

Specifying Monitoring and Switching Problems in Context

Abstract Context-aware applications monitor changes in

their operating environment and switch their behaviour to

keep satisfying their requirements. Therefore, they must be

equipped with the capability to detect variations in their

operating context and to switch behaviour in response to

such variations. However, specifying monitoring and

switching in such applications can be difficult due to their

dependence on varying contextual properties which need to

be made explicit. In this paper, we present a problem-

oriented approach to represent and reason about contextual

variability and assess its impact on requirements; to elicit

and specify concerns facing monitors and switchers, such as

initialisation and interference; and to specify monitoring and

switching behaviours that can detect changes and adapt in

response. We illustrate our approach by applying it to a

published case study.

1. Introduction

Context-aware applications monitor changes in their

operating environment and switch their behaviour to

continue satisfying their requirements [1, 2]. Therefore,

they must be equipped with the capability to detect

variations in their operating context and to switch their

behaviour in response. Monitoring requirements define

what applications must do to detect changes in their

operating environment that may violate their

requirements, while switching requirements define

what applications must do to restore the satisfaction of

such requirements by adapting their behaviour.

We define contextual variability as a space of

variables whose different values require different

application behaviours. Specifying monitoring and

switching behaviours in context-aware applications is

often complex [3] due to dependency on the states of

varying contextual properties of the operating

environment. We refer to monitoring and switching

behaviours as context-awareness.

Context-awareness concerns have been investigated

in autonomic computing [4] and adaptive systems [2].

Autonomic software applications manage themselves

with minimal human intervention to accommodate a

changing operating environment, while adaptive

applications deal with more general behaviour

adaptation beyond simply minimising human

involvement. In both cases, information gathering and

analysis on one hand and planning and adapting

application behaviour on the other are required [2, 4].

Kramer and Magee [5] have observed that the

operating context of applications can be captured and

reasoned about at different layers of abstraction. They

propose a three-layer conceptual model for reasoning

about and analysing requirements for context-aware

applications. Software architectural components

occupy the lower layer and represent the traditional

focus of autonomic applications research [6]. The

middle layer covers applications that require explicit

change management in the operating environment,

either prior to or after an adaptation. The higher layer

addresses software goals that may be affected by

adaptation and must be assessed for its impact. The

higher the abstraction layer, the closer it is to the

problem space, and the harder it is to analyse and

specify the required context-awareness concerns.

Cheng and Atlee [7] have recognised the need for

requirements engineering that considers both normal

environmental behaviour as well as other possible

threats and hazards of applications’ operating

environment. Similarly, Sutcliffe et al. [8] have

recognised the need to consider physical contextual

properties, in addition to individual and group needs

and personal characteristics, in specifying software

applications.

Monitoring and switching requirements are usually

not at the forefront of user requirements. However,

Berry et al. [9] argue that the overall success of

context-aware applications largely depends on the

success at specifying their monitoring and switching

behaviours.

Although researchers have recognised the

importance of context for effective adaptation [5, 7, 8],

the context of applications to be monitored is rarely

made explicit. Therefore, there is a need for guidance

to (1) represent and reason about contextual variability,

(2) elicit and specify concerns facing monitors and

switchers, and (3) relate and assess the effect of such

concerns on specifying monitoring and switching

behaviours.

We propose a problem-oriented approach to address

these issues. First, we adapt the problem frames

notation [10, 11] to represent and reason about

 Mohammed Salifu Yijun Yu Bashar Nuseibeh

Department of Computing, The Open University, UK

{M.Salifu, Y.Yu, B.Nuseibeh}@open.ac.uk

contextual variability using the notion of variant

problems. Second, we propose four dimensions to

eliciting contextual variability – these are variations in

quality requirements, related physical contextual

properties, associated decision making processes, and

types of concerns such as interference. Finally, we

derive and specify, using statecharts, monitoring and

switching behaviours from problem variants.

This paper focuses on specifying monitoring and

switching behaviours associated with core requirements

arising from the changing properties of the operating

context. It does not address the more general problem

of solutions composition. In order to focus on

analysing the impact of contextual variability on

monitoring and switching problems, we assume that

functional requirements are invariant, while variability

of quality requirements is taken into account as one

source of contextual variability. Our approach is

primarily aimed at software applications for which

physical context and its changes are significant.

Problem frames explicitly capture the notion of

physical context.

The remainder of the paper is structured as follows.

We begin with a description of the problem frames

notation in Section 2, followed by a presentation of our

approach in Section 3. A detailed illustration of our

approach using a case study follows in Section 4. We

review related work in Section 5. We conclude with

summary and an agenda for further work in Section 6.

2. Problem Frames

The Problem Frames approach to requirements

engineering provides a basis for analysing software

problems and their context [10]. In this approach, a

problem comprises three sets of descriptions: (1) a

description of the context in which the problem resides

in terms of known domain properties of the world,

denoted by W; (2) a description of the required

properties of the world, denoted by R; and (3) a

description specifying what the machine, or the

computer system running the software-to-be, must do

to meet the requirements, denoted by S. Problem

frames are particularly well-suited to analyse context-

awareness because they emphasise the need for

understanding the physical context of problems.

We represent problem descriptions by problem

diagrams, such as that shown in Figure 1. A rectangle

in a problem diagram represents a physical domain of

the problem world (e.g., Phone User, External Digital

Camera, Potential Transmission eavesdroppers and

Phone Internal Storage). A dashed oval with an

outgoing arrow represents the requirement R and one

with an ingoing arrow, with two dots, represents trust

assumptions about the domain it references. Trust

assumptions are an extension to the standard problem

frames notation proposed [12]. A rectangle with a

double stripe is a machine domain whose specification

is required (e.g., Controller 1). A solid line connecting

two or more domains represents a set of phenomena

shared by the connected domains, such as events and

states. For example, the shared phenomenon a indicates

the details of transmission are shared between the

domains External Digital Camera (EDC) and the

Controller 1 (C1). The infix ‘!’ indicates that C1 can

manipulate the transmission, whilst EDC can only take

part in it. The dashed line between the requirement R

and the Phone User (PU) denotes that R references the

property of PU while the dashed line with an arrow

head between R and Phone Internal Storage (PIS)

denotes that R constrains the property of PIS. This

means that when a transmission is received, its data

must be saved in the phone’s storage.

a: C1 !{RequestTransmission, TerminatesTransmission}
c: PU !{StartTransmission, StopTranmission}
k: PU !{ConfirmsStartedTransmission, ConfirmsCompletedTranmission}
s: PIS !{receivespicture, savespicture}

Trust Assumption:
Phone & camera are

located together.

a

a’

 c

s

k

c’

Phone User

s’

R
Phone
Internal

storage

 Controller 1

External
Digital
Camera

Potential Transmission
eavesdroppers

Trust Assumption:
Authorised users

Figure 1: An initial problem in secure

environment; representing equation (1a)

A problem frame is a known pattern of problems

with well-understood structures and concerns. The

problem diagram in Figure 1 is an instance of a basic

type of problem known as commanded behaviour. In

Figure 1, the domain EDC is the commanded domain,

and C1 is the software to allow a phone user to issues

transmission requests.

Although many problems, when decomposed, are

expected to fit one of a small number of basic frames,

there are usually additional concerns. A variant frame

represents a new problem pattern that closely matches a

basic problem frame but differs because of the presence

or absence of a problem domain or control pattern in

the existing problem frame. Therefore, variant

problems – the instances of variant frames – differ from

the basic problem diagrams [10].

An example variant frame is called a connection

variant [10], which introduces a new domain to

connect the existing domains in a basic problem frame

diagram. Figure 3 shows a problem diagram that is

similar to the one in Figure 1, with the addition of a

connection domain Encryption / Decryption between the

External Digital Camera and the Controller 2. The new

diagram signifies the fact that all transmissions between

the camera and the controller will be encrypted and

decrypted respectively. Since this problem diagram

shares the main concern of the problem diagram in

Figure 1, we regard this new problem diagram as a

variant of the original problem diagram.

In problem frames, the machine S is a physical

domain which cannot be specified without the

specifications of other physical domains in W.

Meanwhile, R must be expressed as constraints in terms

of the properties of W [13]. Also, the machine S in a

solved sub-problem becomes part of the context

domain W in the parent problem.

To capture behaviour in a problem, we describe

physical domains W and S as parallel state machines,

and represent the requirements within these state

machines as final states, reachable when they are

satisfiable, or as error states, reachable if they can be

invalidated. We also describe shared phenomena

among domains and requirements as events or guard

conditions on corresponding transitions in these

parallel state machines. Sub-problem state machines

are modelled as super-states within the state machines

of the overall problem. This motivates us to use

hierarchical state machines, or statecharts [14], to

represent the results of problem compositions.

3. Context-Awareness Problems Analysis

Our approach comprises three main activities: (i) the

derivation of context variant problems for different

context situations; (ii) the derivation of monitoring

problems to detect changes in context; and (iii) the

composition of context variant and monitoring problem

diagrams and the derivation of the behaviour switching

specification of the composed problem diagram. The

focus of this paper is on the last two activities. Detailed

discussion of the first activity is in our earlier

publication [11].

3.1 Context-Awareness Variability

We propose four dimensions to consider when eliciting

contextual variability and related concerns.

The first dimension concerns quality requirements

that may induce variation in their satisfaction in

different contexts. For example, satisfying security

requirements may require encryption in one location

and no encryption in another.

The second dimension concerns physical

phenomena whose variations determine the satisfaction

of the quality requirement. For example, different

locations’ physical phenomena may constrain security

requirements differently.

The third dimension arises from variation in

applying a decision-making process to the quality

requirement. For example, for security requirements,

the use of trust assumptions [12] may introduce

different arguments that can be counter-argued in

different contexts.

The fourth dimension is the identification of known

classes of concerns associated with variant problems

frames. For example, a connector variant frame raises

an initialisation concern due to the enabling and

disabling of the connecting domain. Every problem

diagram has a frame concern [10], which is to achieve

the desired effect R on the operation environment W. In

addition, other concerns that may prevent the

realisation of R, such as the soundness of commands

issued by an operator in commanded behaviour

problem frames, are elicited. In such cases, the

specification must ensure that each operator command

is validated for its soundness and reject those deemed

unsound.

We suggest that failure to investigate all the

relevant dimensions of contextual variability in a given

project may lead to incomplete understanding of the

contextual variations, and thus may lead to

unpredictable errors in specifications.

3.2 Context Variant Problems

Problem descriptions based on the problem frames

notation can be described by the expression:

W, S ├ R (1a)

where R is the requirements, W is the context that R is

concerned with and S is the specifications needed to

achieve R. The symbol “├” denotes entailment, that is,

the satisfaction of W and S entails that of R. The “,” is

the separator for context and specifications. As the

problem is further refined, the context can include

some specifications from the sub-problems.

In order to express the impact of context-awareness,

we use the same notation to describe all sub-problems.

Given W, S ├ R which assumes a certain context W, we

construct a specification S for R. Figure 1 represents

such a problem description. Throughout this paper, S is

defined using state machines, as shown in Figure 2.

Using domain knowledge about the problem

context, we identify a set of variables {v1, v2 … vn} as

possible sources of contextual variations. In other

words, the context is parameterised by different values

of these variables as W (v1, v2,…, vn). For instance, in

our case study, the presence or absence of threats

represents different values of the security variable.

The initial contexts W in (1a) correspond to the

default assignment of these variables. Next, we vary the

contextual variables to access their impact on the

“context-unaware” problem.

We introduce an operator ‘;’ to compose changes of

physical domains on top of the conventional use of “,”

that delimits W and S in problem frame semantics. The

“,” separator appears in the formula only once.

A variation Wv (vi), 1≤i≤n, may cause requirement R

to be no longer satisfied by the specification S; this is

expressed as:

Not (W;Wv, S ├ R) (1b)

In order to ensure the satisfaction of requirements

when this change occurs, a variant specification S∆ ≠ { }

for this context needs to be derived to restore R, such

that:

W;Wv, S;S∆ ├ R (1c)

While eliciting members of W;Wv, whenever W; Wv,

S├ R still holds, then we say the contextual variation

does not invalidate the core requirements R, and hence

S∆ = { }. In Figure 3, one such Wv = the presence of

unauthorised eavesdroppers and S∆ = specification of

the encryption/decryption domain.

Although introducing S∆ can restore R under the

new context W;Wv, in general there is no guarantee that

it can still meet the requirements under the original

context W: in other words, W, S;S∆ ├ R does not always

hold.

 We repeat the above steps until all Wv satisfying

(1b) and (1c) are found. All such Wv are parallel

composed in WV where V = {v1, v2 … vn}. We then

describe the detection of context changes that may

invalidate core requirements R as a new problem:

W;WV, SV ├ RV (1d)

where RV represents the requirement of detecting

contextual changes W;WV invalidating R. In (1c), S∆

represents variant specifications to restore R when the

context change W;Wv occurs. Here in (1d), SV

represents the specification to satisfy RV, i.e., to detect

the changes in (1b) that invalidate R.

3.3 Monitoring Problems

It is not always possible to monitor variables in WV

directly. For instance, if security is the variable

introducing the contextual change satisfying (1b), an

initial analysis may identify eavesdropper as a variable

to be monitored in WV. Further domain analysis may

reveal a mapping relation between an eavesdropper and

a location, which leads to the location being monitored

instead. In such cases, all Wv in WV are transformed into

WM. For example, location (in WM) is considered to be

an observable equivalent of eavesdropper (in WV).

Similarly, RV will be transformed into RM. The context

change detection is defined as a monitoring problem,

expressed as:

(WM, SM ├ RM) if and only if (W;WV , SV├ RV) (2)

where WM represents the physical domain being

monitored which determine the values of the context

variable, SM and RM represent the monitoring

specification and requirement respectively. Figure 4

shows the monitoring problem in our case study in

which WM Location Receiver, Threat Location Mapping

and Threat Report are not present in Figures 1 and 3.

SM is embedded in Figure 6. RM may address additional

concerns beyond context change detection, such as

interference.

For the transformation of WV in (1d) to WM in (2) to

be valid, we need to demonstrate that by observing WM

one can assess the satisfaction of R in the real world. A

possible way of achieving this is to use structured

argumentation about trust assumptions in the physical

world and the observed phenomena [12]. For example,

given that all transmission eavesdroppers at secured

locations are authorised, one can justifiably monitor

location (Wm) and not eavesdropper (Wv) (see Figure

4). Also, we assume Wm is relatively more observable

than Wv.

3.4 Switching Problems

Next, we consider the switching problem, to ensure that

the correct variant is being used in different contexts.

Using input from the monitoring problem, a switcher

transfers control to designated variant specifications to

ensure the continual satisfaction of requirements. This

raises some concerns dealing with contextual

variability in monitoring, as well as with switching

concerns, such as interference, initialisation, and

synchronisation. The switching problem can be

expressed as:

 Ws , Ss ├ Rs (3a)

where Ws, Ss and Rs respectively represent domains,

specifications, and requirements for switching

problems.

Combining the monitoring and switching sub-

problems together, the resulting context-aware problem

can be expressed as:

 W;WM;S;S∆;SM , Ss ├ Rs (3b)

where W;WM;S;S∆;SM together represent Ws in (3a) and

Rs entails R in (1a). Hence, we have obtained a context-

aware specification by putting together S;S∆;Sm and Ss.

Figures 5 and 6 depict the switching problem in our

case study, and its specification, respectively.

We have chosen to represent problem descriptions

in (1a) to (3b) using state machines, so that their

behaviour can be observed. When problem domains are

inherently concurrent, their state machines are put in

parallel while synchronisations among them are

handled by sending/receiving shared events. Even

though the use of statecharts provides us with a way to

elicit some concerns (for example, the use of shared

events or operations in parallel states to investigate

synchronisation and interference concerns), reasoning

about and assessing the satisfaction of quality

requirements using statecharts remains difficult. For

example, it requires encoding of such requirements into

discrete values with well defined functions.

4. A Case Study

We have already seen illustrative examples taken from

our case study. We now elaborate on these to provide

further illustration and demonstration of the utility of

our approach.

Our case study description is as follows. Software is

to be specified to control the transmission of pictures

from an external digital camera (Concord EyeQ [15])

into a mobile phone’s storage (Nokia 9500 [16]) under

the commands of a phone user. A requirement R of this

problem is stated as:

A secure and efficient transfer of pictures is required

from a digital camera to the mobile phone’s storage.

4.1 The Context-Aware Variability

In R, we first identify two quality requirements,

Security and Performance. We investigate possible

variations in their satisfaction in different contexts (in

accordance with the first dimension of contextual

variability). Transferring unsecured pictures in certain

locations may satisfy the security requirement while

others may not. To satisfy the security requirements in

all contexts requires encryption of the transferred

pictures. However, the performance requirements are

better achieved when encryption is carried out only in

unsecured locations. Therefore, both Security and

Performance induce variations in different contexts in

this case study.

Second, we analyse the physical phenomena

location which determines the possible satisfaction of

both Security and Performance. This is in line with the

second dimension of contextual variability.

Third, for security, we make our trust assumptions

explicit; for example, different trust assumptions may

hold, depending on whether an eavesdropper is

authorised to listen to the transmission. Trust

assumptions are represented in Figure 1 by ovals

pointed to by the dashed arrows. For Performance, we

apply the 90/10 rule – this is the ratio of time

consumed by encryption/decryption activities to that of

transmission to determine whether or not encryption is

required in a secured location. The application of these

two decision procedures enabled us to satisfy the

conditions of the third dimension of contextual

variability.

We will account for context variations associated

with different frame concerns (as required by the fourth

dimension) when concrete problem frames are

introduced in the following sub-sections.

4.2 Representing Context Variant Problems

We begin by assuming that our operating environment

is secure, that is, all users are authorised and the

devices are located together. The picture transfer

problem can be described in Figure 1, which

corresponds to (1a). This problem fits the commanded

behaviour frame: the requirement is to control a

physical domain under the commands of an operator.

Here the Digital Camera is the controlled domain; the

Phone user is the operator. These, together with

Phone Internal Storage and Potential Transmission

Eavesdroppers domains represent W. Our R addresses

the primary concern of the commanded behaviour

frame, which is to achieve the required result in every

case; the specification of Controller 1 is (S) of the

required controller.

Considering the fourth dimension of contextual

variability, the encryption in the digital camera and the

decryption in the phone raise an overrun concern [10].

That is, if there is a mismatch between the camera’s

encryption speed and that of the phone’s decryption

speed then this could result in loss of transmitted data.

To prevent this, we identify the following concern

which effectively transforms and expands the scope of

R.

Concern 1: The encryption and decryption speeds of

the digital camera and the phone, respectively, must be

such that no transmission data is lost.

The trust assumptions in Figure 1 highlight the

reliance of the specification on the physical

environment in satisfying R. The All users are

authorised assumption does not hold in a situation

where unauthorised users exist, such as eavesdroppers

who can listen to the transmission. The Phone and

camera are located together assumption does not hold

when the two mobile devices have different cell

addresses not apparent to the phone user.

We show the specification S of this problem in

Figure 2, which characterises the problem of Figure 1

in four concurrent state machines. The top two show

the specification of the controller machine (S) and the

camera (W). To facilitate the validation of the secured

transfer requirements, the Authorised Access Threat

Checking state machine at the right-bottom, which

corresponds to (1b), shows an Unsecured state can

only be reached when an unauthorised eavesdropper

can have access to data during the transmission in an

unsecured location. This state, indicated by the left-

bottom state machine, is assumed impossible due to the

trust assumption (only authorised employee can access

the location).

However, when one executes the above state

machine, a violation of the requirements is detected

when the unfortunate event evChangeToUnsecure,

which corresponds to W;Wv, occurs during

transmission. When this happens, the unsecured state is

reached. Currently, the identification of W;WV and

validation of R is done manually, aided by the

executable state machines models of the problem

descriptions.

Withdrawing the assumption of All users are

authorised because they are in a secured location, the

requirement R can be invalidated by the same

specification. Hence, we analyse the variant problem

for unsecured locations, where any eavesdropping is

assumed unauthorised (W;Wv), and find a Connection

variant frame suitable to specify the variant solution,

corresponding to (1c), by introducing an

Encryption/Decryption domain to block the

eavesdropping of unsecured transmissions. Figure 3

depicts the resulting variant problem. The trust

assumptions here play similar roles as they did in

Figure 1. Since Figure 3 is a variant of Figure 1, their

state machine specifications are also similar. S;S∆ in

Figure 3 differs from S in Figure 1 due to the presence

of the Encryption/Decryption domain in Figure 3.

Also, since the problem description in Figure 3 is a

variant of the description shown in Figure 1, all states

in Figure 2 are relevant states in the state machines of

Figure 3, which are shown in Figure 6 for brevity.

Inside the nested statecharts of Controller and Digital

Camera, the decrypting and encrypting sub-states are

inserted respectively between the transitions from

Receiving to Saving and between the transitions from

Idle to Transmitting. These additional states represent

the Encryption/ Decryption domain introduced in Figure

3.

Figure 2 explicitly shows the left hand side of the

entailment ├ relation, that is, W, Wm, Sm and S. We use

an unreachable state in Sm to represent and check the

satisfaction of (1d). The same representation is made of

the switching problem in Figures 5 which is specified

in Figure 6; showing W;Wm; S;S∆;Sm and S.

The statechart specifies the behaviour of Controller,

that of the Digital Camera and the Simulated

Eavesdroppers (W). The validating specification in Sm

in Figure 6 validates the requirements in Figures 1 and

3.

By analysing the underlying Performance

requirements, the original simpler variant specification

delivers higher speed than the variant one because the

time-consuming encryption/decryption is not always

appropriate when the environment is secured.

Therefore we need to consider context-awareness to

maintain our functional and quality requirements for

both secured and unsecured locations.
NonSecureLocationVariant

Digi tal_Camera

W

Idle

confirmstart()

Transmitting

confi rmstop()

evFinish

evSend

AuthorizedAccessThreatChecking

Secure

Unsecure

[IS_IN(UnSecureLocation)]

Sm

PotentialEarDropper

W
UnSecureLocation

m

SecureLocation

[evChangeToUnsecure]

[evChangeToSecure]

Idle

Controller

Saving

Requesting

Terminating

tm(20) Receiving

tm(20)/GEN(evSend)

tm(20)/

GEN(evFinish)

ReceivingCommands

evRequest

tm(20)

evOn evOnOff

evFinish

evSend

[IS_IN(UnSecureLocation)][evChangeToUnsecure]

[evChangeToSecure]

evOn

tm(20)

tm(20)/GEN(evSend)

tm(20)/

GEN(evFinish)

evRequest

tm(20)

evOnOff

S

Figure 2: A statechart specification of the

problem description in Figure 1, representing S and
Sm in (1a) & (1b) respectively

a-secure: ED!{secRequestTransmission, secTerminatesTransmission}

c’

 a-secure

S’

a’

aa

c
0 k

Phone User

External
Digital
Camera

R s

Phone
Internal

storage

Encryption
/Decryption

Potential
unauthorised
Transmission
eavesdropper

sTrust Assumption:
Unauthorised users

Trust Assumption:
Phone & camera are
not located together.

 Controller 2

Figure 3: A variant problem in non-secure

environment; representing equation (1c)

4.4 The Monitoring Problem

Since it is easier to know the location of a person than

to know whether a person is a potential eavesdropper,

it is preferable if we can monitor locations rather than

eavesdroppers. Taking into consideration the trust

assumption that only authorised users have access to

secured locations, we can determine the validating

condition in (1d) by monitoring the location (WM) of

the mobile devices and triggering an event when they

change from a secured location into an unsecured one.

This corresponds to the derivation and validation of

equation (2). The monitoring problem is shown in

Figure 4 and its specification embedded in Figure 6.

This monitoring problem fits the information frame

[10]: the requirement is to give accurate status

information about a real-world domain with the

primary concern being the relation between the

requirement phenomena and the specification

phenomena. Here, the contextual variable we

previously identified Location is the real-world domain

and its status in the form of Threat Report the output.

The specification is to report if a given location is

secured or unsecured using pre-analysed location-threat

mappings Location Threat Mapping. Thus, the

monitoring requirement (Rm) can be stated as:

Using the inputs from the Location Receiver and that

of the Location-Threat Mapping, generate a Threat

Report showing if the current location is a secured

environment or not.

Taking into account the fourth dimension of

contextual variability and properties of the Location

Threat Mapping domain in the monitoring problem

(Figure 4), a consistency concern arises. That is, we

need to investigate the possibility of updating the

location threat mapping database in the middle of a

transmission. If this is found to be probable, then we

need to specify how the monitoring problem must

handle such a situation. Therefore, we identify and

elicit the following concern as:

Concern 2: The updating of the location threat

mapping database is permissible if the location being

updated is not the current operating location; and only

if current location is being changed from unsecured to

secured. Otherwise, the updating is forbidden.

The elicitation of concern 2 effectively refines and

expands the scope of Rm. Also, it is worth noting that

the Encryption/Decryption domain represents a solution

to the sub-problem of decryption/encryption which we

do not need to solve as the solution is given. If this was

not the case, then a sub-problem would have to be

introduced to carry out the securing of the transmission

channel. Problem frames treat solution machines of

sub-problems as given domains when used in other

problem descriptions.

4.5 The Switching Problem

We now consider switching among variant

specifications in a composed context-aware

specification. So far, we have one monitoring sub-

problem (Figure 4) and two variant sub-problems

(Figure 1 and 3). The resulting problem diagram is

shown in Figure 5 and its statechart representation in

Figure 6. In addition to the original context domains in

Figures 1, 3 and 4, the respective specifications

Controller 1, Controller 2, and Context Sensor are

shown as domains (i.e. rectangles without the two

vertical lines) in line with problem frame semantics.

Figure 6 represents the statechart for the problem

diagram in Figure 5. It shows all sub-problem

specifications S, S∆, Sm and their contexts and the

specification for the context switcher Ss. The

expression [(IS_IN(unSecureMode) AND
IS_IN(UnSecureLocation)) OR (IS_IN(CSuspend) =

IS_IN(DSuspend))] is the condition to check the

invalidation of the requirement. Here IS_IN(X) is tool-

specific
1
, evaluated to true when the super-state enters

the state X.

The switching requirement (Rs) is stated as: Ensure

Controller1 executes in a secured location, and

Controller2 executes in an unsecured location; using

the Threat report of the context sensor to determine

which controller is required in every location.

Rm

cb’

ca’

Trust Assumption:

Accurate location detection

Trust Assumption:
The database is a true reflection

of the real world.

cd

ce

cb

ca

 Context
Sensor

Location-
Threat

Mapping

Location
Receiver

Threat
Report

ca: LR! {Location (Phone), Location(Camera)}
cb: LTM! {Location, SecureEnv, NonSecureEnv}
 CS! {Resolve (Location (Phone), Location(Camera)) }
cd: CS! {SendReport, SecureEnv, NonSecureEnv}
ce: CR! {SecureEnv, NonSecureEnv}

Figure 4: Threat existence Sensor Problem;
representing equation (2)

Investigating the fourth dimension of contextual

variability, a possible concern is context change in the

middle of a picture transfer, which requires us to

consider interference to picture transmissions. To

1
 We used the Rhapsody tool set [http://www.ilogix.com/].

account for this, we elicit the following concern, which

effectively expands the scope of Rs.

Concern 3: The context switcher must ensure picture

transmission without loss during which switching is

required.

Consider phenomena cda and cdb in Figure 5,
Enquire (CurrentState (Transmission, Encrypting,

Decrypting)) is a refinement of Enquire(CurrentState),

which ensures that Concern 1 is catered for;

Initialisation, Start, Stop and Resume phenomena

account for Concern 3.

This case study has shown that representing,

analysing, and reasoning about context-awareness is

difficult and complex. Although primarily a manual

process, we have illustrated that our approach to

representing and reasoning about contextual variation

contributes to a deeper understanding of the nature of

the variations and enriches the specification of

monitoring and switching behaviours. Our approach

also enables traceability between requirements and

specifications, between the requirements and the

variation of problem context, and between core

requirements and context-awareness concerns.

5. Related Work

Realising the limitations of solution-oriented

approaches to context-awareness, Zhang and Cheng

[17] suggest a problem-oriented approach in which

they focus on how to derive switching specifications

for safety critical systems as discussed in [18, 19].

However, they do not examine how physical context is

represented and monitored and what its impact is on

such switching specifications.

In an earlier paper [11], we discussed the work of

Bachmann and Bass [20] in identifying different

sources of variability, such as variation in features and

data of applications. Jaring and Bosch [21] have also

examined the difference sources of variability and

argued that the type of variability depends on

dependencies between points of variation. This

observation is consistent with the work of Buhne et al.

[22] in which they used Use Cases to model

requirement variability. However, representations such

as use cases [22] and feature diagrams [23] have been

observed by Liaskos et al. [19] to be inadequate for

expressing intentional and contextual variability. A

limitation that all these approaches have in common is

that none of them explicitly considers the physical

properties of the operating context.

The need to monitor application software’s

operating environment to assess the continual

satisfaction of requirements was recognised by Fickas

and Feather [24]. The primary focus of their work is on

assumptions about the operating environment whose

failure is likely to invalidate the requirements. They

proposed the use of two kinds of parameters to store

monitored and controlled variables [25]. Monitored

parameters provide the means of detecting changes that

cause assumptions failures, while controlled parameters

provide a means to adapt application software

behaviour. In addition, linear temporal logic may be

used to express these parameters and to show their

interdependency. Robinson [26] has also recognised

the need to monitor application software and to assess

their continual satisfaction of higher level goals. The

primary objective of Robinson’s approach is to detect

inconsistency in goals resulting from changes in the

operating environment, and to take corrective measures

to restore them. Robinson describes the REQMON

framework [27] for defining the core requirements and

the monitoring behaviours, with associated software

development tools.

The benefit of explicitly considering the physical

context of software applications in the problem space

has also been observed by Sutcliffe et al. [8]. However,

their work provides a high level of conceptual

guidance, without details of how individual problems

are represented. Providing these details, our approach

can analyse the impact of contextual variations on

monitoring and switching problems. It is our view that,

the two approaches could complement each other, with

Sutcliffe et al.’s approach as a front end to ours.

The primary difference between the related work

above [24-26] and ours is that we monitor problem

variations in addition to requirements. This requires us

to explicitly represent the core requirements R, the

problem contexts, the specifications and the relevant

concerns that might not be apparent in considering the

requirements alone.

We also reason about contextual variations in four

dimensions, which enable us to investigate each

underlying quality requirement to see whether it

induces any variation. This is necessary for us to define

validation criteria that determine when R is no longer

being satisfied. When R is invalid, we modify the

specifications to ensure its satisfaction in all contexts.

We therefore, see our approach as a finer grain analysis

of the context-aware problem space which can also

make use of the approaches of Fickas and Feather [25]

and that of Robinson [26]. This deeper level of

reasoning about context-awareness may contribute to

better understanding of contextual variability and its

impact on monitoring and switching problems.

The switching problem is a kind of composition

problem, similar to what has been described by Laney

et al. [28]. In their approach, however, sub-

specifications being composed are for different

requirements in the same context. In our case, the

variant specifications are for the same R in different

context situations. Therefore, a switcher must be

notified when a contextual change that invalidates R

has been detected. Hence, context monitoring for

requirements violations is essential in composing our

switching problems.

6. Conclusion and Further Work

The focus of this paper has been on eliciting and

reasoning about monitoring and switching concerns

induced by varying context – when software switches

from one behaviour to another following the detection

of requirement violations. We have adapted the

problem frames notation to capture and reason about

variant problems in context, from which a monitoring

problem is derived. These were then used to derive a

switching problem. We have also used state machines

to capture specifications of problem descriptions so as

to analyse their dynamic behaviour and support the

elicitation of context-awareness concerns.

An adaptation of our approach will be needed to

deal with other aspects of context such as CPU

processor speeds or network traffic levels, which are

not visible in problem frames and which makes it

problematic to project adaptive context into problem

diagrams. For software systems where context-

awareness is not the primary concern, our analysis may

not be necessary.

 Figure 5: A switching problem as a composition of sub-problems in Figures 1, 3 and 4; representing (3b)

SwitchProblemContext

Monitor

SensingLocation

m
MappingLocationToThreat

opGenerateReport()

IF IS_IN(Room1 OR Room5 OR Room3)

THEN

 opSecureLocation

ELSE

 opUnSecureLocation

END IF

evLocation

CheckingViolationofRandRmandRs

[[(IS_IN(unSecureMode)AND

IS_IN(UnSecureLocation)) OR

(IS_IN(CSuspend) = IS_IN(DSuspend))]]

Idle
- DeltaS;S

Controller

Terminating

Request ing

Saving

tm(20)

CSuspend

[evResumeNonDecrypt]

[evSuspend]

Decrypting

opInitialise()

tm(20)

[evResumeDecrypting]

[evSuspend]

ReceivingCommands evRequest

tm(20)

Receiving

tm(20)/GEN(evSend);

tm(20)[IS_IN(
UnsecureMode)]/
GEN(evFinish)

tm(20)[IS_IN(SecureMode)]/
GEN(evFinish)

evOnOff

evOnOff

Locations

SecureLocation

Room1

Room3

Room5

m

UnSecureLocation

Room2

Room4

Room6

W

Digital_Camera

DSuspend

W
Encrypting

opInitialise()

[evSuspend]

[evResusmeEncrypt]

Idle

confirmstart ()

evSend[IS_IN(
UnsecureMode)]

Transmitt ing

confirmstop()

evFinish

tm(40)

evSend[IS_IN(
SecureMode)]

[evSuspend]

[evResumeNonEncrypt]

Switcher

s

UnsecureMode

SecureMode

�...

[IS_IN(SecureLocation)]

[IS_IN(UnSecureLocation)]

S

evLocation

[[(IS_IN(unSecureMode)AND

IS_IN(UnSecureLocation)) OR

(IS_IN(CSuspend) = IS_IN(DSuspend))]]

evOnOff

tm(20)

[evResumeNonDecrypt]

[evSuspend]

tm(20)

[evResumeDecrypting]

[evSuspend]

evRequest

tm(20) tm(20)/GEN(evSend);

tm(20)[IS_IN(
UnsecureMode)]/
GEN(evFinish)

tm(20)[IS_IN(SecureMode)]/
GEN(evFinish)

evOnOff

[evSuspend]

[evResusmeEncrypt]

evSend[IS_IN(
UnsecureMode)]

evFinish

tm(40)

evSend[IS_IN(
SecureMode)]

[evSuspend]

[evResumeNonEncrypt]

[IS_IN(SecureLocation)]

[IS_IN(UnSecureLocation)]

S

opInitial ise()

opSuspend()

opResumeEncrypt()

opSuspend()

opResumeNonEncrypt()

Figure 6: A statechart specification for the switching problem in Figure 5; representing (3b)

Also, since our approach is rooted in the problem

space, the primary outputs are variant specifications for

varying contextual situations, and specifications for the

monitoring and switching problems. This may not be

sufficient for dealing with all context-awareness

concerns, especially where such concerns are induced

by solution structures. Further analysis beyond the

specifications may be required in such cases, as the

concerns may not be visible in the problem

descriptions.

 Since monitoring problems are derived from

variant problems which together are used to derive

switching problems, interference among their problem

descriptions may occur. The elicited concerns should

eliminate a possible interference between sub-problems

that try to update the location-threat mapping database

while it is being used by the monitoring problem. This

ensures consistency in the monitoring problem and

among variant problems during switching. Our

approach makes use of composition techniques in

dealing with differing concerns; therefore, its use is

limited to scenarios where such techniques are

applicable. We are currently investigating possible

relations between monitoring and switching problems

and other context-awareness concerns. However, the

wider difficulties of problem composition are beyond

the scope of this paper.

 A different facet of the problems of monitoring and

switching is to enhance efficiency in adaptability. We

are investigating a formal encoding of variations in

specifications, requirements, and contextual variables,

such that they can be reasoned about using dependency

and trade-off analyses. Such efficient monitors should

adaptively observe a necessary subset of possible

variables that are sufficient to detect requirements

violations. Similarly, efficient switchers should carry

out only necessary responses triggered by contextual

and requirements changes.

Though our work assumes stable functional

requirements in order to focus our analysis on

contextual variability, we are investigating ways

variability analysis approaches in product line

development, which focus on functional requirements

[29, 30] could be improved.

Acknowledgements
We would like thank Jo Atlee and the anonymous

referees for tremendously valuable feedback on the

submitted paper. We also thank our colleagues Thein

Than Tun, Armstrong Nhlabatsi, and Michael Jackson

for many useful discussions. Finally, we would like to

thank the EPSRC for their financial support.

References
1. Oreizy, P., et al., An architecture-based approach to self-adaptive

software. Intelligent Systems and Their Applications, IEEE [see also IEEE

Intelligent Systems, 1999. 14(3).

2. Mckinley, P.K., et al., Composing Adaptive Software. IEEE Computer,

2004. 37(7): p. 56-64.

3. Desmet, B., J. Vallejos, and P. Costanza. Layered design approach for

context-aware systems. in 1st VaMoS 07. 2007. Limerick, Ireland.

4. Kephart, J.O. and D.M. Chess, The Vision of Autonomic Computing.

Computer, 2003. 36(1): p. 41-50.

5. Kramer, J. and J. Magee, Self-Managed Systems: an Architectural

Challenge, in ICSE FOSE. 2007.

6. Georgiadis, I., J. Magee, and J. Kramer. Self-Organising Software

Architectures for Distributed Systems. in ACM SIGSOFT Workshop on

Self-Healing Systems (WOSS ‘02). 2002. Charleston, South Carolina: ACM.

7. Cheng, B. and J. Atlee. Research Directions in Requirements Engineering.

in ICSE FOSE. 2007.

8. Sutcliffe, A., S. Fickas, and M.M. Sohlberg, Personal and Contextual

Requirements Engineering. Requirements Engineering, 2005. Proceedings.

13th IEEE International Conference on, 2005: p. 19-30.

9. Berry, D.M., B.H.C. Cheng, and J. Zhang. The Four Levels of

Requirements Engineering for and in Dynamic Adaptive Systems. in

REFSQ'05. 2005. Porto, Portugal.

10. Jackson, M., Problem Frames: Analyzing and structuring software

development problems. 1st ed. 2001b, New York, Oxford: Addison-

Wesley. 390.

11. Salifu, M., et al. Using Problem Descriptions to Represent Variability for

Context-Aware Application. in 1st VaMoS 07. 2007. Limerick, Ireland: Lero

Technical Report.

12. Haley, C.B., et al., Using trust assumptions with security requirements.

Requirements Engineering, 2006. 11(2): p. 138-151.

13. Hall, J.G., L. Rapanotti, and M. Jackson, Problem frame semantics for

software development. 2005, Springer. p. 189-198.

14. Harel, D., Statecharts: A Visual Formalism For Complex Systems. Science

of Computer Programming, 1987. 8: p. 231-274.

15. Geeks.com, C., Concord EyeQ Go Wireless 2MP Bluetooth Digital

Camera. http://www.geeks.com/details.asp?invtid=EYEQ&cat=CAM.

16. Nokia, F., Enterprise: Developing End-To-End Systems. 2006, Nokia

Forum: Online. p. 1-54.

17. Zhang, J. and B.H.C. Cheng, Using Temporal Logic to Specify Adaptive

Program Semantics. Architecting Dependable Systems-Journal of Systems

and Software (JSS), 2006. 79(10): p. 1361-1369.

18. Lapouchnian, A., et al. Requirements-Driven Design of Autonomic

Application Software. in CASCON2006. 2006. Canada.

19. Liaskos, S., et al. On Goal-based Variability Acquisition and Analysis. in

14th RE. 2006. Minneapolis/St. Paul, Minnesota, USA,: IEEE CNF.

20. Bachmann, F. and L. Bass. Managing Variability in Software

Architectures. in SSR'01. 2001. Toronto, Ontario, Canada: ACM Press.

21. Jaring, M. and J. Bosch. A Taxonomy and Hierarchy of Variability

Dependencies in Software Product Family Engineering. in Proc. of the

28th Annual International Computer Software and Applications

Conference (COMPSAC'04). 2004: IEEE CNF.

22. Bühne, S., K. Lauenroth, and K. Pohl, Modelling Requirements Variability

across Product Lines. Proceedings of the 13th RE, 2005: p. 41–50.

23. Schobbens, P.Y., P. Heymans, and J.C. Trigaux. Feature Diagrams: A

Survey and a Formal Semantics. in RE'06. 2006: IEEE Computer Society

Washington, DC, USA.

24. Fickas, S. and M. Feather, Requirements Monitoring in Dynamic

Environments. Proceedings 2nd IEEE Int Symp on RE, 1995: p. 140-147.

25. Feather, M., et al., Reconciling System Requirements and Runtime

Behavior. Proceedings of the 9th International Workshop on Software

Specification and Design, 1998.

26. Robinson, W. and S. Pawlowski, Managing requirements inconsistency

with development goal monitors. Software Engineering, IEEE Transactions

on, 1999. 25(6): p. 816-835.

27. Robinson, W., A requirements monitoring framework for enterprise

systems. Requirements Engineering, 2006. 11(1): p. 17-41.

28. Laney, R., et al. Composing Requirements Using Problem Frames. in

Proceedings of the 12th RE. 2004. Kyoto Japan.: IEEE Computer Society

Press.

29. van-Gurp, J., J. Bosch, and M. Svahnberg. Managing Variability in

Software Product Lines. in Proceedings of IEEE/IFIP Conference on

Software Architecture. 2000.

30. Ommering, R.V. Building Product Families with Software Components. in

ICSE 2002. 2002. Orlando Florida, USA.

