
 

Specifying Monitoring and Switching Problems in Context 
 

 

 

 
Abstract Context-aware applications monitor changes in 

their operating environment and switch their behaviour to 

keep satisfying their requirements. Therefore, they must be 

equipped with the capability to detect variations in their 

operating context and to switch behaviour in response to 

such variations. However, specifying monitoring and 

switching in such applications can be difficult due to their 

dependence on varying contextual properties which need to 

be made explicit. In this paper, we present a problem-

oriented approach to represent and reason about contextual 

variability and assess its impact on requirements; to elicit 

and specify concerns facing monitors and switchers, such as 

initialisation and interference; and to specify monitoring and 

switching behaviours that can detect changes and adapt in 

response. We illustrate our approach by applying it to a 

published case study. 

 

1. Introduction 
 

Context-aware applications monitor changes in their 

operating environment and switch their behaviour to 

continue satisfying their requirements [1, 2]. Therefore, 

they must be equipped with the capability to detect 

variations in their operating context and to switch their 

behaviour in response. Monitoring requirements define 

what applications must do to detect changes in their 

operating environment that may violate their 

requirements, while switching requirements define 

what applications must do to restore the satisfaction of 

such requirements by adapting their behaviour. 

We define contextual variability as a space of 

variables whose different values require different 

application behaviours. Specifying monitoring and 

switching behaviours in context-aware applications is 

often complex [3] due to dependency on the states of 

varying contextual properties of the operating 

environment. We refer to monitoring and switching 

behaviours as context-awareness.  

Context-awareness concerns have been investigated 

in autonomic computing [4] and adaptive systems [2]. 

Autonomic software applications manage themselves 

with minimal human intervention to accommodate a 

changing operating environment, while adaptive 

applications deal with more general behaviour 

adaptation beyond simply minimising human 

involvement. In both cases, information gathering and 

analysis on one hand and planning and adapting 

application behaviour on the other are required [2, 4].  

Kramer and Magee [5] have observed that the 

operating context of applications can be captured and 

reasoned about at different layers of abstraction. They 

propose a three-layer conceptual model for reasoning 

about and analysing requirements for context-aware 

applications. Software architectural components 

occupy the lower layer and represent the traditional 

focus of autonomic applications research [6]. The 

middle layer covers applications that require explicit 

change management in the operating environment, 

either prior to or after an adaptation. The higher layer 

addresses software goals that may be affected by 

adaptation and must be assessed for its impact. The 

higher the abstraction layer, the closer it is to the 

problem space, and the harder it is to analyse and 

specify the required context-awareness concerns.  

Cheng and Atlee [7] have recognised the need for 

requirements engineering that considers both normal 

environmental behaviour as well as other possible 

threats and hazards of applications’ operating 

environment. Similarly, Sutcliffe et al. [8] have 

recognised the need to consider physical contextual 

properties, in addition to individual and group needs 

and personal characteristics, in specifying software 

applications.  

Monitoring and switching requirements are usually 

not at the forefront of user requirements. However, 

Berry et al. [9] argue that the overall success of 

context-aware applications largely depends on the 

success at specifying their monitoring and switching 

behaviours.  

Although researchers have recognised the 

importance of context for effective adaptation [5, 7, 8], 

the context of applications to be monitored is rarely 

made explicit. Therefore, there is a need for guidance 

to (1) represent and reason about contextual variability, 

(2) elicit and specify concerns facing monitors and 

switchers, and (3) relate and assess the effect of such 

concerns on specifying monitoring and switching 

behaviours.  

We propose a problem-oriented approach to address 

these issues. First, we adapt the problem frames 

notation [10, 11] to represent and reason about 
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contextual variability using the notion of variant 

problems. Second, we propose four dimensions to 

eliciting contextual variability – these are variations in 

quality requirements, related physical contextual 

properties, associated decision making processes, and 

types of concerns such as interference. Finally, we 

derive and specify, using statecharts, monitoring and 

switching behaviours from problem variants.  

This paper focuses on specifying monitoring and 

switching behaviours associated with core requirements 

arising from the changing properties of the operating 

context. It does not address the more general problem 

of solutions composition. In order to focus on 

analysing the impact of contextual variability on 

monitoring and switching problems, we assume that 

functional requirements are invariant, while variability 

of quality requirements is taken into account as one 

source of contextual variability. Our approach is 

primarily aimed at software applications for which 

physical context and its changes are significant. 

Problem frames explicitly capture the notion of 

physical context.  

The remainder of the paper is structured as follows. 

We begin with a description of the problem frames 

notation in Section 2, followed by a presentation of our 

approach in Section 3. A detailed illustration of our 

approach using a case study follows in Section 4. We 

review related work in Section 5. We conclude with 

summary and an agenda for further work in Section 6. 

 

2. Problem Frames 
 

The Problem Frames approach to requirements 

engineering provides a basis for analysing software 

problems and their context [10]. In this approach, a 

problem comprises three sets of descriptions: (1) a 

description of the context in which the problem resides 

in terms of known domain properties of the world, 

denoted by W; (2) a description of the required 

properties of the world, denoted by R; and (3) a 

description specifying what the machine, or the 

computer system running the software-to-be, must do 

to meet the requirements, denoted by S. Problem 

frames are particularly well-suited to analyse context-

awareness because they emphasise the need for 

understanding the physical context of problems.  

We represent problem descriptions by problem 

diagrams, such as that shown in Figure 1. A rectangle 

in a problem diagram represents a physical domain of 

the problem world (e.g., Phone User, External Digital 

Camera, Potential Transmission eavesdroppers and 

Phone Internal Storage). A dashed oval with an 

outgoing arrow represents the requirement R and one 

with an ingoing arrow, with two dots, represents trust 

assumptions about the domain it references. Trust 

assumptions are an extension to the standard problem 

frames notation proposed [12]. A rectangle with a 

double stripe is a machine domain whose specification 

is required (e.g., Controller 1). A solid line connecting 

two or more domains represents a set of phenomena 

shared by the connected domains, such as events and 

states. For example, the shared phenomenon a indicates 

the details of transmission are shared between the 

domains External Digital Camera (EDC) and the 

Controller 1 (C1). The infix ‘!’ indicates that C1 can 

manipulate the transmission, whilst EDC can only take 

part in it. The dashed line between the requirement R 

and the Phone User (PU) denotes that R references the 

property of PU while the dashed line with an arrow 

head between R and Phone Internal Storage (PIS) 

denotes that R constrains the property of PIS. This 

means that when a transmission is received, its data 

must be saved in the phone’s storage.  

a: C1   !{RequestTransmission, TerminatesTransmission}     
c: PU   !{StartTransmission, StopTranmission}  
k: PU   !{ConfirmsStartedTransmission, ConfirmsCompletedTranmission}   
s: PIS  !{receivespicture, savespicture}  

Trust Assumption:
Phone & camera are 

located together.

a 
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       c
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   Controller 1 
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Potential Transmission 
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Figure 1: An initial problem in secure 

environment; representing equation (1a) 

 

A problem frame is a known pattern of problems 

with well-understood structures and concerns. The 

problem diagram in Figure 1 is an instance of a basic 

type of problem known as commanded behaviour. In 

Figure 1, the domain EDC is the commanded domain, 

and C1 is the software to allow a phone user to issues 

transmission requests.  

Although many problems, when decomposed, are 

expected to fit one of a small number of basic frames, 

there are usually additional concerns. A variant frame 

represents a new problem pattern that closely matches a 

basic problem frame but differs because of the presence 

or absence of a problem domain or control pattern in 

the existing problem frame. Therefore, variant 

problems – the instances of variant frames – differ from 

the basic problem diagrams [10]. 

An example variant frame is called a connection 

variant [10], which introduces a new domain to 

connect the existing domains in a basic problem frame 

diagram. Figure 3 shows a problem diagram that is 



 

similar to the one in Figure 1, with the addition of a 

connection domain Encryption / Decryption between the 

External Digital Camera and the Controller 2. The new 

diagram signifies the fact that all transmissions between 

the camera and the controller  will be encrypted and 

decrypted respectively. Since this problem diagram 

shares the main concern of the problem diagram in 

Figure 1, we regard this new problem diagram as a 

variant of the original problem diagram.  

In problem frames, the machine S is a physical 

domain which cannot be specified without the 

specifications of other physical domains in W. 

Meanwhile, R must be expressed as constraints in terms 

of the properties of W [13]. Also, the machine S in a 

solved sub-problem becomes part of the context 

domain W in the parent problem.  

To capture behaviour in a problem, we describe 

physical domains W and S as parallel state machines, 

and represent the requirements within these state 

machines as final states, reachable when they are 

satisfiable, or as error states, reachable if they can be 

invalidated. We also describe shared phenomena 

among domains and requirements as events or guard 

conditions on corresponding transitions in these 

parallel state machines. Sub-problem state machines 

are modelled as super-states within the state machines 

of the overall problem. This motivates us to use 

hierarchical state machines, or statecharts [14], to 

represent the results of problem compositions.  

 

3. Context-Awareness Problems Analysis  
 

Our approach comprises three main activities: (i) the 

derivation of context variant problems for different 

context situations; (ii) the derivation of monitoring 

problems to detect changes in context; and (iii) the 

composition of context variant and monitoring problem 

diagrams and the derivation of the behaviour switching 

specification of the composed problem diagram. The 

focus of this paper is on the last two activities. Detailed 

discussion of the first activity is in our earlier 

publication [11].  

 

3.1 Context-Awareness Variability 
 

We propose four dimensions to consider when eliciting 

contextual variability and related concerns.  

The first dimension concerns quality requirements 

that may induce variation in their satisfaction in 

different contexts. For example, satisfying security 

requirements may require encryption in one location 

and no encryption in another. 

The second dimension concerns physical 

phenomena whose variations determine the satisfaction 

of the quality requirement. For example, different 

locations’ physical phenomena may constrain security 

requirements differently.  

The third dimension arises from variation in 

applying a decision-making process to the quality 

requirement. For example, for security requirements, 

the use of trust assumptions [12] may introduce 

different arguments that can be counter-argued in 

different contexts.  

The fourth dimension is the identification of known 

classes of concerns associated with variant problems 

frames. For example, a connector variant frame raises 

an initialisation concern due to the enabling and 

disabling of the connecting domain. Every problem 

diagram has a frame concern [10], which is to achieve 

the desired effect R on the operation environment W. In 

addition, other concerns that may prevent the 

realisation of R, such as the soundness of commands 

issued by an operator in commanded behaviour 

problem frames, are elicited. In such cases, the 

specification must ensure that each operator command 

is validated for its soundness and reject those deemed 

unsound.  

We suggest that failure to investigate all the 

relevant dimensions of contextual variability in a given 

project may lead to incomplete understanding of the 

contextual variations, and thus may lead to 

unpredictable errors in specifications. 

 

3.2 Context Variant Problems  
 

Problem descriptions based on the problem frames 

notation can be described by the expression: 

W, S ├ R     (1a) 

where R is the requirements, W is the context that R is 

concerned with and S is the specifications needed to 

achieve R. The symbol “├” denotes entailment, that is, 

the satisfaction of W and S entails that of R. The “,” is 

the separator for context and specifications. As the 

problem is further refined, the context can include 

some specifications from the sub-problems.  

In order to express the impact of context-awareness, 

we use the same notation to describe all sub-problems. 

Given W, S ├ R which assumes a certain context W, we 

construct a specification S for R. Figure 1 represents 

such a problem description. Throughout this paper, S is 

defined using state machines, as shown in Figure 2.           

Using domain knowledge about the problem 

context, we identify a set of variables {v1, v2 … vn} as 

possible sources of contextual variations. In other 



 

words, the context is parameterised by different values 

of these variables as W (v1, v2,…, vn). For instance, in 

our case study, the presence or absence of threats 

represents different values of the security variable. 

The initial contexts W in (1a) correspond to the 

default assignment of these variables. Next, we vary the 

contextual variables to access their impact on the 

“context-unaware” problem.  

We introduce an operator ‘;’ to compose changes of 

physical domains on top of the conventional use of “,” 

that delimits W and S in problem frame semantics. The 

“,” separator appears in the formula only once. 

A variation Wv (vi), 1≤i≤n, may cause requirement R 

to be no longer satisfied by the specification S; this is 

expressed as:  

Not (W;Wv, S ├ R)   (1b)  

In order to ensure the satisfaction of requirements 

when this change occurs, a variant specification S∆ ≠ { } 

for this context needs to be derived to restore R, such 

that:  

 

W;Wv,  S;S∆ ├ R   (1c) 

 

While eliciting members of W;Wv, whenever W; Wv, 

S├ R still holds, then we say the contextual variation 

does not invalidate the core requirements R, and hence 

S∆ = { }. In Figure 3, one such Wv = the presence of 

unauthorised eavesdroppers and S∆ = specification of 

the encryption/decryption domain. 

Although introducing S∆ can restore R under the 

new context W;Wv, in general there is no guarantee that 

it can still meet the requirements under the original 

context W: in other words, W, S;S∆ ├ R does not always 

hold.  

 We repeat the above steps until all Wv satisfying 

(1b) and (1c) are found. All such Wv are parallel 

composed in WV where V = {v1, v2 … vn}. We then 

describe the detection of context changes that may 

invalidate core requirements R as a new problem: 

W;WV,   SV ├ RV (1d)  

where RV represents the requirement of detecting 

contextual changes W;WV invalidating R. In (1c), S∆ 

represents variant specifications to restore R when the 

context change W;Wv occurs. Here in (1d), SV 

represents the specification to satisfy RV, i.e., to detect 

the changes in (1b) that invalidate R. 

 

3.3 Monitoring Problems  

It is not always possible to monitor variables in WV 

directly. For instance, if security is the variable 

introducing the contextual change satisfying (1b), an 

initial analysis may identify eavesdropper as a variable 

to be monitored in WV. Further domain analysis may 

reveal a mapping relation between an eavesdropper and 

a location, which leads to the location being monitored 

instead. In such cases, all Wv in WV are transformed into 

WM. For example, location (in WM) is considered to be 

an observable equivalent of eavesdropper (in WV). 

Similarly, RV will be transformed into RM. The context 

change detection is defined as a monitoring problem, 

expressed as: 

(WM, SM ├ RM) if and only if (W;WV ,  SV├ RV)  (2) 

where WM represents the physical domain being 

monitored which determine the values of the context 

variable, SM and RM represent the monitoring 

specification and requirement respectively. Figure 4 

shows the monitoring problem in our case study in 

which WM Location Receiver, Threat Location Mapping 

and Threat Report are not present in Figures 1 and 3. 

SM is embedded in Figure 6. RM may address additional 

concerns beyond context change detection, such as 

interference. 

For the transformation of WV in (1d) to WM in (2) to 

be valid, we need to demonstrate that by observing WM 

one can assess the satisfaction of R in the real world. A 

possible way of achieving this is to use structured 

argumentation about trust assumptions in the physical 

world and the observed phenomena [12]. For example, 

given that all transmission eavesdroppers at secured 

locations are authorised, one can justifiably monitor 

location (Wm) and not eavesdropper (Wv) (see Figure 

4). Also, we assume Wm is relatively more observable 

than Wv.  

 

3.4 Switching Problems 

Next, we consider the switching problem, to ensure that 

the correct variant is being used in different contexts. 

Using input from the monitoring problem, a switcher 

transfers control to designated variant specifications to 

ensure the continual satisfaction of requirements. This 

raises some concerns dealing with contextual 

variability in monitoring, as well as with switching 

concerns, such as interference, initialisation, and 

synchronisation. The switching problem can be 

expressed as:  

 Ws , Ss ├ Rs (3a) 

where Ws, Ss and Rs respectively represent domains, 

specifications, and requirements for switching 

problems. 

Combining the monitoring and switching sub-

problems together, the resulting context-aware problem 

can be expressed as:  



 

 W;WM;S;S∆;SM ,  Ss ├ Rs (3b) 

where W;WM;S;S∆;SM together represent Ws in (3a) and 

Rs entails R in (1a). Hence, we have obtained a context-

aware specification by putting together S;S∆;Sm and Ss. 

Figures 5 and 6 depict the switching problem in our 

case study, and its specification, respectively.  

We have chosen to represent problem descriptions 

in (1a) to (3b) using state machines, so that their 

behaviour can be observed. When problem domains are 

inherently concurrent, their state machines are put in 

parallel while synchronisations among them are 

handled by sending/receiving shared events. Even 

though the use of statecharts provides us with a way to 

elicit some concerns (for example, the use of shared 

events or operations in parallel states to investigate 

synchronisation and interference concerns), reasoning 

about and assessing the satisfaction of quality 

requirements using statecharts remains difficult. For 

example, it requires encoding of such requirements into 

discrete values with well defined functions.  

 

4. A Case Study 
 

We have already seen illustrative examples taken from 

our case study. We now elaborate on these to provide 

further illustration and demonstration of the utility of 

our approach. 

Our case study description is as follows. Software is 

to be specified to control the transmission of pictures 

from an external digital camera (Concord EyeQ [15]) 

into a mobile phone’s storage (Nokia 9500 [16]) under 

the commands of a phone user. A requirement R of this 

problem is stated as: 

 

A secure and efficient transfer of pictures is required 

from a digital camera to the mobile phone’s storage. 

 

4.1 The Context-Aware Variability 
 

In R, we first identify two quality requirements, 

Security and Performance. We investigate possible 

variations in their satisfaction in different contexts (in 

accordance with the first dimension of contextual 

variability). Transferring unsecured pictures in certain 

locations may satisfy the security requirement while 

others may not. To satisfy the security requirements in 

all contexts requires encryption of the transferred 

pictures. However, the performance requirements are 

better achieved when encryption is carried out only in 

unsecured locations. Therefore, both Security and 

Performance induce variations in different contexts in 

this case study. 

Second, we analyse the physical phenomena 

location which determines the possible satisfaction of 

both Security and Performance. This is in line with the 

second dimension of contextual variability. 

Third, for security, we make our trust assumptions 

explicit; for example, different trust assumptions may 

hold, depending on whether an eavesdropper is 

authorised to listen to the transmission. Trust 

assumptions are represented in Figure 1 by ovals 

pointed to by the dashed arrows. For Performance, we 

apply the 90/10 rule – this is the ratio of time 

consumed by encryption/decryption activities to that of 

transmission to determine whether or not encryption is 

required in a secured location. The application of these 

two decision procedures enabled us to satisfy the 

conditions of the third dimension of contextual 

variability. 

We will account for context variations associated 

with different frame concerns (as required by the fourth 

dimension) when concrete problem frames are 

introduced in the following sub-sections. 
 

4.2 Representing Context Variant Problems 
 

We begin by assuming that our operating environment 

is secure, that is, all users are authorised and the 

devices are located together. The picture transfer 

problem can be described in Figure 1, which 

corresponds to (1a). This problem fits the commanded 

behaviour frame: the requirement is to control a 

physical domain under the commands of an operator. 

Here the Digital Camera is the controlled domain; the 

Phone user is the operator. These, together with 

Phone Internal Storage and Potential Transmission 

Eavesdroppers domains represent W. Our R addresses 

the primary concern of the commanded behaviour 

frame, which is to achieve the required result in every 

case; the specification of Controller 1 is (S) of the 

required controller.  

Considering the fourth dimension of contextual 

variability, the encryption in the digital camera and the 

decryption in the phone raise an overrun concern [10]. 

That is, if there is a mismatch between the camera’s 

encryption speed and that of the phone’s decryption 

speed then this could result in loss of transmitted data. 

To prevent this, we identify the following concern 

which effectively transforms and expands the scope of 

R. 

Concern 1: The encryption and decryption speeds of 

the digital camera and the phone, respectively, must be 

such that no transmission data is lost. 

The trust assumptions in Figure 1 highlight the 

reliance of the specification on the physical 



 

environment in satisfying R. The All users are 

authorised assumption does not hold in a situation 

where unauthorised users exist, such as eavesdroppers 

who can listen to the transmission. The Phone and 

camera are located together assumption does not hold 

when the two mobile devices have different cell 

addresses not apparent to the phone user.  

We show the specification S of this problem in 

Figure 2, which characterises the problem of Figure 1 

in four concurrent state machines. The top two show 

the specification of the controller machine (S) and the 

camera (W). To facilitate the validation of the secured 

transfer requirements, the Authorised Access Threat 

Checking state machine at the right-bottom, which 

corresponds to (1b), shows an Unsecured state can 

only be reached when an unauthorised eavesdropper 

can have access to data during the transmission in an 

unsecured location. This state, indicated by the left-

bottom state machine, is assumed impossible due to the 

trust assumption (only authorised employee can access 

the location). 

However, when one executes the above state 

machine, a violation of the requirements is detected 

when the unfortunate event evChangeToUnsecure, 

which corresponds to W;Wv, occurs during 

transmission. When this happens, the unsecured state is 

reached. Currently, the identification of W;WV and 

validation of R is done manually, aided by the 

executable state machines models of the problem 

descriptions. 

Withdrawing the assumption of All users are 

authorised because they are in a secured location, the 

requirement R can be invalidated by the same 

specification. Hence, we analyse the variant problem 

for unsecured locations, where any eavesdropping is 

assumed unauthorised (W;Wv), and find a Connection 

variant frame suitable to specify the variant solution, 

corresponding to (1c), by introducing an 

Encryption/Decryption domain to block the 

eavesdropping of unsecured transmissions. Figure 3 

depicts the resulting variant problem. The trust 

assumptions here play similar roles as they did in 

Figure 1. Since Figure 3 is a variant of Figure 1, their 

state machine specifications are also similar. S;S∆ in 

Figure 3 differs from S in Figure 1 due to the presence 

of the Encryption/Decryption domain in Figure 3. 

Also, since the problem description in Figure 3 is a 

variant of the description shown in Figure 1, all states 

in Figure 2 are relevant states in the state machines of 

Figure 3, which are shown in Figure 6 for brevity. 

Inside the nested statecharts of Controller and Digital 

Camera, the decrypting and encrypting sub-states are 

inserted respectively between the transitions from 

Receiving to Saving and between the transitions from 

Idle to Transmitting. These additional states represent 

the Encryption/ Decryption domain introduced in Figure 

3. 

Figure 2 explicitly shows the left hand side of the 

entailment ├ relation, that is, W, Wm, Sm and S. We use 

an unreachable state in Sm to represent and check the 

satisfaction of (1d). The same representation is made of 

the switching problem in Figures 5 which is specified 

in Figure 6; showing W;Wm; S;S∆;Sm and S.  

The statechart specifies the behaviour of Controller, 

that of the Digital Camera and the Simulated 

Eavesdroppers (W). The validating specification in Sm 

in Figure 6 validates the requirements in Figures 1 and 

3. 

By analysing the underlying Performance 

requirements, the original simpler variant specification 

delivers higher speed than the variant one because the 

time-consuming encryption/decryption is not always 

appropriate when the environment is secured. 

Therefore we need to consider context-awareness to 

maintain our functional and quality requirements for 

both secured and unsecured locations. 
NonSecureLocationVariant
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Figure 2: A statechart specification of the 

problem description in Figure 1, representing S and 
Sm in (1a) & (1b) respectively 
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Figure 3: A variant problem in non-secure 

environment; representing equation (1c) 

 



 

4.4 The Monitoring Problem 
 

Since it is easier to know the location of a person than 

to know whether a person is a potential eavesdropper, 

it is preferable if we can monitor locations rather than 

eavesdroppers. Taking into consideration the trust 

assumption that only authorised users have access to 

secured locations, we can determine the validating 

condition in (1d) by monitoring the location (WM) of 

the mobile devices and triggering an event when they 

change from a secured location into an unsecured one. 

This corresponds to the derivation and validation of 

equation (2). The monitoring problem is shown in 

Figure 4 and its specification embedded in Figure 6.  

This monitoring problem fits the information frame 

[10]: the requirement is to give accurate status 

information about a real-world domain with the 

primary concern being the relation between the 

requirement phenomena and the specification 

phenomena. Here, the contextual variable we 

previously identified Location is the real-world domain 

and its status in the form of Threat Report the output. 

The specification is to report if a given location is 

secured or unsecured using pre-analysed location-threat 

mappings Location Threat Mapping. Thus, the 

monitoring requirement (Rm) can be stated as: 

 

Using the inputs from the Location Receiver and that 

of the Location-Threat Mapping, generate a Threat 

Report showing if the current location is a secured 

environment or not.  

Taking into account the fourth dimension of 

contextual variability and properties of the Location 

Threat Mapping domain in the monitoring problem 

(Figure 4), a consistency concern arises. That is, we 

need to investigate the possibility of updating the 

location threat mapping database in the middle of a 

transmission. If this is found to be probable, then we 

need to specify how the monitoring problem must 

handle such a situation. Therefore, we identify and 

elicit the following concern as: 

Concern 2: The updating of the location threat 

mapping database is permissible if the location being 

updated is not the current operating location; and only 

if current location is being changed from unsecured to 

secured. Otherwise, the updating is forbidden. 

The elicitation of concern 2 effectively refines and 

expands the scope of Rm. Also, it is worth noting that 

the Encryption/Decryption domain represents a solution 

to the sub-problem of decryption/encryption which we 

do not need to solve as the solution is given. If this was 

not the case, then a sub-problem would have to be 

introduced to carry out the securing of the transmission 

channel. Problem frames treat solution machines of 

sub-problems as given domains when used in other 

problem descriptions. 

 

4.5 The Switching Problem 
 

We now consider switching among variant 

specifications in a composed context-aware 

specification. So far, we have one monitoring sub-

problem (Figure 4) and two variant sub-problems 

(Figure 1 and 3). The resulting problem diagram is 

shown in Figure 5 and its statechart representation in 

Figure 6. In addition to the original context domains in 

Figures 1, 3 and 4, the respective specifications 

Controller 1, Controller 2, and Context Sensor are 

shown as domains (i.e. rectangles without the two 

vertical lines) in line with problem frame semantics. 

Figure 6 represents the statechart for the problem 

diagram in Figure 5. It shows all sub-problem 

specifications S, S∆, Sm and their contexts and the 

specification for the context switcher Ss. The 

expression [(IS_IN(unSecureMode) AND 
IS_IN(UnSecureLocation) ) OR (IS_IN(CSuspend) = 

IS_IN(DSuspend))] is the condition to check the 

invalidation of the requirement. Here IS_IN(X) is tool-

specific
1
, evaluated to true when the super-state enters 

the state X. 

The switching requirement (Rs) is stated as: Ensure 

Controller1 executes in a secured location, and 

Controller2 executes in an unsecured location; using 

the Threat report of the context sensor to determine 

which controller is required in every location. 

Rm

cb’ 

ca’ 

Trust Assumption:

Accurate location detection 

Trust Assumption:
The database is a true reflection 

of the real world. 

cd 

ce 

cb 

ca 

   Context 
Sensor 

Location-
Threat 

Mapping 

Location 
Receiver 

Threat 
Report 

ca: LR! {Location (Phone), Location(Camera)}
cb: LTM! {Location, SecureEnv, NonSecureEnv}
     CS! {Resolve (Location (Phone), Location(Camera)) } 
cd: CS! {SendReport, SecureEnv, NonSecureEnv} 
ce: CR! {SecureEnv, NonSecureEnv}  

Figure 4: Threat existence Sensor Problem; 
representing equation (2)  

 

Investigating the fourth dimension of contextual 

variability, a possible concern is context change in the 

middle of a picture transfer, which requires us to 

consider interference to picture transmissions. To 

                                                           
1
 We used the Rhapsody tool set [http://www.ilogix.com/]. 



 

account for this, we elicit the following concern, which 

effectively expands the scope of Rs. 

Concern 3: The context switcher must ensure picture 

transmission without loss during which switching is 

required. 

Consider phenomena cda and cdb in Figure 5, 
Enquire (CurrentState (Transmission, Encrypting, 

Decrypting)) is a refinement of Enquire(CurrentState), 

which ensures that Concern 1 is catered for; 

Initialisation, Start, Stop and Resume phenomena 

account for Concern 3. 

This case study has shown that representing, 

analysing, and reasoning about context-awareness is 

difficult and complex. Although primarily a manual 

process, we have illustrated that our approach to 

representing and reasoning about contextual variation 

contributes to a deeper understanding of the nature of 

the variations and enriches the specification of 

monitoring and switching behaviours. Our approach 

also enables traceability between requirements and 

specifications, between the requirements and the 

variation of problem context, and between core 

requirements and context-awareness concerns.  

 

5. Related Work 
 

Realising the limitations of solution-oriented 

approaches to context-awareness, Zhang and Cheng 

[17] suggest a problem-oriented approach in which 

they focus on how to derive switching specifications 

for safety critical systems as discussed in [18, 19]. 

However, they do not examine how physical context is 

represented and monitored and what its impact is on 

such switching specifications. 

In an earlier paper [11], we discussed the work of 

Bachmann and Bass [20] in identifying different 

sources of variability, such as variation in features and 

data of applications. Jaring and Bosch [21] have also 

examined the difference sources of variability and 

argued that the type of variability depends on 

dependencies between points of variation. This 

observation is consistent with the work of Buhne et al. 

[22] in which they used Use Cases to model 

requirement variability. However, representations such 

as use cases [22] and feature diagrams [23] have been 

observed by Liaskos et al. [19] to be inadequate for 

expressing intentional and contextual variability. A 

limitation that all these approaches have in common is 

that none of them explicitly considers the physical 

properties of the operating context.  

The need to monitor application software’s 

operating environment to assess the continual 

satisfaction of requirements was recognised by Fickas 

and Feather [24]. The primary focus of their work is on 

assumptions about the operating environment whose 

failure is likely to invalidate the requirements. They 

proposed the use of two kinds of parameters to store 

monitored and controlled variables [25]. Monitored 

parameters provide the means of detecting changes that 

cause assumptions failures, while controlled parameters 

provide a means to adapt application software 

behaviour. In addition, linear temporal logic may be 

used to express these parameters and to show their 

interdependency. Robinson [26] has also recognised 

the need to monitor application software and to assess 

their continual satisfaction of higher level goals. The 

primary objective of Robinson’s approach is to detect 

inconsistency in goals resulting from changes in the 

operating environment, and to take corrective measures 

to restore them. Robinson describes the REQMON 

framework [27] for defining the core requirements and 

the monitoring behaviours, with associated software 

development tools.  

The benefit of explicitly considering the physical 

context of software applications in the problem space 

has also been observed by Sutcliffe et al. [8]. However, 

their work provides a high level of conceptual 

guidance, without details of how individual problems 

are represented. Providing these details, our approach 

can analyse the impact of contextual variations on 

monitoring and switching problems. It is our view that, 

the two approaches could complement each other, with 

Sutcliffe et al.’s approach as a front end to ours. 

The primary difference between the related work 

above [24-26] and ours is that we monitor problem 

variations in addition to requirements. This requires us 

to explicitly represent the core requirements R, the 

problem contexts, the specifications and the relevant 

concerns that might not be apparent in considering the 

requirements alone. 

We also reason about contextual variations in four 

dimensions, which enable us to investigate each 

underlying quality requirement to see whether it 

induces any variation. This is necessary for us to define 

validation criteria that determine when R is no longer 

being satisfied. When R is invalid, we modify the 

specifications to ensure its satisfaction in all contexts. 

We therefore, see our approach as a finer grain analysis 

of the context-aware problem space which can also 

make use of the approaches of Fickas and Feather [25] 

and that of Robinson [26]. This deeper level of 

reasoning about context-awareness may contribute to 

better understanding of contextual variability and its 

impact on monitoring and switching problems.  

The switching problem is a kind of composition 

problem, similar to what has been described by Laney 



 

et al. [28]. In their approach, however, sub-

specifications being composed are for different 

requirements in the same context. In our case, the 

variant specifications are for the same R in different 

context situations. Therefore, a switcher must be 

notified when a contextual change that invalidates R 

has been detected. Hence, context monitoring for 

requirements violations is essential in composing our 

switching problems. 

6. Conclusion and Further Work 

The focus of this paper has been on eliciting and 

reasoning about monitoring and switching concerns 

induced by varying context – when software switches 

from one behaviour to another following the detection 

of requirement violations. We have adapted the 

problem frames notation to capture and reason about 

variant problems in context, from which a monitoring 

problem is derived. These were then used to derive a 

switching problem. We have also used state machines 

to capture specifications of problem descriptions so as 

to analyse their dynamic behaviour and support the 

elicitation of context-awareness concerns. 

An adaptation of our approach will be needed to 

deal with other aspects of context such as CPU 

processor speeds or network traffic levels, which are 

not visible in problem frames and which makes it 

problematic to project adaptive context into problem 

diagrams. For software systems where context-

awareness is not the primary concern, our analysis may 

not be necessary.  

 
      Figure 5: A switching problem as a composition of sub-problems in Figures 1, 3 and 4; representing (3b) 
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Figure 6: A statechart specification for the switching problem in Figure 5; representing (3b)



 

Also, since our approach is rooted in the problem 

space, the primary outputs are variant specifications for 

varying contextual situations, and specifications for the 

monitoring and switching problems. This may not be 

sufficient for dealing with all context-awareness 

concerns, especially where such concerns are induced 

by solution structures. Further analysis beyond the 

specifications may be required in such cases, as the 

concerns may not be visible in the problem 

descriptions. 

 Since monitoring problems are derived from 

variant problems which together are used to derive 

switching problems, interference among their problem 

descriptions may occur. The elicited concerns should 

eliminate a possible interference between sub-problems 

that try to update the location-threat mapping database 

while it is being used by the monitoring problem. This 

ensures consistency in the monitoring problem and 

among variant problems during switching. Our 

approach makes use of composition techniques in 

dealing with differing concerns; therefore, its use is 

limited to scenarios where such techniques are 

applicable. We are currently investigating possible 

relations between monitoring and switching problems 

and other context-awareness concerns. However, the 

wider difficulties of problem composition are beyond 

the scope of this paper. 

 A different facet of the problems of monitoring and 

switching is to enhance efficiency in adaptability. We 

are investigating a formal encoding of variations in 

specifications, requirements, and contextual variables, 

such that they can be reasoned about using dependency 

and trade-off analyses. Such efficient monitors should 

adaptively observe a necessary subset of possible 

variables that are sufficient to detect requirements 

violations. Similarly, efficient switchers should carry 

out only necessary responses triggered by contextual 

and requirements changes. 

Though our work assumes stable functional 

requirements in order to focus our analysis on 

contextual variability, we are investigating ways 

variability analysis approaches in product line 

development, which focus on functional requirements 

[29, 30] could be improved. 
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