distinguished vertices. Specifically, we introduce a model F
on the set of such graphs, and provide an interpretation of the language of
arithmetic L = {0, 1,6,+,×} inside F . The resulting model exhibits the
property that the standard model on N embeds in F as a submodel, with
the directed path of length n playing the role of the standard integer n. We
will compare the theory of the larger structure F with classical arithmetic
statements that hold in N. For example, we explore the extent to which
F enjoys properties like the associativity and commutativity of + and ×,
distributivity, divisibility, and order laws.

104



The circular chromatic index of graphs of high girth

T. Kaiser

(joint work with D. Král’, R. Škrekovski and X. Zhu)

MSC2000: 05C15

A circular `-edge-coloring of a graph G (for a real ` ≥ 1) is a coloring of
the edges of G by the points of a circle C of circumference `, such that the
distance on C of the colors assigned to any two incident edges is at least 1.
The circular chromatic index χ′c(G) of G is the least ` for which G admits
a circular `-edge-coloring (the minimum is always attained and is a rational
number).

It was conjectured by Jaeger and Swart that non-3-edge-colourable cubic
bridgeless graphs have bounded girth. Although this ‘Girth Conjecture’ has
been disproved, we show that its analogue for the circular edge-colouring
‘holds’ in an asymptotic sense. More generally, we prove the following Vizing-
type theorem for the circular chromatic index of graphs of large girth: For
each ε > 0 and each integer ∆ ≥ 1, there exists a number g such that for any
graph G of maximum degree ∆ and girth at least g, the circular chromatic
index of G is at most ∆ + ε.

More large sets of resolvable MTS and DTS

Qingde Kang

(joint work with Hongtao Zhao and Rongjia Xu)

MSC2000: 05B07

A cyclic (resp. transitive) triple on a v-setX is a set of three ordered pairs:
(x, y), (y, z) and (z, x) (resp. (x, z)) of X, which is denoted by 〈x, y, z〉 or
〈y, z, x〉, or 〈z, x, y〉 (resp. (x, y, z)). An Mendelsohn (resp. directed) triple
system of order v, denoted by MTS(v) (resp. DTS(v)), is a pair (X,B)
where B is a collection of cyclic (resp. transitive) triples on X, such that
each ordered pair of X occurs in exactly one triple of B. An MTS(v) (resp.
DTS(v)) is called resolvable and is denoted by RMTS(v) (resp. RDTS(v)),
if its blocks can be partitioned into parallel classes, each containing every
element of X exactly once.

A large set of Mendelsohn (resp. directed) triple systems of order v,
denoted by LMTS(v) (resp. LDTS(v)), is a collection A of (v−2) MTS(v)s
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(resp. 3(v−2) DTS(v)s) based on X such that every cyclic (resp. transitive)
triple from X occurs in exactly one member of A. It is well known that an
LMTS(v) (an LDTS(v)) exists if and only if v ≡ 0, 1 (mod 3) with an
exception LMTS(6); an RMTS(v) (and RDTS(v)) exists if and only if
3|v and v 6= 6. The large set consisted by RMTS(v) (resp. RDTS(v)) is
denoted by LRMTS(v) (resp. LRDTS(v)). The existence of LRMTS(v)
and LRDTS(v) have been investigated by many scholars. By their research,
LRMTS(v) and LRDTS(v) exist for

v = 3km, where k ≥ 1 and m ∈ {1, 4, 5, 7, 11, 13, 17, 23, 25, 35, 37, 41, 43,
47, 53, 55, 57, 61, 65, 67, 91, 123};
v = 7k + 2, 13k + 2, 25k + 2, 24k + 2 and 26k + 2 where k ≥ 0.

And, if there exists an LRMTS(v) (resp. LRDTS(v)) then there exist
LRMTS((2 · rk +1)v) (resp. LRDTS((2 · rk +1)v)) for k ≥ 0, r = 7, 13 and
v ≡ 0, 3, 9 mod 12.

In this paper, we first give a special structure for LRMTS(2q + 2) and
a method to construct LRMTS(q′ + 2), where both q = 6t + 5 and q′ =
6s + 1 are prime powers. Then, using computer, the solutions for t ∈ T =
{0, 1, 2, 3, 4, 6, 7, 8, 9, 14, 16, 18, 20, 22, 24, 28, 32} and s ∈ S = {35, 38, 46, 47,
48, 51, 56, 60} are found out. Furthermore, using a method introduced by
Kang, the corresponding LRDTS are obtained too. Finally, by the tripling
construction and product construction for LRMTS and LRDTS, and by
new results for LR-design, we obtain the existence for LRMTS(v) and
LRDTS(v) with orders

v = 12(t+ 1)
∏

mi≥0

(2 · 7mi + 1)
∏

ni≥0

(2 · 13ni + 1) and t ∈ T ,

v = 3(2s+ 1)
∏

mi≥0

(2 · 7mi + 1)
∏

ni≥0

(2 · 13ni + 1) and s ∈ S,

which provide more infinite families for large sets of resolvable MTS and
DTS.

Research supported by NSFC Grant 19831050 and NSFHB Grant 103146.
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A new criterion for a Latin square to be group-based

A.D. Keedwell

MSC2000: 05B15, 20N05

We shall describe new sufficient (and necessary) conditions for a Latin
square to be group-based. For a Latin square of order n at most n/p easy-to-
implement-by-hand tests are required, where p is the smallest prime which
divides n. Our method exploits the fact that the middle nucleus of a loop is
a group. In particular, for a square of prime order just one test is sufficient.
(Compare the O(n2) tests required to meet Suschkewitch’s condition or the
quadrangle criterion.)

The rôle of approximate structure in extremal combinatorics

Peter Keevash

MSC2000: 05D05

We discuss the following method for solving problems in extremal combi-
natorics. In order to show that a given configuration is a unique optimum for
an extremal problem, we first prove an approximate structure theorem for all
constructions whose value is close to the optimum, and then use this theorem
to show that any imperfection in the structure must lead to a suboptimal
configuration. We find a new proof of a theorem of Frankl and Füredi (joint
work with Dhruv Mubayi) and solve a conjecture of Sós and a conjecture of
Frankl (joint work with Benny Sudakov).
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Comparing subclasses of well-covered graphs

E.L.C. King

MSC2000: 05C69

A graph G is said to be well-covered if every maximal independent set
of G is of the same size. It has been shown that characterizing well-covered
graphs is a co-NP-complete problem. In an effort to characterize some of
these graphs, different subclasses of well-covered graphs have been studied.
In this talk, we will discuss the relationships between four of these subclasses:
well-dominated graphs (those graphs for which every minimal dominating set
is minimum), α = γ graphs (those graphs for which the cardinality of a min-
imum dominating set is the same as the cardinality of a maximum indepen-
dent set), strongly well-covered graphs (those graphs that remain well-covered
with the deletion of any edge), and stable well-covered graphs (those graphs
- introduced in the speaker’s doctoral dissertation - that remain well-covered
with the addition of any edge). We illustrate which of these subclasses in-
tersect, which are subsets of one another and which are disjoint from one
another.
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Reconstruction of permutations from their erroneous patterns

Elena V. Konstantinova

MSC2000: 05C25, 05C85, 05C90

Reconstruction problem arises in graph theory and coding theory as well
as in molecular biology if one is interested in reconstructing unknown ge-
netic sequences. We solve the reconstruction problem of permutations and
signed permutations on n elements from their erroneous patterns which are
distorted by reversal of intervals (with replacing signs in the case of signed
permutations). We show that for any n ≥ 2 an unknown signed permutation
is uniquely reconstructible from 3 signed permutations being at the reversal
distance at most one from the unknown signed permutation. The reversal
distance is defined as the minimal number of reversals of an permutation
interval which are needed to transform one permutation into another. Un-
der the same conditions for any n ≥ 3 an unknown permutation is uniquely
reconstructible from 4 permutations. We also investigate the cases when
a smaller number of permutations or signed permutations are sufficient to
determine an unknown permutation or singed permutation uniquely. A re-
construction algorithm is presented for permutations [1] as well as for signed
permutations. The proposed approach is based on an investigation of struc-
tural properties of a certain graph constructed for this problem. In particular,
it is proved that the considered graph for signed permutations does not con-
tain C3, C5 and bipartite subgraphs K2,3 and contains C4. The considered
graph for permutations does not contain C3 and bipartite subgraphs K2,4

and contains bipartite subgraphs K3,3. It is also shown that in the case of at
most two reversal errors it is needed much more different erroneous patterns
to reconstruct an unknown permutation or signed permutation.

1. E. V. Konstantinova, “Reconstruction of permutations distorted by single
reversal errors”, Abstracts of talks of the 2004 IEEE International Sympo-
sium on Information Theory ISIT-2004, Chicago, June 27 – July 2, 2004,
451.
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Maximum packing for perfect four-triple configurations

Selda Küçükçifçi

(joint work with Güven Yücetürk)

MSC2000: 05B07, 05B40

The graph consisting of the four 3-cycles (triples) (a, b, h), (b, c, d), (d, e, f),
and (f, g, h), where a, b, c, d, e, f, g, h are distinct is called a 4-cycle-triple
block and the 4-cycle (b, d, f, h) of the 4-cycle-triple block is called an inside
4-cycle. The graph consisting of the four 3-cycles (a, b, f), (b, c, d), (d, e, f),
and (f, g, h), where a, b, c, d, e, f, g, h are distinct is called a kite-triple block
and the kite (b, d, f)−h (consisting of a 3-cycle with a pendant edge) is called
an inside kite. A decomposition of 3kKn into 4-cycle-triple blocks (or into
kite triple blocks) is said to be perfect if the inside 4-cycles (or kites) form a
k-fold 4-cycle system (or kite system). A perfect maximum packing of 3kKn

with 4-cycle-triples (or kite-triples) is a triple (X,T, L), where T is a collec-
tion of edge disjoint 4-cycle-triples (or kite-triples) and L is a collection of
3-cycles such that the inside of 4-cycle-triples (or kite-triples) plus the inside
of the 3-cycles in L form a maximum packing of kKn with 4-cycles (or kites).

A complete solution for the problem of constructing perfect 3k-fold 4-
cycle-triple and kite-triple systems was given recently by E.J. Billington,
C.C. Lindner, and A. Rosa [1] . In this work, we give a complete solution
of the problem of constructing perfect maximum packings of 3kKn with 4-
cycle-triples and kite-triples.

Reference.

[1] E.J. Billington, C.C. Lindner, and A. Rosa, Lambda-fold complete graph
decompositions into perfect four-triple configurations, Australasian Journal
of Combinatorics, to appear.
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Pseudo 2–factor isomorphic regular bipartite graphs

D. Labbate

(joint work with M. Abreu, B. Jackson and J. Sheehan)

MSC2000: 05C70, 05C75

A graph with a 2–factor is said to be 2–factor hamiltonian if all its 2–
factors are hamiltonian cycles, and, more generally, 2–factor isomorphic if
all its 2–factors are isomorphic. Examples of such graphs are K4, K5, K3,3,
the Heawood graph (which are all 2–factor hamiltonian) and the Petersen
graph (which is 2–factor isomorphic). Several recent papers have addressed
the problem of characterizing families of graphs (particularly regular graphs)
which have these properties.

Let G be a graph which contains a 2–factor X. Let t be a {0, 1}–function
defined on the 2–factors X of G as follows:

t(X) =

{
0 X has an even number of circuits of length ≡ 0 mod 4
1 otherwise

LetG be a bipartite graph and suppose that for all 2–factors Y ofG, t(Y ) = t.
In this case, we write t(G) =: t(X) and G is said to be pseudo 2–factor
isomorphic.

We prove that:

(1) The class of k–regular bipartite 2–factor isomorphic graphs and pseudo
2–factor isomorphic graphs differs.

(2) The class of pseudo 2–factor isomorphic k–regular bipartite graphs is
empty for k ≥ 4.
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Bertrand Postulate, the Prime Number Theorem and product
anti-magic graphs

A. Lev

(joint work with G. Kaplan and Y. Roditty)

MSC2000: 05C78

Let the edges of the finite simple graph G = (V,E), |V | = n, |E| = m
be labeled by the integers 1, 2, . . . ,m. Denote by w(u) the product of all
the labels of edges incident with a vertex u. The graph G is called product
anti-magic if it is possible that the above labeling results in all values w(u)
being distinct.

An old conjecture of Ringel states that every connected graph, but K2, is
product anti-magic. In this paper we prove this conjecture for dense graphs,
complete bipartite graphs and some other families of graphs.
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Reconstruction of graphs from metric balls of their vertices

Vladimir I. Levenshtein

MSC2000: 05C12, 05C35, 05C60

A new problem of reconstruction of a simple connected graph G = (V,E)
from metric balls Br(x,G) of a given radius r (r ≥ 2) centred at all its
vertices x ∈ V is considered. We say that a graph G = (V,E) of a family
F is reconstructible from metric balls of a given radius r (r ≥ 2) if any two
graphs G = (V,E) and G′ = (V,E ′) of this family (with the same vertex set
V ), for which Br(x,G) = Br(x,G

′) for all x ∈ V , coincide (i.e., E = E ′).
This reconstruction problem introduced in [1] is motivated by applications
in chemistry for the structure elucidation of unknown compounds and has
quiet different nature compared with the classical Ulam’s problem. In [1]
it is proved that any graph G = (V,E), which has at least 3 non–terminal
vertices and whose girth g(G) is at least 7, is reconstructible from metric balls
of radius 2 of all its vertices and it is shown that these sufficient conditions
are necessary in a sense. The problem of reconstruction of an unknown graph
from metric balls of radius larger than 2 requires stronger restrictions. Let
F (t) be the family of simple connected graphs G = (V,E) without terminal
vertices for which g(G) ≥ t. For a fixed r ≥ 2, denote by t(r) the minimum t
such that any graph G ∈ F (t) is reconstructible from metric balls of radius
r of all its vertices. Cyclic graphs on 2r + 2 vertices are not reconstructible
and this implies t(r) ≥ 2r + 3. The author conjectures that t(r) = 2r + 3
for all r ≥ 2. However, so far the author has a proof only of the following
upper bound: t(r) ≤ 2r+ 2d r−1

4
e+ 1. This implies that the conjecture above

is valid for r = 2, 3, 4, 5.

1. V.I. Levenshtein, E. Konstantinova, E. Konstantinov, S. Molodtsov, Re-
construction of a graph from 2-vicinities of its vertices, accepted for publica-
tion in Discrete Applied Mathematics.
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Polynomial variants of the densest/heaviest k-subgraph
problem

Maria Liazi

(joint work with Vassilis Zissimopoulos and Ioannis Milis)

MSC2000: 05C85, 68Q25, 68W40

In the Densest k-subgraph (DkS) problem we are given a graph G =
(V,E), with |V | = n, and an integer k, 3 ≤ k ≤ n, and we ask for a set of k
vertices such that the number of edges in the subgraph of G induced by this
set is maximized. The Heaviest k-subgraph (HkS) problem is the weighted
version of the DkS: the edges of the given graph have non negative weights
and the goal is to find the k-vertex induced subgraph with maximum total
edge weight. Both problems are NP-hard as generalizations of the well known
Clique problem.

Although several approximation algorithms have been proposed for the
general case of both problems, no one of them achieves a constant approxi-
mation ratio nor we have a complementary negative inapproximability result.

Concerning special cases of the DkS problem it is known that it re-
mains NP-hard for a number of special graph classes including bipartite
graphs (even of maximal degree three), regular graphs, comparability graphs,
chordal graphs and planar graphs. DkS is trivial on trees, while polynomial
time algorithms are known for graphs of maximal degree two, cographs, split
graphs and k-trees.

On the other hand it is known that the HkS problem is polynomial on
trees under the restriction that the solution we are looking for is connected
(i.e. a single subtree of the input tree). However, in general an optimal
solution to the HkS problem on a tree could be disconnected.

In this paper we focus on the direction of further identifying the frontier
between polynomial and NP-hard cases of the DkS and HkS problems with
respect to the class of the input graph. First, we propose two O(nk2) time
algorithms yielding optimal (either connected or disconnected) solutions for
the HkS problem on trees and on graphs of maximal degree two. We also
propose an O(nk4) dynamic programming algorithm for the connected DkS
problem on a subclass of interval graphs.
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Cycles in a tournament with pairwise zero, one or two given
common vertices

Nicolas Lichiardopol

MSC2000: 05C20

G. Chen, R.J. Gould and H. Li proved in [1] that every k-connected
tournament with at least 8k vertices admits k vertex-disjoint cycles spanning
the vertex set, which answered to a question posed by B. Bollobas (see [2])

In this talk, we prove, as consequence of a more general result, that every
k-connected tournament of diameter of least 4 admits k vertex-disjoint cycles
spanning the vertex set.

Then, for a connected tournament T of diameter at most 3, we determine
a relation between the maximum number of vertex-disjoint cycles and the
maximum number of vertex-disjoint cycles spanning the vertex set of T . By
using also a Lemma of [1], we prove that a k-connected tournament of order
at least 5k− 3, of diameter 2 (resp. 3) admits k (resp. k− 1) vertex-disjoint
cycles spanning the vertex set.

At last, we give results on cycles with pairwise one or two given common
vertices.

Some open problems will be raised.
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Combinatorial families enumerated by quasi-polynomials

P. Lisoněk

MSC2000: 05A15

We say that the sequence (an) is quasi-polynomial in n if there exist
polynomials P0, ..., Ps−1 such that an = Pi(n) where i ≡ n (mod s). We
present several families of combinatorial structures with the following prop-
erties: Each family of structures depends on two or more parameters, and
the number of isomorphism types of structures is quasi-polynomial in one of
the parameters whenever the values of the remaining parameters are fixed
to arbitrary constants. For each family we are able to translate the prob-
lem of counting isomorphism types of structures to the problem of counting
integer points in a union of parameterized rational polytopes. The quasi-
polynomiality of the counting sequence then follows from Ehrhart’s result
about the number of integer points in the sequence of integral dilates of a
given rational polytope. The families of structures to which this approach
is applicable include combinatorial designs, linear and non-linear codes, and
dissections of regular polygons.

Eccentricity sequences and eccentricity sets in digraphs

N. López

(joint work with J. Gimbert)

MSC2000: 05C12, 05C20

The eccentricity e(v) of a vertex v in a strongly connected digraph G is
the maximum distance from v. The eccentricity sequence of a digraph is the
list of eccentricities of its vertices given in nondecreasing order. A sequence
of positive integers is a digraphical eccentric sequence if it is the eccentricity
sequence of some digraph. A set of positive integers S is a digraphical eccen-
tric set if there is a digraph G such that S = {e(v), v ∈ V (G)}. In this talk,
we present some necessary and sufficient conditions for a sequence S to be
a digraphical eccentric sequence. In some particular cases, where either the
minimum or the maximum value of S is fixed, a characterization is derived.
We also characterize digraphical eccentric sets.
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On the metric dimension of graph products

Maŕıa Luz Puertas

(joint work with José Cáceres, Carmen Hernando, Mercè Mora, Ignacio M.
Pelayo, Carlos Seara and David R. Wood)

MSC2000: 05C12, 05C38

A vertex x of a graph G is said to resolve two vertices u and v of G if
d(x, u) 6= d(x, v). An ordered vertex set S of a graph G is a resolving set of
G if every two distinct vertices of G are resolved by some vertex of S. The
concept of (minimum) resolving set of a graph has proved to be useful and/or
related to a variety of fields such as Chemistry [3], Robotic Navigation [2]
and Combinatorial Search and Optimization [4].

This work is devoted to evaluating the so-called metric dimension [1,
5] of finite connected graphs, i.e., the minimum cardinality of a resolving
set. Firstly we find a non-trivial universal resolving set, and then we focus
our attention on cartesian products of graphs. We show some results about
upper and lower bounds of the metric dimension of the product G×H of two
graphs and we study in detail particular cases, such as products of complete
graphs, cycles or paths. In these cases we provide exact values of the metric
dimension and we also describe minimum resolving sets of cartesian product.
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On the strong circular 5-flow conjecture

E. Máčajová

(joint work with A. Raspaud)

MSC2000: 05C15, 90B10

The strong circular 5-flow conjecture of B. Mohar claims that each snark,
with the single exception of the Petersen graph, has circular flow number
smaller than 5. We disprove this conjecture by constructing an infinite family
of cyclically 4-edge connected snarks with circular flow number exactly 5.

“Almost stable” matchings in the Roommates problem

D.F. Manlove

(joint work with D.J. Abraham and P. Biró)

MSC2000: 05C70, 68Q17, 68W25, 91B68

The Stable Roommates problem (sr) is a classical combinatorial problem.
An instance of sr involves 2n agents, each of whom ranks all others in strict
order of preference. A matching M is a set of n disjoint pairs of agents. A
blocking pair of M is a pair of agents, each of whom prefers the other to
their partner in M . A matching is stable if it admits no blocking pair. It is
known that an sr instance need not admit a stable matching. This motivates
the problem of finding a matching that is “as stable as possible”, i.e. admits
the fewest number of blocking pairs. We show that, given an sr instance I,
the problem of finding a matching with the fewest number of blocking pairs
is NP-hard and very difficult to approximate. On the other hand, given a
constant K, we show that the problem of finding a matching with at most
K blocking pairs, or reporting that no such matching exists, is solvable in
polynomial time.
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On the connectivity of a product of graphs

X. Marcote

(joint work with C. Balbuena, M. Cera, A. Diánez, and P. Garćıa-Vázquez)

MSC2000: 05C35, 05C40

The product graph Gm ∗Gp of two given graphs Gm and Gp was defined
by J.C. Bermond, C. Delorme, and G. Farhi [J. Combin. Theory, Series B
36 (1984) 32-48] in the context of the so-called (∆, D)-problem, and can be
seen as an interesting model in the design of large reliable interconnection
networks. This work deals with product graphs Gm ∗ Gp for which we pro-
vide bounds for two connectivity parameters (λ and λ′, edge-connectivity and
restricted edge-connectivity, respectively) and present some sufficient condi-
tions to guarantee optimal values of these parameters. The obtained results
are compared with other previous related ones for permutation graphs and
cartesian product graphs. A similar approach can be carried out for the
vertex-connectivity of product graphs.

Special sets of the Hermitian surface and Segre invariants

G. Marino

(joint work with A. Cossidente and O.H. King)

MSC2000: 51E21, 51E14

A special set S of the Hermitian surface H(3, q2) of PG(3, q2) is a set of
q2 +1 points such that any three of them generate a secant plane to H(3, q2).
A characterization of certain elliptic quadrics Q−(3, q) embedded in H(3, q2),
q odd, as special sets, in terms of Segre invariants, is given.
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Unbalanced Kp,q factorisations of complete bipartite graphs

N. Martin

MSC2000: 05C70

A Kp,q factor of Km,n is a spanning subgraph all of whose components are
copies of Kp,q. In such a factor we will find two types of Kp,q one where the
p-set of a Kp,q is in the m-set of Km,n and the other in the n-set of Km,n. We
call the ratio of these respective types the balance ratio of the factor and label
it with integers x : y chosen so that gcd(x, y) = 1 [so the actual numbers
of oriented components are respectively dx and dy for some integer d]. A
Kp,q factorization of Km,n is a decomposition of Km,n into edge-disjoint Kp,q

factors. All factors in a factorization must have the same balance ratio.
It is conjectured that Kp,q factorizations of Km,n always exist when a

small number of necessary simple arithmetical conditions exist. In attacking
this conjecture it is sufficient to deal with the case where gcd(p, q) = 1 and,
for a given, balance ratio x : y to exhibit a Kp,q factorizations of Km,n where
m = (qx + py)d, n = (px + qy)d and d is the denominator of the fraction
(q−p)xy
pq(x+y)

expressed in its lowest form [we assume that q > p].

The conjecture has been proved for all pairs (p, q) when x = y = 1 [the
balanced case] and for all pairs (x, y) when (p, q) = (1, 2), (1, 3), (2, 3) as
well as for several infinite families of other general values.

In this paper we first recalculate a condition from the first of these infinite
families, arising from a regular tiling of the plane, and show that the conjec-
ture is true in all cases where gcd(p, x) = gcd(q, y) = gcd(q − p, x + y) = 1.
We then improve this with a new construction to show that the conjecture
is true whenever just gcd(q − p, x + y) = 1. An immediate consequence is
that the conjecture is true for all Kp,p+1-factorizations of complete bipartite
graphs.

120



On optimal non-projective ternary linear codes

T. Maruta

(joint work with M. Takenaka and K. Okamoto)

MSC2000: 94B05, 94B65, 51E20

We denote by nq(k, d) the minimum length n for which an [n, k, d]q code
exists. For ternary linear codes, n3(k, d) is known for k ≤ 5 for all d. We
try to find optimal ternary linear codes of dimension 6 with the minimum
distance d > 243, which are neccessarily non-projective. The exact value
of n3(6, d) is determined for d ∈ {268 − 270, 280 − 282, 304 − 306, 313 −
315, 347, 348}.

On spanning trees with degree restrictions

H. Matsumura

(joint work with H. Enomoto and H. Matsuda)

MSC2000: 05C05

A k-tree is a spanning tree with maximum degree at most k. A degree
sum condition for a graph to have a k-tree was given by Win. In this talk,
we consider the following problems:

Let k ≥ 2 be an integer, G be a connected graph and S ⊂ V (G). Find
the sufficient condition to contain a k-tree T satisfying

(1) degT (x) = 1 for any x ∈ S, or

(2) degT (x) < k for any x ∈ S.

We also propose a conjecture on more general case.
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Doubly transitivity on 2-factors

G. Mazzuoccolo

MSC2000: 05C25, 05C15, 05C70

A 2-factor in a graph Γ is a 2-regular spanning subgraph and a 2-factorization
of Γ is a partition of the edge-set of Γ into edge-disjoint 2-factors.

Various assumptions on the automorphism group have been considered
when Γ is the complete graph Kv, but they generally deal with the action
of the group on the vertex-set. In this talk we consider 2-factorizations of
Kv admitting an automorphism group G acting doubly transitively on the
set of factors. In the Hamiltonian case the only possibility is the unique
factorization of K5, while in the non-Hamiltonian one we give some infinite
classes of examples and one sporadic construction. Finally we also give some
necessary conditions for the existence of such factorizations.

The Path Partition Conjecture

K.L. McAvaney

(joint work with R.E.L. Aldred)

MSC2000: 05C38

Let τ(G) denote the number of vertices in a longest path in a graph G.
Given a pair of positive integers a and b, we say G is (a, b)-partitionable if
there is a partition {A,B} of its vertices so that τ(G[A]) ≤ a and τ(G[B]) ≤
b. If G is (a, b)-partitionable for all a and b with a + b = τ(G), we say G
is path partitionable. Immediate examples are any hamiltonian or bipartite
graph. The Path Partition Conjecture (Laborde et al. 1983) asserts that all
graphs are path partitionable. We briefly review past work on this elusive
conjecture and outline some recent results.
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Random planar graphs and related structures

Colin McDiarmid

MSC2000: 05C80

We consider the behaviour of the random planar graph, drawn uniformly
at random from the set of all simple planar graphs on vertices 1, . . . , n,
and the behaviour of related random structures. We discuss recent work of
Gerke, Steger, Welsh, Weissl and the speaker, and of Giminez and Noy, and
give some extensions. For example, we see that if we replace the plane by
any given surface then we obtain exactly the same growth constants.

Short cycles in random regular graphs

Brendan D. McKay

(joint work with Nicholas C. Wormald and Beata Wysocka)

MSC2000: 05C80

Consider random regular graphs of order n and degree d = d(n) ≥ 3.
Let g = g(n) ≥ 3 satisfy (d − 1)2g−1 = o(n). Then the numbers of cycles of
lengths up to g have a distribution similar to that of independent Poisson
variables. In particular, we find the asymptotic probability that there are
no cycles with sizes in a given set, including the probability that the girth is
greater than g. A corresponding result is given for random regular bipartite
graphs.

We also describe recent extensions by Gao and Wormald.
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On the number of tilings of rectangles with T-tetraminoes

C. Merino

MSC2000: 05A16, 82B20

The classical combinatorial problem of counting domino tilings of anm×n
rectangle was solved by P.W. Kasteleyn and also by H.N.V. Temperley and
M.E. Fisher in 1961.

We shall consider the same problem but for T-tetraminoes, that is, pieces
formed by 4 unit squares in the shape of a T. The number of such tilings has
been proved to be an evaluation of the Tutte polynomial of an associated
rectangular lattice. Here we present some results about the number of T-
tetramino tilings for 4× n, 8× n and 12× n rectangles.
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On the Frobenius problem of three numbers: Part I

Aĺıcia Miralles

(joint work with F. Aguiló and M. Zaragozá)

MSC2000: 05C20, 10A50, 11D04.

Given a set A = {a1, ..., ak} ⊂ N, with gcd(a1, ..., ak) = 1, let us define

R(A) = {
k∑

i=1

λiai| λ1, ..., λk ∈ N},

and R(A) = N\R(A). It can be easily seen that |R(A)| <∞. The Frobenius
problem related to A, FP(A), consists on the study of the set R(A). The
solution of FP(A) is the explicit description of R(A), however this is a difficult
task. Usually partial solutions are given, like the cardinal |R(A)| and/or the
Frobenius number f(A) = maxR(A).

In this work we give a method to find the solution of FP(A), with k = 3.
Using the notation A = {a, b,N} with N = maxA, we use the Double-loop
digraph G = G(N ; a, b) as a tool to solve FP(A). Each digraph G has linked
a metrical diagram known as Minimum Distance Diagram (MDD) which is
an L-shaped tile. This MDD gives metrical information of the equivalent
classes modulus N . The solution of FP(A) can be explicitly given from
another kind of diagram which we call the Minimum Distance Diagram of
Elements (MDDE,) which gives metrical information of R(A).

We give a characterization of the MDD which are MDDE also, and there-
fore we are able to solve the FP(A). This method allows us to solve Frobenius
problems of symbolical nature, which can not be solved by the known numer-
ical algorithms. To give an example, we propose an infinite sequence of sets
An = {an, bn, Nn} and its related sequence of Frobenius solutions R(An).
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On the zero-divisor graph of a ring

A. Mohammadian

(joint work with S. Akbari)

MSC2000: 05C20, 05C69, 16P10

The study of algebraic structures, using the properties of graphs, has
become an exciting research topic in the last twenty years, leading to many
fascinating results and questions. In this talk we study the zero-divisor graph
of a ring and investigate the interplay between the ring-theoretic properties
of a ring and the graph-theoretic properties of its zero-divisor graph.

Suppose that R is an arbitrary ring. The zero-divisor graph of the ring
R, denoted by Γ(R), is a directed graph whose vertices are all non-zero zero-
divisors of R, in which for any two distinct vertices x and y, x → y is an
edge if and only if xy = 0. Also for a ring R, we define a simple undirected
graph Γ(R) whose vertices are all non-zero zero-divisors of R, in which two
distinct vertices x and y are adjacent if and only if either xy = 0 or yx = 0.
In this talk we discuss on some graph-theoretic properties of Γ(R) and Γ(R)
and determine some graph-theoretic parameters of these graphs. Recently
S. P. Redmond has proved that for any finite ring R, the graph Γ(R) has an
even number of edges. We give a simple proof for this result. We will express
some results about Γ(R) and Γ(R) appeared in [1] and [2].

References.
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Domination number of some 3−regular graphs

DoostAli Mojdeh

(joint work with H. Abdollahzadeh Ahangar, and A. Ahmadi Haji)

MSC2000: 05C69

The subset S ⊆ V of the vertices in a graph G = (V,E) is called a dom-
inating set if every vertex v ∈ V is either an element of S or is adjacent
to an element of S. The domination number, γ(G) of G is the minimum
cardinality among the dominating sets of G. A dominating set S is also
called an independent dominating set of G if every two vertices of S are not
adjacent. The minimum cardinality of an independent dominating set of G
is the independent domination number i(G). A dominating set S is called
connected dominating set if 〈S〉 is connected and the connected domination
number, γc(G) of G is the minimum cardinality among the connected dom-
inating sets of G. A subset T of a minimum dominating set S is a forcing
subset for S if S is the unique minimum dominating set containing T . The
forcing domination number f(G, γ) of G, is the minimum cardinality among
the minimum dominating sets of G. The dominating set of regular graphs
have been studied yet, but there exist the bounds for the domination number
of them, (See [1,2,3,4,5] for furthermore).

In this note we study the γ(G), i(G), γc(G) and f(G, γ) for some 3−regular
graph and we obtain a sharp value.
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New bounds on some Turán numbers for infinitely many n

B. Montágh

MSC2000: 05C35

A construction of K3,l-free graphs of order n and size (r2/3/2 + o(1))n5/3

will be presented, with r = b
√

(l − 1)/2c. The main term matches the
construction of Alon, Rónyai and Szabó, the best previously known. If r ≥ 3
(that is, l ≥ 19), then, for infinitely many n, our error term is larger. In these
cases we obtain a K3,l-free graph of larger size than any previously known
K3,l-free graph of the same order.

Codes, Designs and Graphs from Finite Simple Groups

J. Moori

(joint work with J.D. Key and B. Rodrigues)

MSC2000: 05B05, 20D08, 94D08

Error-correcting codes that have large automorphism groups whose prop-
erties are extensively studied can be useful in applications as the group can
help in determining the code’s properties, and can be useful in decoding
algorithms by finding PD-sets.

We consider primitive representations of a simple group G. For each
group, using Magma, we construct designs and graphs that have the group
acting primitively on points as automorphism group, and, for a selection of
small primes, codes over that prime field derived from the designs or graphs
that also have the group acting as automorphism group. For each code, the
code automorphism group at least contains the associated group G. We have
considered various groups, for example J1, J2, M

cL and PSp2m(q), where q
is a power of an odd prime, and m ≥ 2. Most of these results have appeared
in a series of papers written with J D Key and B Rodrigues.
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Maximal increasing paths in edge-ordered trees

Kieka Mynhardt

(joint work with Ernie Cockayne)

MSC2000: 05C38, 05C78

An edge ordering of a simple graph G = (V,E) is an injection f : E → N.
Denote the set of all edge orderings of G by F(G). A (simple) path λ in G
for which f ∈ F(G) increases along its edge sequence is called an f -ascent of
G. An f -ascent is called maximal if it is not contained in a longer f -ascent
of G. Let h(f) denote the length of a shortest maximal f -ascent and define
ε(G) = maxf∈F(G){h(f)}, that is, ε(G) is the smallest integer k such that
every edge ordering of G has a maximal ascent of length at most k. Obviously
ε(G) = 1 if and only if ∆(G) = 1, and it can be shown that ε(G) = 2 if and
only if G has a vertex adjacent to two leaves, or to two adjacent vertices of
degree two.

We determine a formula for ε for trees in which no two branch vertices
are adjacent, show that this formula does not hold otherwise and characterise
trees with ε = 3.
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Broken circuits and NBC complexes of convex geometries

M. Nakamura

(joint work with K. Kashiwabara)

MSC2000: 05A99, 05B35, 06C10

A convex geometry is a closure system whose closure operator satisfies the
anti-exchange property, while a closure system is a set of flats of a matroid
if and only if the associated closure operator meets the exchange property.

For a matroid with a linear order on the underlying set, a broken circuit is
a set of the form C \ eC where C is a circuit and eC is the minimum element
in C. An NBC complex is the collection of those sets which containing
no broken circuits. An NBC complex plays a crucial role in the Whitney-
Rota’s formula for the characteristic polynomials of matroids, the NBC basis
theorem of the Orlik-Solomon algebra, and so on.

We introduce a notion of a broken circuit of a convex geometry as a set
obtained from a circuit of the convex geometry by deleting its root. As is
the same with that of a matroid, an NBC complex of a convex geometry is
defined as the collection of those sets containing no broken circuits. (Note
that for the definition of a broken circuit of a convex geometry, we need not to
assume a linear order on the underlying set.) Our definition can be justified
by the fact that we can establish the following results of convex geometries
analogous to those of matroids.

(1) Whitney-Rota’s formula holds for the characteristic polynomial p(K;λ)
of a convex geometry K as

p(K;λ) =
∑

X∈NBC(K)

(−1)|X|λ|E|−|X|.

(2) We have a decomposition of the NBC complex NBC(K) of a convex
geometry K, with respect to a coloop x, as

NBC(K) = NBC(K \ x) ] (NBC(K/x) ∗ x).

This is a complete analogue of Brylawski’s decomposition of NBC com-
plexes of matroids.

(3) We can define an Orlik-Solomon type algebra A(K) for a convex geom-
etry K so that we have a short exact split sequence among them below.

0 −→ A(K \ x) ix−→ A(K)
px−→ A(K/x) −→ 0.
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Orthogonality graphs from quantum computing

M.W. Newman

(joint work with C.D. Godsil)

MSC2000: 05C15

We deal with a question in graph colouring motivated by an application
from quantum computation.

The graph Ωn has vertex set all ±1-vectors of length n, where two ver-
tices are adjacent if they are orthogonal as vectors: we wish to know when
χ(Ω2k) = 2k. We show that this is the case precisely when k ≤ 3. Our
methods are algebraic, and in particular the Delsarte-Hoffman bound on in-
dependent sets plays a crucial role. The technique we use also has a wider
application.

We will briefly describe the motivating problem, but focus mainly on the
graph theory; no prior knowledge of quantum computing is necessary.

The strong metric dimension of graphs

Ortrud R. Oellermann

(joint work with Joel Peters-Fransen)

MSC2000: 05C12, 05C85

Let G be a connected (di)graph. A vertex w strongly resolves a pair u, v
of vertices of G if there exists some shortest u−w path containing v or some
shortest v−w path containing u. A set W of vertices is a strong resolving set
for G if every pair of vertices of G is strongly resolved by some vertex of W .
The smallest strong resolving set for G is called a strong basis for G and its
cardinality the strong dimension of G. (Sebö and Tannier introduced these
concepts when studying extensions of isometries between metric spaces.) It
will be shown in this talk that
(i) the problem of finding the strong dimension of a connected graph can be
transformed to the problem of finding the vertex covering number of a graph
and
(ii) that the problem of finding this invariant is NP-hard.
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The intricacy of avoiding arrays

L–D. Öhman

MSC2000: 05B15, 05C15

A Latin square L is a square n×n array on the symbols 1, 2, . . . , n where
each symbol is used exactly once in each row and column. A square array A
is avoidable if there exists some Latin square L of the same order as A whose
entries never coincide with the corresponding entries in A. Obviously, there
are unavoidable arrays. We ask the question of the intricacy of avoiding
general arrays, with one or more entries in each cell. The intricacy of this
problem is the natural number I(m,n) that answers the question: “What is
the minimum number of avoidable arrays that any n × n array A with at
most m entries in each cell can be partitioned into?” It is shown that for
any n ≥ 2 it holds that I(1, n) = 2, and I(n− 1, n) = n. Further, it is shown
that d n

n−m
e ≤ I(m,n) ≤ d n

n−m
e+ 3. It is conjectured that I(m,n) = d n

n−m
e.

On the domatic number of the 2-section graph of the
order-interval hypergraph of a finite poset

S. Ouatiki

(joint work with I. Bouchemakh)

MSC2000: 05C35, 05C65, 05C69, 06A07, 68R10, 90C27

Given a finite poset P , let H(P ) be the hypergraph whose vertices are the
points of P and whose edges are the maximal intervals in P . The purpose
of this paper is to study the domatic number d(G(P )) of the 2-section graph
G(P ) of the hypergraph H(P ). For the subset Pl,u of P induced by consec-
utive levels ∪u

i=lNi of P , we give exact values of d(G(Pl,u)) when P is the
chain product Cn1 ×Cn2 . According to the values of l, u, n1, n2, the maximal
domatic partition is exhibited. Moreover, we give some exact values or lower
bounds for d(G(P ∗ Q)), when ∗ is either the direct sum or the linear sum.
Finally we show that the domatic number and the total domatic number
problems in this class of graphs are NP-complete.
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Graph equivalence from equivalent quantum states

Matthew G. Parker

(joint work with Lars Eirik Danielsen and Constanza Riera)

MSC2000: 05C69, 05C99, 05B20, 06E30

Pure quantum states are equivalent if one state can be obtained from the
other by the action of a local unitary transform on the state. For quantum bit
(qubit) systems, such a transform can be written as the tensor product of 2×2
unitary matrices over the complex numbers, where the quantum state is rep-
resented as a complex vector. Recent research has identified that so-called
cluster states, which are pure multipartite quantum states, are favourable
candidates from which to build quantum computers. These states have a
convenient correspondence to simple graphs. We identify the equivalence of
quantum states with certain graph equivalences. Glynn has shown that the
action of local complementation on a graph leaves the corresponding cluster
state invariant, where local complementation was defined by Bouchet in the
context of isotropic systems. We identify local complementation with the
action of local unitary transforms on the vector representing the quantum
state, where the transform comprises tensor products of members of the Local

Clifford Group: I =
(

1 0
0 1

)
, H = 1√

2

(
1 1
1 −1

)
, and N = 1√

2

(
1 i
1 −i

)
,

where i2 = −1. The action of pivot on a graph also leaves the cluster state
invariant, where pivot corresponds to tensor products of I and H. Recent
work by Arratia, Bollobas and Sorkin, Aigner and van der Holst, and Mon-
aghan and Sarmiento has defined Interlace Polynomials for a graph, and these
polynomials summarise the spectra of cluster states with respect to tensor
products of I, H, and N . Graphs corresponding to cluster states may also
be interpreted as additive codes over GF(4) and/or GF(2). There is also a
link to boolean functions: Let Γ be the adjacency matrix of the simple graph
corresponding to a cluster state. Then the n-qubit cluster state can be iden-
tified with a quadratic boolean function, p(x) =

∑n−2
i=0

∑n−1
j=i+1 Γijxixj, and

the local unitary transformation then corresponds to a generalised measure
of cryptographic strength for the boolean function. The transform approach
to graph symmetry can be generalised to hypergraphs (i.e. to boolean func-
tions of degree > 2). We demonstrate how pivot and local complementation
can be generalised to hypergraphs, and also identify hypergraph equivalences
which exploit local unitary transforms other than I, H, and N . Hypergraphs
correspond to hyper-cluster states which do not appear to have received much
(if any) attention in the physics community.
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The computational complexity of the parallel knock-out
problem

D. Paulusma

(joint work with H.J. Broersma, M. Johnson and I.A. Stewart)

MSC2000: 03D15, 05C85

Consider the following parallel knock-out scheme for graphs: Every ver-
tex v of an undirected graph selects exactly one of its neighbors. Then all
the selected vertices are eliminated simultaneously, and the procedure is re-
peated with the subgraph induced by the remaining vertices. The procedure
terminates as soon as

1. there are no vertices left, or

2. one of the remaining vertices has degree zero in the resulting subgraph.

For all fixed positive integers k we determine the computational complexity
of the problem whether a given graph admits a parallel knock-out scheme in
which all vertices are eliminated in at most k rounds. We will do this for
several graph classes (general, bipartite, bounded tree-width).
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Extremal Ramsey graphs

D.B. Penman

(joint work with E. Maistrelli)

MSC2000: 05C55

Let R(k, k) be the smallest number such that any (simple) graph on
R(k, k) vertices has either a complete subgraph of order k or an induced
null subgraph of order k. An extremal Ramsey graph ERG(k) is a graph
on R(k, k) − 1 vertices which has neither a complete graph of order k nor
an induced null subgraph of order k. Until recently, the sum total of our
knowledge of these graphs has been perilously close to the statements that
the unique ERG(3) is P5 and that the unique ERG(4) is P17: here, for a prime
power q congruent to 1 modulo 4, Pq is the Paley graph on vertex set Fq, two
vertices being adjacent if and only if their difference is a non-zero square in
the field. The other rough idea floating around has been that the extremal
graphs should be not unlike random graphs G(n, 1/2), though Thomason has
shown that this idea needs to be handled with some degree of caution.

In this talk, I shall describe some preliminary investigations, jointly with
my student Eleni Maistrelli, of these graphs.
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Pancyclic PBD block-intersection graphs

David A. Pike

(joint work Graham A. Case)

MSC2000: 05C38, 05B05

A pairwise balanced design PBD(v,K, λ) consists of a set V of cardinality
v, a set K of positive integers, and a set B of subsets of V with the properties
that |b| ∈ K for each b ∈ B, and each pair of elements from V occurs in
exactly λ of the subsets in B. The elements of B are known as the blocks of
the design.

Given a combinatorial design D with block set B, its block-intersection
graph GD is the graph having vertex set B such that two vertices b1 and b2
are adjacent if and only if b1 and b2 have non-empty intersection.

Hare showed in 1995 that if D is a PBD(v,K, 1) with min{K} > 3,
then GD is edge-pancyclic (i.e. each edge of GD is contained in a cycle of
each length ` = 3, 4, . . . , |V (GD)|). In this presentation we consider block-
intersection graphs of pairwise balanced designs PBD(v,K, λ) for which λ >
2.
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Fragmentability of bounded degree graphs

Oleg Pikhurko

(joint work with Penny Haxell)

MSC2000: 05C35

Given a real α > 0 and a positive integer f , we say that a graph G is
(α, f)-fragmentable if there is a set A ⊂ V (G) such that |A| ≤ α v(G) and
every component of G− A has at most f vertices.

For an integer d, let αd be the infimum of those α for which there is an f
such that every graph with maximum degree at most d is (α, f)-fragmentable.
Answering a question of Edwards and Farr posed at BCC18 we will show that

sup{αd : d ∈ N} = 1.

In fact, we proved the more precise estimate αd = 1 − Θ(d−1). Also, for a
typical random d-regular graph, the appropriately defined infimum of α is
1− (2 + o(1)) ln d

d
.
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Domination in a graph with a 2-factor

Michael D. Plummer

(joint work with K. Kawarabayashi and A. Saito)

MSC2000: 05C69, 05C70

The cardinality of any smallest dominating set in a graph G is called the
domination number of G and denoted by γ(G). In 1996, Reed proved that
every graph G of minimum degree at least three satisfies γ(G) ≤ (3/8)|V (G)|
and conjectured that ifG is a connected cubic graph, then γ(G) ≤ d|V (G)|/3e.

Theorem 1. Let G be a connected graph with a 2-factor F and let k be
any positive integer. If F has at least two components and the order of each
component is at least 3k, then

γ(G) ≤
(

3k + 2

9k + 3

)
|V (G)|.

Theorem 2. Let k be any positive integer. Then every 2-edge-connected
cubic graph of girth at least 3k satisfies

γ(G) ≤
(

3k + 2

9k + 3

)
|V (G)|.

Note that for girth at least nine, one then has γ(G) ≤ (11/30)|V (G)|, which
improves Reed’s (3/8)|V (G)| bound.
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Quantum error correction codes invariant under symmetries of
the square

H. Pollatsek

(joint work with M.B. Ruskai)

MSC2000: 81P68

Quantum error correction is now well-developed in the case of “stabilizer
codes,” which arise as subspaces of C2n

stabilized by Abelian subgroups of
the Pauli group (generated by bit-flips and phase errors). These codes, also
known as additive codes, can be regarded as generalizations of classical codes.

In previous work, we studied a natural generalization of stabilizer codes to
non-additive codes associated with the action of the symmetric group. (“Per-
mutationally invariant codes for quantum error correction,” Linear Algebra
and its Applications, 392 (2004), pp.255-288.)

Now we consider the geometry of the physical arrangement of the qubits
comprising the quantum system. For qubits arranged in a square, we study
codes invariant under the dihedral group of order 8. For the cases of 4, 5 and
8 qubits, we find infinitely many non-additive codes detecting single errors
and able to correct families of single errors.

The talk will not presuppose familiarity with quantum computation; ar-
guments will use algebra and combinatorics.
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Some Zn+2 terraces from Zn power-sequences,
n being an odd prime power

D.A. Preece

(joint work with Ian Anderson)

MSC2000: 11A07, 05B30

A terrace for Zm is an arrangement (a1, a2, . . . , am) of the m elements of
Zm such that the sets of differences ai+1−ai and ai−ai+1 (i = 1, 2, . . . ,m−1)
between them contain each element of Zm \ {0} exactly twice. For m odd,
many procedures are available for constructing power-sequence terraces for
Zm; each terrace of this sort may be partitioned into segments one of which
contains merely the zero element of Zm whereas each other segment is either
(a) a sequence of successive powers of an element of Zm or (b) such a sequence
multiplied throughout by a constant. We now extend this idea by using
power-sequences in Zn, where n is an odd prime, to obtain terraces for Zm

where m = n + 2. We provide Zn+2 terraces for all odd primes n satisfying
0 < n < 1000 except for n = 127, 601, 683.
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Partitioning a graph into two pieces, each isomorphic to the
other or to its complement

M. Priesler (Moreno)

MSC2000: 05C60

A simple graph G has the generalized-neighbour-closed-co-neighbour prop-
erty, or is a gncc graph, if for all vertices x of G, the subgraph, induced by
the set of neighbours of x, is isomorphic to the subgraph, induced by the set
of non-neighbours of x, or is isomorphic to its complement. If every vertex
x satisfies the first condition (that is, the subgraphs, induced by its set of
neighbours, and by its set of non-neighbours, are isomorphic), then the graph
has the neighbour-closed-co-neighbour property, or is an ncc graph. The ncc
graphs were characterized by A. Bonato and R. Nowakowski, and a polyno-
mial time algorithm was given for their recognition. In this paper we show
that all gncc graphs are also ncc, that is, we prove that the two families of
graphs, defined above, are identical. Finally, we present some of the prop-
erties of an interesting family of graphs, that is derived from the proof of
the claim above, and we give a polynomial time algorithm to recognize such
graphs.

k-pseudosnakes in n-dimensional hypercubes

Erich Prisner

MSC2000: 05C69

A k-pseudosnake in a graph is an induced subgraph of maximum degree
at most k. In this paper we show that k-pseudosnakes with more than
2n−1 vertices exist in the hypercubes Qn, provided n ≤ 2k. We also give
upper bounds, and show that the generated k-pseudosnakes are maximum
provided k is even and n = 3k/2. The results also yield better constructions
of k-pseudosnakes in large n-dimensional grids in certain cases.
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Local nature of Brooks’ colouring

T.J. Rackham

MSC2000: 05C15

Brooks’ theorem gives the existence of a ∆(G)-colouring of a connected
graph G when it is neither a complete graph nor an odd cycle. For such a
Brooks’ graph G with ∆(G) ≥ 3, we consider the problem of precolouring k
vertices, where k < ∆(G), and ask whether this can be extended to a proper
∆(G)-colouring of all of G. We have shown that this can always be done if
the vertices being precoloured are mutually a distance at least 6 apart in G,
and this bound is tight. This result improves a result of Sajith and Saxena,
who showed that a sufficient distance exists in maximum degree 3 graphs;
and will be seen to complement work of Axenovich, and of Albertson et al,
who independently gave a sufficient distance of 8 for precolouring any size of
an independent set of vertices.

We will outline the method of proof of this result, which differs signifi-
cantly for graphs of maximum degree 3 to those of higher maximum degree.
We also give the extremal counterexamples for distance 5.
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On bicyclic reflexive graphs

Zoran Radosavljević

(joint work with Bojana Mihailović and Marija Rašajski)

MSC2000: 05C50

A simple graph is reflexive if the second largest eigenvalue of its (0, 1)-
adjacency matrix does not exceed 2. By this paper we go on with the inves-
tigations initiated by the article ”Which bicyclic graphs are reflexive?” (Z.
Radosavljević, S. Simić, 1996), and continued in the meantime through con-
sidering some other classes of reflexive graphs. Former results mainly concern
so-called treelike graphs or cactuses, i.e. graphs whose all cycles are mutu-
ally edge-disjoint. Provided that one cannot test whether a cactus is reflexive
by removing a single cut-vertex, and that all its cycles do not have a com-
mon vertex, it turned out that such a graph has at most five cycles. Based
on this fact and these two assumptions, it was possible to find all maximal
reflexive cactuses with five and four cycles and to recognize some impor-
tant facts concerning tricyclic reflexive cactuses, including the construction
of some particular classes. These results also enabled perceiving some classes
of bicyclic reflexive cactuses.

In this paper we present four new classes of maximal bicyclic reflexive
graphs. One is constructed by substituting free cycles (those having only one
vertex of degree d > 2) in tricyclic cactuses by Smith trees (trees whose index
is λ1 = 2). The other is also constructed starting from a characteristic class of
tricyclic cactuses, but being generated by ”pouring” of a triple of Smith trees
between two characteristic vertices. The third class provides starting from a
pair of free cycles with the common vertex of degree 5. Finally, one class is
generated by θ-graphs (bicyclic graphs obtained by joining two vertices by
three disjoint paths). At some stages the work has been supported by using
the expert system GRAPH.
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One-factorizations of the complete graph with a prescribed
automorphism group

Gloria Rinaldi

MSC2000: 05C70, 05C75

The number of non-isomorphic one-factorizations of the complete graph
K2n explodes as n increases and a general classification is not possible. An
attempt can be done if one imposes additional conditions on the automor-
phism group of the one-factorization. In this talk I focalize my attention on
the following question:
For which groups G of even order 2n does a one-factorization of the complete
graph K2n exist with the property of admitting G as a sharply vertex transitive
automorphism group?

When n is odd, G must be the semi-direct product of Z2 with its normal
complement and G always realizes a one-factorization of K2n upon which it
acts sharply transitively on vertices.

When n is even, the complete answer is still unknown. If G is a cyclic
group the answer to the question is negative when n is a power of 2 greater
than 4, while it is affirmative for all other values of n (Hartman and Rosa
1985). It is also affirmative if G is abelian and not cyclic (Buratti 2001), and
if G is dihedral (Bonisoli and Labbate 2002).

I discuss other classes of groups.

Independent sets in extremal strongly regular graphs

P. Rowlinson

MSC2000: 05C50

Regular graphs with an eigenvalue µ of maximal multiplicity (µ 6= 0,−1)
are precisely the extremal strongly regular graphs. To within complements,
only three such graphs are known. If G is such a graph then, replacing G
with G if necessary, we may assume that µ > 0. Then the independence
number of G is at most 4µ2 + 4µ− 2, with equality if and only if G is one of
the three known examples.
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Orbits of graph automorphisms on proper vertex colourings

J.D. Rudd

(joint work with P.J. Cameron and B. Jackson)

MSC2000: 05C15, 05C25, 20B25

We use the orbital Tutte polynomial as defined by P.J. Cameron to count
the number of orbits of the automorphism group of a connected graph Γ on
proper vertex colourings of Γ from k colours. We then modify the orbital
Tutte polynomial so that we can count orbits of the automorphism group on
proper k-colourings for a disconnected graph.

Coprime polynomials over GF (2)

C.G. Rutherford

(joint work with R.W. Whitty)

MSC2000: 11C08, 11T06, 15A33

Corteel, Savage, Wilf and Zeilberger, (JCT, A, 82, 186-192, 1998) showed
that exactly half of the ordered pairs of monic polynomials of degree n over
GF (2) are relatively prime pairs. They asked for a bijective proof of this
fact. We build a table of resultant matrices and compare this to the addition
table for GF (2n) (in which exactly half the entries are congruent to zero mod
2). This allows us to restate the problem in terms of pairs of subspaces of
dimension 2 of GF (2)n.
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Deletion-similarity versus similarity of edges in graphs with
few edge-orbits

G. Sabidussi

(joint work with L.D. Andersen and P.D. Vestergaard)

MSC2000: 05C60

Two edges e, e′ of a graph G are deletion-similar if the edge-deleted sub-
graphs Ge and Ge′ of G are isomorphic (where V (Ge) = V (G), E(Ge) =
E(G) \ {e}). Deletion similarity partitions E(G) into equivalence classes
called deletion classes. Trivially, if e and e′ are in the same orbit with respect
to Aut G then any automorphism of G mapping e to e′ is an isomorphism of
Ge onto Ge′ . Hence deletion classes are unions of orbits. When do deletion
classes and orbits coincide?

It has been shown that if E(G) consists of one or two deletion classes,
then deletion similarity implies similarity. On the other hand, for any k ≥ 5
it is easy to construct graphs with exactly k deletion classes and more than
k orbits. The present paper deals with the question of equality of deletion
classes and orbits in graphs with exactly three deletion classes. We have
not been able to give a complete answer, as the statement of the following
theorem will make clear:

Theorem: Let G be a graph with exactly three deletion classes of edges.
Then these classes are orbits except possibly when G is obtained by deleting
an edge from a Moore graph or a bipartite Moore graph (incidence graph of
a projective plane).

The case of graphs with exactly four deletion classes remains open.
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Self-complementary two-graphs and almost self-complementary
double covers over complete graphs

Mateja Šajna (joint work with Primož Potočnik)

MSC2000: 05C25, 05C65, 05C70

Let X be a graph of even order and I a 1-factor of the complement Xc of
X. Then X is called almost self-complementary (ASC) with respect to the
1-factor I if it is isomorphic to its almost complement Xc − I. ASC graphs
were introduced by Alspach as an analogue to self-complementary graphs for
(regular) graphs of even order. ASC circulant graphs were first studied by
Dobson and Šajna (2004), and general ASC graphs by Potočnik and Šajna
(submitted). These papers revealed the complexity of the problem of ASC
graphs: while every automorphism of a graph is also an automorphism of
its complement, an automorphism of an ASC graph need not preserve the
“missing” 1-factor. An automorphism of an ASC graph, as well as an iso-
morphism from an ASC graph to an almost complement, is called fair if it
preserves the associated 1-factor. An ASC graph is called homogeneously
almost self-complementary (HASC) if it admits a vertex-transitive group of
fair automorphisms and a fair isomorphism into the almost complement that
normalizes it. While general ASC graphs correspond to symmetric index-
2 isomorphic factorizations of the graphs K2n − nK2, HASC graphs occur
as factors of symmetric index-2 homogeneous factorizations of these graphs.
(Homogeneous factorizations were introduced by Li and Praeger, and HASC
graphs were recently studied by Potočnik and Šajna.) An HASC graph is
called 2-transitively almost self-complementary if its group of fair automor-
phisms acts 2-transitively on the edge set of the associated 1-factor. An ASC
graph that is a double cover over a complete graph is called an ASC double
cover if it is ASC with respect to a set of fibres. Similarly we define HASC
double covers. A two-graph on a set Ω is a set T of unordered triples of points
of Ω with the property that any unordered quadruple of points contains an
even number of triples in T . Two-graphs were introduced by Higman in the
1970s, and later studied by Taylor.

In the main result of this talk we shall describe a one-to-one correspon-
dence between the isomorphism classes of self-complementary two-graphs
and ASC double covers, vertex-transitive self-complementary two-graphs and
HASC double covers, and 2-transitive self-complementary two-graphs and 2-
transitively ASC graphs. From this correspondence and Tayor’s classification
of 2-transitive two-graphs it follows that there exists (up to isomorphism) a
unique 2-transitively ASC graph of every admissible order.
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On the number of independent sets in graphs

Alexander Sapozhenko

MSC2000: 05C69

We improve our previous upper bounds [4] for the number of indepen-
dent sets in graphs. Similar bounds turn out to be useful in solving some
combinatorial problems of the group theory and the number theory (see for
example, [1], [2], [3]). The new bounds have the form I(G) ≤ 2(p/2)(1−ε),
where I(G) is the number of independent sets of graph G, p is the number
of its vertices, and ε is a positive constant depending on G.
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An additive structure of BIB designs

Masanori Sawa

(joint work with H. Kiyama, D. Matsumoto, K. Matsubara, S. Kageyama)

MSC2000: 51B05, 62K10

Does there exist a set of s BIBD(v = sk, b = sr, r, k, λ) with s incidence
matrices Ni, i = 1, . . . , s, which satisfies the following two conditions

(1)
∑s

i=1 Ni = J , where J is a matrix of size v × b, all whose elements are
zero,

(2) Ni1 + Ni2 is the incidence matrix of a BIBD(v∗ = sk, b∗ = sr, r∗ = 2r,
k∗ = 2k, λ∗) for any distinct i1, i2 ∈ {1, . . . , s}?

We say such BIB designs have an additive structure. In this talk, direct
and recursive constructions of BIB designs having an additive structure are
discussed. Characterizations of parameters of such structures are also given.
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On monophonic sets in graphs

Carlos Seara

(joint work with Carmen Hernando, Mercè Mora and Ignacio M. Pelayo)

MSC2000: 05C12, 05C05

We deal with two types of graph convexities, which are defined by a
system P of paths in a connected graph G = (V,E): the geodetic convexity
(also called the metric convexity)[3, 4] which arises when we consider shortest
paths, and the monophonic convexity (also called the minimal path convex-
ity)[2, 3] when we consider chordless paths. Given G and two vertices u, v in
V , a chordless u− v path in G is called a u− v monophonic path. Let J [u, v]
denote the set of all vertices in G lying on some u − v monophonic path.
Given a set S ⊆ V , let J [S] =

⋃
u,v∈S J [u, v]. If J [S] = V , then S is called a

monophonic set of G. If J [S] = S, then S is called a m-convex set of G. The
monophonic convex hull [S]m of S is the smallest m-convex set containing
S. If [S]m = V , then S is called a m-hull set of G. If we restrict ourselves
to shortest paths, we obtain the geodetic and g-hull sets, which have been
widely studied in the recent years.

We study monophonic sets in a connected graph G. Firstly, we present
a realization theorem proving that there is no general relationship between
monophonic and geodetic hull sets. Second, we study the contour of a graph
[1] (a generalization of the set of extreme vertices) showing that the contour
of G is a monophonic set. Finally, we focus our attention on the edge Steiner
sets. We prove that every edge Steiner set S in G is edge monophonic, i.e.,
every edge of G lies on some monophonic path joining two vertices of S.
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Permutations and Quantum Entanglement

S. Severini

(joint work with L. Clarisse, S. Ghosh, A. Sudbery)

MSC2000: 81P68, 11G20

Entanglement is a fundamental notion in quantum mechanics. Recently,
the advent of quantum information theory and quantum computation has
highlighted the role of entanglement as a resource in many applications in-
cluding fast algorithms and classically secure cryptographic protocols. The
notion of entangling power of unitary matrices was introduced by Zanardi,
Zalka and Faoro [Physical Review A, 62, 030301]. We study the entangling
power of permutations (that is, of permutatiom matrices), given in terms
of a combinatorial formula. We characterize the permutation with zero en-
tangling power. We construct the permutations with the minimum nonzero
entangling power for every dimension. With the use of orthogonal latin
squares, we construct the permutations with the maximum entangling power
for every dimension. Moreover, we show that the value obtained is maximum
over all unitary matrices of the same dimension, with possible exception for
36. We numerically classify, according to their entangling power, the per-
mutations of length 4 and 9, and we give some estimates for longer lengths.
This work suggests a number of open problems of combinatorial nature con-
cerning random matrix theory, error-correcting codes, expander graphs, etc.
The talk is mainly based on xxx.soton.ac.uk/abs/quant-ph/0502040
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Grassmann and Segre varieties over GF(2):
some graph theory links

R. Shaw

MSC2000: 51E20, 05C30, 05C90, 14G25

Consider:
(i) the Grassmann variety G1,n,2 of the lines of PG(n,2), a subset of the

finite projective space PG(
(

n+1
2

)
− 1, 2) = P(∧2Vn+1,2);

(ii) the Segre variety Sm,n,2, a subset of the finite projective space PG(mn+
m+ n, 2) = P(Vm+1,2 ⊗ Vn+1,2).

In the case of (i) results (and a conjecture) concerning the polynomial
degree of G1,n,2 have recently been obtained (see R. Shaw and N.A. Gordon,
(2005), The polynomial degree of the Grassmannian G(1, n, 2), accessible
from: http://www.hull.ac.uk/maths/people/rs/staffdetails.html).
These are shown to be equivalent to results (and a conjecture) concerning
certain kinds of subgraphs of those (simple) graphs Γ = (V , E) which are of
order |V| = n+ 1. It turns out that those graphs Γ of size |E| = n = |V| − 1
are of particular significance.

In the case of (ii) it is shown that results concerning the polynomial
degree of Sm,n,2 are equivalent to the following assertions concerning certain
subgraphs of any bipartite graph Γ = (V , E) whose parts have sizes m + 1
and n+ 1.

Let N(Γ) denote the total number of subgraphs of Γ which are
isomorphic to the complete bipartite graph Γm′+1,n′+1 for some
m′ and n′ satisfying 0 < m′ ≤ m and 0 < n′ ≤ n. In the cases
m ≤ n the following hold:

(a) if |E| > mn + m then N(Γ) is odd for all such bipartite
graphs Γ;

(b) if |E| ≤ mn+m then N(Γ) is even for some such bipartite
graph Γ.
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Mendelsohn 3-frames and embeddings of resolvable
Mendelsohn triple systems

Hao Shen

MSC2000: 05B07

In this talk we will determine necessary and sufficient conditions for the
existence of Mendelsohn 3-frames. We will also determine necessary and
sufficient conditions for the embeddings of resolvable Mendelsohn triples and
embeddings of almost resolvable Mendelsohn triple systems.

Constructing linear codes from some orbits of projectivities

M. Shinohara

(joint work with T. Maruta and M. Takenaka)

MSC2000: 94B05, 94B15, 51E20

We denote by Fq the field of q elements. Let g(x) be a monic polynomial
of degree k in Fq[x] and let T be the companion matrix of g(x). Let τ be the
projectivity of PG(k−1, q) defined by T with order N . We define an [mN, k]q
code C from m orbits of τ and we show that C is a degenerate quasi-twisted
code. A lot of new linear codes over the field of q elements (q ≤ 9) are found
from such codes by some combinations of puncturing or extending.
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Some new results on the index of trees

S.K. Simić

(joint research with: F. Belardo, E.M. Li Marzi, D.V. Tošić and B. Zhou)

MSC2000: 05C50

We identify those trees whose index (the largest eigenvalue of the adja-
cency matrix) is maximal in the case that:

(1) the largest (vertex) degree is prescribed;

(2) the diameter is prescribed along with some other structural details.

We also identify in the set of trees having diameter d the tree with the k-th
largest index, where k = 1, . . . , bd

2
c.
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Maximal nontraceable graphs of small size

J.E. Singleton

(joint work with M. Frick)

MSC2000: 05C38

A graph G is maximal nontraceable (MNT) if G is not traceable, i.e. if G
does not contain a Hamiltonian path, but G+ e does contain a Hamiltonian
path for all e ∈ E(G).

Most constructions for MNT graphs in the literature (see [1], for example)
depend on large cliques, thus yielding fairly dense graphs. To date, no cubic
MNT graphs have appeared in the literature.

We construct an infinite family of 2-connected cubic MNT graphs and
show that, for all even n ≥ 50 the lower bound for the size of a 2-connected
graph of order n equals 3n

2
.

Recently, Dudek, Katona and Wojda showed that for n ≥ 20 every MNT
graph of order n has size at least d3n−2

2
e − 2 and for each n ≥ 54 as well

as for n ∈ I = {22, 23, 30, 31, 38, 39, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51} they
constructed a MNT graph of order n and size d3n−2

2
e.

We establish the exact lower bound for the size of a MNT graph of order
n, for n ≥ 54 and n ∈ I, as well as for n ≤ 10 and n = 12, 13.

Reference.

[1] B. Zelinka, Graphs maximal with respect to absence of hamiltonian paths,
Discuss. Math. Graph Theory 18 (1998), 205-208.
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Factorisation of snarks

Martin Škoviera

(joint work with Miroslav Chladný)

MSC2000: 05C15, 05C75

We develop a theory of factorisation of snarks — cubic graphs with edge-
chromatic number 4 — based on the classical concept of the dot-product.
Our main concern are irreducible snarks, those where the removal of every
non-trivial edge-cut yields a 3-edge-colourable graph. We show that if an
irreducible snark can be expressed as a dot-product of two smaller snarks,
then both of them are irreducible. This result constitutes the first step
towards the proof of the following “unique-factorisation” theorem:

Every irreducible snark G can be factorised into a collection {H1, . . . , Hn}
of cyclically 5-connected irreducible snarks such that G can be reconstructed
from them by iterated dot-product. Moreover, such a collection is unique up
to isomorphism and ordering of the factors regardless of the way in which the
decomposition was performed.

The result is best possible in the sense that it fails for snarks that are
close to being irreducible but themselves are not irreducible.

The unique-factorisation theorem can be extended to the case of factori-
sation with respect to a preassigned subgraph K which is required to stay
intact during the whole factorisation process. We show that if K has order
at least 3, then the theorem holds, but is false when K has order 2.
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Cyclically permutable codes and simplex codes

Derek H. Smith

(joint work with Stephanie Perkins)

MSC2000: 94B05, 94B15

A cyclically permutable code is a binary block code of length n such that
each codeword has n distinct cyclic shifts and such that no codeword can be
obtained by one or more cyclic shifts of another codeword.

The usual constructions of cyclically permutable codes start from a cyclic
code and select one codeword from each cyclic equivalence class of full order.
In this talk code equivalence is used to construct cyclically permutable sim-
plex codes when they exist. The construction extends to show that certain
cyclic codes are equivalent to cyclically permutable codes. In this way larger
codes are obtained. An application to code-division multiple-access is given,
and methods of increasing the cyclic minimum distance are presented.

Vertex-distinguishing proper edge colouring of some regular
graphs

Roman Soták

(joint work with Janka Rudašová)

MSC2000: 05C15

A proper edge colouring of a simple graph G is called vertex-distinguishing
if no two distinct vertices have the same set of colours of their incident edges.
The minimum number of colours in such colouring (if it exists at all) is
denoted by χ′s(G). Burris and Schelp made the following conjecture: Let G
be a graph with no isolated edges and with at most one isolated vertex. Let
k be the minimum integer such that

(
k
d

)
≥ |{v : degG(v) = d}| for all d with

δ(G) ≤ d ≤ ∆(G). Then χ′s(G) ∈ {k, k + 1}.
In this talk this conjecture is proved for some r-regular graphs with only

small components. Moreover it is proved that any graph G can be given
a vertex-distinguishing equitable proper edge colouring by k colours for any
k ≥ χ′s(G). Here equitable means that cardinalities of any two distinct colour
classes differ by at most 1.
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Random preorders

Dudley Stark

(joint work with Peter Cameron)

MSC2000: 05A16, 05C83

A random preorder on n elements consists of linearly ordered equivalence
classes called blocks. We investigate the block structure of a preorder chosen
uniformly at random from all preorders on n elements as n → ∞. Time
permitting, related work on random 0-1 matrices with Peter Cameron and
Thomas Prellberg may be discussed.

Defining sets of full designs and other simple designs

Anne Penfold Street

(joint work with Ken Gray, Colin Ramsay and Emine Şule Yazıcı)

MSC2000: 05B05, 05B07, 05B99

A set of blocks which is a subset of a unique t-(v, k, λt) balanced incom-
plete block design (BIBD) is a defining set of the design. A full design is a
simple BIBD comprising all k-tuples on a given set of v elements. We present
results on their defining sets which are often useful, despite their relatively
large λ values, since we show that a defining set of any simple BIBD can
often be derived from a defining set of the corresponding full design.
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Minimal claw-free graphs

Henda C. Swart

(joint work with P.A. Dankelmann, W.D. Goddard, M.D. Plummer and
P. van den Berg)

MSC2000: 05C75

A graph G is a minimal claw-free graph (MCFG) if it contains no K(1, 3)
(claw) as induced subgraph and if, for each edge e of G, G − e contains an
induced claw. We investigate properties of MCFGs, establish sharp bounds
on their orders and the degree of their vertices, characterize graphs which
have minimally claw-free line graphs and find bounds on the order, vertex
degrees and connectivity of MCFGs which have independence number equal
to 2.

Contractible digraphs, fixed cliques, and
the Cop-robber games

Rueiher Tsaur

MSC2000: 05C20, 05C75

A most interesting recent development in the study of dismantlable (undi-
rected) graphs is that dismantlable graphs have turned out to be significant
for discrete physical modelling (G.R. Brightwell and P. Winkler, Gibbs mea-
sures and dismantlable graphs, J. Combin. Theory Ser. B, 78:141–166,
2000). It is noteworthy that non-reflexive graphs are needed in this work,
whereas all previous studies of dismantlability have assumed reflexivity. In
this presentation, a non-recursive definition of “dismantlability” for (reflex-
ive or not) digraphs is introduced, thus providing a firm foundation for such
work. We show that this definition extends and unifies various definitions of
dismantlable structures.

In the remainder of the presentation, we aim to extend the notions of fixed
clique and point properties and cop-robber games, from undirected graphs
to digraphs, with special emphasis on dismantlable digraphs.
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Dominating sequences and traversals of ordered trees

P.-G. Tsikouras

(joint work with I. Tasoulas)

MSC2000: 05C05, 05C07

An ordered tree with root r is a triplet T = (V,Γ, l) where r ∈ V ,
Γ : V \ {r} → V and l : V → N∗ such that l(r) = 1, l(x) = l(Γ(x)) + 1 for
every x ∈ V \ {r} and the sets Γ−1({x}) are totally ordered.

Four basic ways of traversing ordered trees (level order, preorder, post-
order, inorder) are studied in this context.

While in each of the first three cases the respective degree sequence de-
termines uniquely the ordered tree, we realize that this is not true in the
inorder case.

The degree sequences of the ordered trees according to each traversal are
related to dominating sequences; in particular the inorder degree sequence is
dominating.

So, for every dominating sequence, in the three first cases we present con-
structions of the corresponding unique ordered tree, whereas in the inorder
case we construct recursively all the corresponding ordered trees.
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Chordal double bound graphs and posets

Morimasa Tsuchiya

(joint work with H. Era, S.-I. Iwai and K. Ogawa)

MSC2000: 05C62

We consider properties of double bound graphs with respect to sub-
posets. The double bound graph (DB-graph) of P = (X,≤P ) is the graph
DB(P ) = (X,EDB(P )), where xy ∈ EDB(P ) if and only if x 6= y and there
exist m,n ∈ X such that n ≤P u, v ≤P m. We already know that for a
graph G, there exists a double bound graph which contains G as an induced
subgraph. We introduce a concept of (n,m)-subposets and obtain the next
result.

Proposition 1 For a poset P and a subposet Q of P, Q is an (n,m)-subposet
of P if and only if DB(Q) is an induced subgraph of DB(P ).

Based on this result, we deal with poset theoretical properties of cycle
graphs Cn and path graphs Pn and obtain the following result.

Theorem 2 For a poset P, DB(P ) is a chordal graph if and only if (1) the
induced subposet 〈Max(P ) ∪Min(P )〉P does not contain Qn (n ≥ 2) as an
induced subposet, and (2) d can(P ) does not contain {δ}⊕Qn and Qn⊕{δ}
(n ≥ 4) as an (n,m)-subposet.

Furthermore we deal with properties of posets whose double bound graph
is isomorphic to its upper bound graph, or its comparability graph, etc.
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Balanced C4-quatrefoil designs

K. Ushio

MSC2000: 05B30, 05C70

In graph theory, the decomposition problem of graphs is a very important
topic. Various type of decompositions of many graphs can be seen in the
literature of graph theory.

Let Kn denote the complete graph of n vertices. The complete multi-graph
λKn is the complete graph Kn in which every edge is taken λ times. Let C4

be the 4-cycle (or the cycle on 4 vertices). The C4-quatrefoil is a graph of
4 edge-disjoint C4’s with a common vertex and the common vertex is called
the center of the C4-quatrefoil.

When λKn is decomposed into edge-disjoint sum of C4-quatrefoils, we say
that λKn has a C4-quatrefoil decomposition. Moreover, when every vertex of
λKn appears in the same number of C4-quatrefoils, we say that λKn has a
balanced C4-quatrefoil decomposition and this number is called the replication
number. This balanced C4-quatrefoil decomposition of λKn is to be known
as a balanced C4-quatrefoil design.

We show that the necessary and sufficient condition for the existence of
such a balanced C4-quatrefoil design is λ(n− 1) ≡ 0 (mod 32) and n ≥ 13.

Claw-free graphs with non-clique µ-subgraphs and related
geometries

I.A. Vakula

(joint work with V.V. Kabanov)

MSC2000: 05C75, 51E14

We describe finite ordinary connected claw-free graphs that contain a 3-
coclique, in which every pair of vertices at distance two lies in induced 4-cycle.
We also define a class of partial geometries with lines of cardinality two and
three such that complements of their collinearity graphs satisfy conditions
above.
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New results on the Zarankiewicz Problem

J.C. Valenzuela

(joint work with C. Balbuena, P. Garćıa-Vázquez and X. Marcote)

MSC2000: 05C35, 05C40.

Let (X,Y ) denote a bipartite graph with classes X and Y such that
|X| = m and |Y | = n. A complete bipartite subgraph with s vertices in X
and t vertices in Y is denoted by K(s,t).

The Zarankiewicz problem consists in finding the maximum number of
edges, denoted by z(m,n; s, t), of a bipartite graph (X, Y ) with |X| = m,
|Y | = n, and without a complete bipartite K(s,t) as a subgraph. This problem
is related with a Turán problem for bipartite graphs. Let us denote by
ex(m,n;Ks,t) the maximum number of edges in a bipartite graph (X, Y ) with
|X| = m, |Y | = n, and free of Ks,t, that is to say, without both K(s,t) and
K(t,s) as subgraphs. First we present a new upper bound for both extremal
functions z(m,n; s, t) and ex(m,n;Ks,t), which is attained if max{m,n} ≤
s + t − 1. Then we characterize the family Z(m,n; s, t) of extremal graphs
with size z(m,n; s, t) for the values of the parameters described above.

Besides, new lower bounds for the Zarankiewicz function z(m,n; s, t) are
given for several cases. Additionally, this lower bound is proved optimum if
t ≤ m ≤ n = 2t.
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Maximal non-traceable oriented graphs

S.A. van Aardt

(joint work with M. Frick, J. Dunbar and O. Oellermann)

MSC2000: 05C20, 05C38

An oriented graph D is called traceable if there is a directed path in D
that visits every vertex of D. A nontraceable oriented graph D is called
maximal non-traceable (MNT) if D + uv is traceable for every pair u, v of
nonadjacent vertices in D.

We characterize the acyclic and the unicyclic MNT oriented graphs as well
as the strong component digraphs of MNT oriented graphs. This enables us
to characterize MNT oriented graphs of order n that have size

(
n
2

)
− 1 and

we show that no MNT oriented graph of order n has size
(

n
2

)
− 2. We also

show that the maximum size of a strong MNT oriented graph of order n is(
n
2

)
− 3.

The number of edges in a bipartite graph of given order and
radius

P. van den Berg

(joint work with P.A. Dankelmann and Henda C. Swart)

MSC2000: 05C12

Vizing established an upper bound on the size of a graph of given order
and radius. We find sharp bounds on the size of a bipartite graph of given
order and radius.
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Difference families arising from infinite translation designs

A. Vietri

MSC2000: 05B10, 05B30

If we consider the difference set {0, 1, 3}(mod 7) and the difference family
{ {0, 1, 4}, {0, 2, 7} }(mod 13) , then a subtle difference between them may be
observed. Namely, the former owes its algebraic success merely to Z, and not
to Z7 (indeed, ∆{0, 1, 3} = {±1,±2,±3}) whereas the latter is indebted to
Z13 for magically transforming ±7 into ∓6, thus filling the gap which did not
look so nice in Z (indeed, ∆{ {0, 1, 4}, {0, 2, 7} } = {±1,±2,±3,±4,±5,±7}).
The elegant behaviour of difference sets (or families) like {0, 1, 3} can be eas-
ily rephrased in the 2-dimensional context, that is, in Z× Z.

Definition. A set A made up of 3-subsets of Z × Z is a perfect d-family
if ∆A = [−d, d]× [−d, d] \ {(0, 0)}.

Perfect d-families are – as it may be expected – quite generous creatures,
as they unselfishly provide us with actual difference families, once projected
upon Z2d+1 × Z2d+1. Recalling that a major concern for a number of math-
ematicians is to give birth to infinitely many somethings in a single hit, the
following result can now be administered.

Theorem. For every n ≥ 0 there exists a perfect, not pure, 12 · 2n-family.
Furthermore, for every n ≥ 0 there exists a perfect, not pure, 20 · 4n-family.
Finally, there exists a perfect, not pure, 8-family.

What is a pure family? Why demanding even more from an already
perfect being? Because of Measure Theory. Alas, in the 1-dimensional en-
vironment we were secluded in a scanty line, and could behold nothing but
thready, degenerate triangles! In the 2-dimensional context things change,
for we can now distinguish a degenerate triangle from a nondegenerate one.
Consequently, we might not be contented with a family of blocks of size 3
some of which are degenerate. Perhaps we would welcome a family entirely
consisting of nondegenerate triangles, that is, what we call a pure family.

Is pureness an utopia? Certainly not, because two pure d-families can be
exhibited when d = 3 and d = 8.

165



Combinatorial algorithm for finding a clique of maximum
weight in a C4-free Berge graph

Kristina Vušković

(joint work with Gérard Cornuéjols)

MSC2000: 05C85, 05C17, 90C27, 68R10, 68Q25

A hole is a chordless cycle of length at least four. A graph is Berge if it
does not contain (as an induced subgraph) an odd hole nor a complement of
an odd hole. A graph G is perfect if every induced subgraph H of G satisfies
χ(H) = ω(H), where χ(H) denotes the chromatic number of H and ω(H)
denotes the size of a largest clique in H. In 2002 Chudnovsky, Robertson,
Seymour and Thomas proved the famous Strong Perfect Graph Conjecture
(SPGC), posed by Berge in 1961, that states that a graph is perfect if and
only if it is Berge. Moreover, in 2003, Chudnovsky, Cornuéjols, Liu, Seymour
and Vušković gave a polynomial time recognition algorithm for Berge graphs.

One important aspect of perfect graphs is that the following optimization
problems: maximum weighted clique, maximum weighted stable set, mini-
mum weighted covering of vertices by cliques and minimum weighted covering
of vertices by stable sets, that are NP-complete in general, can be solved in
polynomial time for perfect graphs. This was shown by Grötschel, Lovász
and Schrijver in the 80’s. Their algorithm uses the ellipsoid method and a
polynomial time separation algorithm for a certain class of positive semidef-
inite matrices related to Lovász’ upper bound on the Shannon capacity of
a graph. The question remains whether these four optimization problems
can be solved for perfect graphs by polynomial time purely combinatorial
algorithms, avoiding the ellipsoid method.

A C4-free Berge graph is a Berge graph that does not contain, as an
induced subgraph, a hole of length 4. The aim of this paper is to provide
a combinatorial O(n9)-time algorithm that computes a maximum weighted
clique for every C4-free Berge graph.

This algorithm is decomposition based, but interestingly it does not
use any of the previously known decomposition theorems for C4-free Berge
graphs. (C4-free Berge graphs were first studied by Conforti, Cornuéjols and
Vušković, in 2000, when they obtained a decomposition theorem for this class
that they used to prove the SPGC for C4-free graphs. Later Chudnovsky,
Robertson, Seymour and Thomas obtained a decomposition theorem, of sim-
ilar flavor, for Berge graphs that they used to prove the SPGC in general.)
Maximum weighted clique is computed by decomposing a C4-free Berge graph
using “full star decompositions” into triangulated graphs.
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Tabu search for Covering Arrays using permutation vectors

Robert A. Walker II

(joint work with Charles J. Colbourn)

MSC2000: 05B15, 05B40, 68T20

A covering array CA(N ; t, k, v) is an N × k array. In any N × t subarray,
each possible t-tuple over v symbols (there are vt of these) occurs at least
one time. The parameter t is referred to as the strength of the array. Cov-
ering arrays have a wide range of applications including software interaction
testing. A compact representation of certain covering arrays employs “per-
mutation vectors” to encode vt×1 subarrays of the covering array. Sherwood
et al. (2005) have shown that a covering perfect hash family whose entries
correspond to permutation vectors yields a covering array. We introduce a
method for efficient search for covering arrays of this type using Tabu search.
Using this technique, improved covering arrays of strength 3 and 4 have been
found, as well as the first arrays of strength 5, 6, and 7 found by computa-
tional search.

The equitable colouring of planar graphs with large girth

Ping Wang

(joint work with J.L. Wu and Y.Z. Ni)

MSC2000: 05C15

A proper vertex-coloring of a graph G is equitable if the size of color
classes differ by at most one. The equitable chromatic threshold ofG, denoted
by χ∗Eq(G), is the smallest integer n such that G is equitably k-colorable for
all k ≥ n. We prove that χ∗Eq(G) = χ(G) if G is a planar with girth ≥ 16
and δ(G) ≥ 2 or G is a 2-connected non-bipartite outplanar with girth ≥ 4.
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Perfect 1-factorisations and atomic Latin squares

I.M. Wanless

(joint work with Darryn Bryant and Barbara Maenhaut)

MSC2000: 05C70, 05B15

A perfect 1-factorisation (P1F) of a graph is a partition of the edge-set
of that graph into 1-factors (perfect matchings) with the property that the
union of any two of the 1-factors is a Hamiltonian cycle. Since the dawn
of time two infinite families of P1Fs of complete graphs have been known.
Recently we discovered a third family while in pursuit of another type of
elusive beast known as an atomic latin square. These are latin squares with
an indivisible structure akin to that of the cyclic groups of prime order. In
this talk I will discuss the P1Fs and latin squares that we found.

Some list colouring problems in the reals

R.J. Waters

MSC2000: 05C15

List colouring is a generalisation of ordinary graph colouring, in which
the colour of each vertex must be chosen from a list of colours assigned to
that vertex. We consider two variations of the list colouring problem where
the ‘lists’ are subsets of the real line, and the colours assigned to adjacent
vertices must differ by at least 1.

In the first of these two problems, each vertex of a graph G is assigned
an interval of length k as its list. We introduce a new graph invariant τ(G),
called the consecutive choosability ratio and defined to be the smallest k such
that a colouring as described above can always be found. In the second
problem, the lists are arbitrary closed sets of the real line of measure k, and
the corresponding invariant σ(G) is called the choosability ratio.

We present a selection of the results obtained to date regarding these
parameters, including general bounds on τ(G) and σ(G), values for specific
classes of graphs, and relationships with other graph invariants such as the
chromatic and list-chromatic numbers.

168



Representing (d, 3)-tessellations as quotients of Cayley maps

B.S. Webb

(joint work with J. Šiagiová)

MSC2000: 05C10

A (d, 3)-tessellation is a planar map all of whose vertices have valence
d, and all of whose faces are triangles. Interest in (d, 3)-tessellations comes
from triangulations—embeddings of simple graphs onto surfaces such that
all the faces are triangles—since any triangular embedding is a quotient of a
triangular tessellation.

To begin to answer the question

In how many ways can a (d, 3)-tessellation be represented as a
Cayley map?

we look at one-vertex quotient maps of degree d, all of whose faces are tri-
angles.
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On some stability theorems in finite geometry

Zsuzsa Weiner

(joint work with Tamás Szőnyi)

MSC2000: 51E21

By the stability of a point set H, we mean that every point set that is
‘near’ to H can be obtained from H by adding and deleting a ‘few’ points.
The stabilty questions define the words ‘near’ and ‘few’ precisely for a given
point set.

In Galois geometries combinatorially defined point sets with maximum/mi-
nimum cardinality are often nice in the sense that their intersection number
with lines can only take up a few values. Usually easy combinatorial counting
shows that a point set of size near to the extremal point set(s) can only have
a very small number of lines with non-typical intersection number.

The algebraic method first used in [1], later improved in [2], can be used
to show that the above non-typical lines should pass through a few number of
points. Hence point sets with sizes close to the extremal ones can be obtained
by adding and deleting a few points from the extremal point sets. Note that
the first such theorem is Segre’s embeddability theorem on arcs/hyperovals.
Our method yields stability theorems on arcs, (k, n)-arcs, blocking sets and
sets without tangents.

References.

[1] T. Szőnyi, On the embeddability of (k, p)-arcs, Designs, Codes and Cryp-
tography 18 (1999), 235–246.

[2] Zs. Weiner, On (k, pe)-arcs in Galois planes of order ph, Finite Fields
and Appl., 10 (2004), 390–404.
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Minimum dominating walks on graphs with large circumference

C.A. Whitehead

(joint work with B. L. Hartnell)

MSC2000: 05C69, 05C90

A dominating walk W in G is a walk such that for each v ∈ V (G), either
v ∈ V (W ) or v is adjacent to a vertex of W . The concept was introduced to
model the situation of a security guard, or team of guards, monitoring a site
in which each point of interest has to be visited or seen from a neighbouring
point on a regular basis. In the case where there is just one guard, it is of
interest to determine a closed dominating walk of minimum length in the
graph representing the site to be monitored. Finding the length of such a
walk in a general graph is known to be computationally difficult and exact
values are known in the case of only a few special families.

We show how a closed minimum dominating walk may be obtained in
two infinite families of graphs G containing a longest cycle C such that every
vertex of V (G) \ V (C) is of degree 2.

Rook polynomials on 2-dimensional surfaces

R. W Whitty

MSC2000: 05A05, 05A15, 05C78, 37F20

By a simple trick we may generalise the rook polynomial for an n × n
chessboard to various 2-dimensional surfaces, the conventional chessboard
corresponding to the torus. In the case of the Möbius band and the Klein
bottle there is a close connection to graceful labellings of graphs. This con-
nection can be exploited in calculating the rook polynomials.
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Edge-bandwidth of grids and tori

Jerzy Wojciechowski

(joint work with Oleg Pikhurko)

MSC2000: 05C35, 05C78

The edge-bandwidth of a graph G is the bandwidth of the line graph of G,
that is, it is the smallest number B′ for which there is an injective labeling
of E(G) with integers such that the difference between the labels at any
adjacent edges is at most B′.

We compute the edge-bandwidth for rectangular grids:

B′(Pm ⊕ Pn) = 2 min(m,n)− 1, if max(m,n) ≥ 3,

where ⊕ is the Cartesian product and Pn denotes the path on n vertices.
This settles a conjecture of Calamoneri, Massini and Vrťo [Theoret. Computer
Science, 307 (2003) 503–513].

We also compute the exact value of the edge-bandwidth of a product of
two graphs F ⊕ Pn where F is a connected graph with |E(F )| ≤ n− 1, and
of any torus (a product of two cycles) within an additive error of 5.
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Recent results on total choosability and edge colourings

D.R. Woodall

MSC2000: 05C15

This talk is based on four papers: two submitted (one jointly with Tim
Hetherington) and two in preparation.

The total choosability ch′′(G) of a graph G is the smallest number k such
that if every element (vertex or edge) of G is assigned a list of k colours, then
every element can be coloured with a colour from its own list in such a way
that every two adjacent or incident elements are coloured differently. The
(ordinary) edge and total chromatic numbers of G are denoted by χ′(G) and
χ′′(G) respectively, and ∆(G) is the maximum degree of G.

It is proved that ch′′(G) = χ′′(G) = ∆(G) + 1 if G is a series-parallel
(K4-minor-free) graph with ∆(G) ≥ 3; the hardest case (by far) is when
∆(G) = 3. The same holds if G is K2,3-minor-free, unless ∆(G) = 3 and G
has a K4 component.

It is proved that ch′′(G) = χ′′(G) = 4 if ∆(G) = 3 and every subgraph
of G has average degree at most 21

2
; this fills in a missing case in a result of

Borodin, Kostochka and Woodall (1997).
A graph is edge-k-critical if ∆(G) = k, χ′(G) > k, and χ′(G− e) = k for

each e ∈ E(G). A new lower bound is obtained on the average degree of an
edge-∆-critical graph, which improves on the best bound previously known
for almost all ∆ ≥ 4.
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On related combinatory problems in information cartography

Bilal Yalaoui

(joint work with Madjid Dahmane and Hacene Ait Haddadene)

MSC2000: 05C85, 05C90, 68R05, 68T30, 68U15

The concept of Information Cartography has evolved, elaborated and ma-
tured over time. It was not originally envisioned as a context-independent
tool for visualizing and analyzing data/information/knowledge from practi-
cally any source.

In this context, graph’s structures are the natural modelling support to
do it. Here we consider the information cartography as textual corpus mining
analyzing tool. Staring from one textual corpus divided into selected finite set
of textual units, the terms extraction techniques help as to dress a list of used
terms and several statistical data. The existing works used the associated
graph of terms to analyse and build the text mining cartography based on
selected frequent terms and co-occurrence.

In this contribution we will show first that the usually used model may
be modified to be an oriented net for more semantic preservation of text
content. In the second step we will show how graph clustering techniques
can be used in information cartography building. Thus, variants of vertices
density and edges force clustering graphs methods are given. And finally, we
wil propose a new clustering technique based on graph triangularization and
the graph clique partition.

Minimal homogeneous Steiner triple trades

E.Ş. Yazici

(joint work with N. Cavenagh and D. Donovan)

MSC2000: 05B07, 05B15

A Steiner triple trade (STT) is a subset of a Steiner triple system (STS)
which may be replaced by a disjoint set of triples to create a new STS. An
STT is called d-homogeneous if each point occurs in either 0 or d blocks of
the trade. In this talk we give an existence proof of d-homogeneous Steiner
triple trades for all d ≥ 3.
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Total domination in graphs

A. Yeo

(partially joint work with S. Thomasse)

MSC2000: 05C69, 05C65

A total dominating set S in a graph G = (V (G), E(G)) is a set of vertices
such that every vertex in G is adjacent to a vertex in S. In other words
∀x ∈ V (G) ∃s ∈ S: xs ∈ E(G).

The minimum size of a total dominating set, γt(G), in a graph, G, is well
studied. We will talk about the following new bounds, where δ(G) is the
minimum degree of G and ∆(G) is the maximum degree in G:

• γt(G) ≤ 3
7
|V (G)|, when δ(G) ≥ 4.

• γt(G) ≤ |V (G)| − 2|E(G)|
∆(G)+2

√
∆(G)

, when ∆(G) ≥ 4.

In fact we can improve the first bound above, if we exclude one specific
graph, G14, on 14 vertices. In this case we can obtain the following bound.

• γt(G) ≤ (3
7
− 1

5943
)|V (G)|, when δ(G) ≥ 4 and G 6∼= G14.

We will also mention related results and open problems. All the results
mentioned in this talk have been obtained by observing that a total domi-
nating set in a graph G is also a transversal in the hypergraph H(G) on the
same vertex-set as G and with edge-set {N(x)|x ∈ V (G)}. This allows us to
use hypergraph techniques in order to obtain the above results.
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The number of cycles in 2-factors of line graphs

K. Yoshimoto

MSC2000: 05C38

Let G be a graph with minimum degree at least three. Then it is well
known that the line graph L(G) has a 2-factor and L2(G) is hamiltonian. In
this talk, we explain the upper bound of the number of cycles in a 2-factor of
L(G), which is best possible. Moreover, we consider the gap between claw-
free graphs and line graphs for the properties comparing results on claw-free
graphs and a conjecture by Fujisawa et al.

On very sparse circulant (0,1) matrices

N. Zagaglia Salvi

MSC2000: 05C50, 05C10, 15A15

An n× n matrix A is called generalized i-circulant when it is partitioned
into i-circulant submatrices of type n′×n, where (n, i) = k and n = kn′. We
study generalized i-circulant permutation matrices. Using properties of these
matrices we are able to prove that any circulant (0,1)-matrix with three ones
per row A is permutation similar to either a particular circulant matrix or
to a particular block matrix. As a consequence we determine a lower bound
for the permanent of these matrices. Moreover we prove that the bipartite
graph associated with A in the usual way has genus 1, but in one case when
has genus 0.
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Quasi-locally P*( ω) graphs

S. Zenia

(joint work with H . Ait Haddadne)

MSC2000: 05C15, 05C17, 05C69, 05C85

In this paper, we define a new class of graphs called quasi-locally P*(ω)
where we give a colouring theorem and propose a polynomial combinatorial
algorithm for colouring in polynomial time any perfect graph of this class,
for fixed ω.

We will describe a polynomial algorithm for recognizing any graph of this
class. We prove that this class contains strictly some classes of graphs.

References.

[AIT 96] Ait haddadne H., Gravier S., On weakly diamond-free Berge graphs.
Discrete Mathematics, 159 (1996) 237-240.
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Hypercubes are distance graphs

J. Žerovnik

(joint work with M. Gorše Pihler)

MSC2000: 05C75, 05C12

The φ-distance between G1 and G2 is

dφ(G1, G2) =
∑

|dG1(u, v)− dG2(φu, φv)|,

where the sum is taken over all
(

n
2

)
unordered pairs u, v of vertices of G1.

Of course, if dφ(G1, G2) = 0 then φ is an isomorphism and G1
∼= G2, while if

G1 � G2, then dφ(G1, G2) > 0 for every one-to-one mapping φ. This suggests
defining the distance d(G1, G2) between G1 and G2 by

d(G1, G2) = min{dφ(G1, G2)},

where the minimum is taken over all one-to-one mappings φ from V (G1) to
V (G2). Thus, d(G1, G2) = 0 if and only if G1

∼= G2. Hence d(G1, G2) can be
interpreted as a measure of the similarity of G1 and G2, because the smaller
the value of d(G1, G2), the more similar the structure of G1 is to that of G2.

It has been recently conjectured [1] that: A graph G is a distance
graph if and only if G is bipartite and proved that: every distance graph
is bipartite, every even cycle is a distance graph, every tree is a distance
graph, the graph K2,n is a distance graph for every positive integer n, etc.

Here we support the conjecture by proving that

Theorem: Every induced subgraph of a hypercube is a distance graph.

Reference.

[1] G.Chartrand, G. Kubicki and M. Schultz, Graph similarity and distance
in graphs, Aequationes Math. 55 (1998) 129-145.
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Retract-rigid strong graph bundles

B. Zmazek

(joint work with J. Žerovnik)

MSC2000: 05C60, 05C75

Graph bundles generalize the notion of covering graphs and graph prod-
ucts. Let B and F be connected graphs and let B2× ϕF be the strong graph
bundle over base B with fibre F . A subgraph R of a graph G is a retract
of G is there an edge-preserving map (retraction) r : V (G) → V (R) with
r(x) = x, for all x ∈ V (R). A graph is retract-rigid if it has no proper
retraction.

We show that

(1) if B and F are retract-rigid triangle-free graphs, G2× ϕF is also retract-
rigid triangle-free graph and

(2) every retract R of G2× ϕF is of the form R = B′ 2× ϕF
′, where B′ and F ′

are isometric subgraphs of B and F , respectively.

(3) For triangle-free base and fibre graphs B and F both B′ and F ′ are
retracts of B and F .

(4) There exist retract-rigid graph bundles with base and fibre graphs B and
F which admit proper retractions.
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A generalised upper bound for the k-tuple domination number

V.E. Zverovich

(joint work with A. Gagarin)

MSC2000: 05C69

We generalise an upper bound for the triple domination number given in
[D. Rautenbach and L. Volkmann, New bounds on the k-domination number
and the k-tuple domination number. Discrete Math. (submitted)]. More
precisely, we prove that if G is a graph with 3 ≤ k ≤ δ + 1, then

γ×k(G) ≤
ln(δ − k + 2) + ln

(
(k − 2)d+

∑k−1
m=2(2k − 2m− 1)d̂m

)
+ 1

δ − k + 2
n,

where γ×k(G) is the k-tuple domination number, δ is the minimal degree, d

is the average degree and d̂m is the m-degree of G.
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R. Häggvist A ∆ + 4 bound on the total chromatic number 94

for graphs with chromatic number on the

order of
√

∆/ log ∆
A.J.W. Hilton (r,r + 1)-factorizations of multigraphs with high 95

minimum degree
F. Holroyd Semi-total graph colourings, the beta parameter 95

and total chromatic number
F. Holroyd Multiple chromatic numbers of some Kneser graphs 96
M. Horňák General neighbour-distinguishing index of a graph 96
M. Johnson Connectedness of graphs of vertex-colourings 102
T. Kaiser The circular chromatic index of graphs of high girth 105
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S.K. Simić Some new results on the index of trees 154
N. Zagaglia Salvi On very sparse circulant (0,1) matrices 176

05C55 Generalized Ramsey theory

D.B. Penman Extremal Ramsey graphs 135

05C60 Isomorphism problems(reconstruction conjecture, etc.)

M. Priesler Partitioning a graph into two pieces each isomorphic 141
to the other or to its complement

G. Sabidussi Deletion-similarity versus similarity of edges 146
in graphs with few edge-orbits

B. Zmazek Retract-rigid strong graph bundles 179

05C62 Graph representations (geometric and intersection representations, etc.)

M. Tsuchiya Chordal double bound graphs and posets 161

188



05C69 Dominating sets, independent sets, cliques

H. Fernau Algorithmic aspects of Queen domination 79
A. Finbow On well-covered planar triangulations 81
E.L.C. King Comparing subclasses of well-covered graphs 108
D. Mojdeh Domination number of some 3-regular graphs 127
M.G. Parker Graph equivalence from equivalent quantum states 133
M.D. Plummer Domination in a graph with a 2-factor 138
E. Prisner k-pseudosnakes in n-dimensional hypercubes 141
A. Sapozhenko On the number of independent sets in graphs 148
C.A. Whitehead Minimum dominating walks on graphs with large 171

circumference
A. Yeo Total domination in graphs 175
V.E. Zverovich A generalised upper bound for the k-tuple 180

domination number

05C70 Factorization, matching, covering and packing

M. Abreu Graphs and digraphs with all 2-factors isomorphic 38
A. Bonisoli Factorizations with symmetry 55
S. Bonvicini Live one-factorizations and mixed translations 56

in even characteristic
H.J. Broersma Matchings, Tutte sets, and independent sets 60
N.E. Clarke The ultimate isometric number of a graph 68
D. Labbate Pseudo 2-factor isomorphic regular bipartite graphs 111
D.F. Manlove “Almost stable” matchings in the Roommates 118

problem
N. Martin Unbalanced Kp,q factorisations of complete 120

bipartite graphs
G. Rinaldi One-factorizations of the complete graph with 144

a prescribed automorphism group
I.M. Wanless Perfect 1-factorisations and atomic Latin squares 168

05C75 Structural characterization of types of graphs

H.C. Swart Minimal claw-free graphs 159
I.A. Vakula Claw-free graphs with non-clique µ-subgraphs 162

and related geometries
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