
Identifying Nocuous Ambiguities in Natural Language Requirements

Francis Chantree Bashar Nuseibeh Anne de Roeck Alistair Willis
Department of Computing, The Open University,

Milton Keynes, U.K.
{F.J.Chantree, B.Nuseibeh, A.DeRoeck, A.G.Willis}@open.ac.uk

Abstract

We present a novel technique that automatically alerts
authors of requirements to the presence of potentially dan-
gerous ambiguities. We first establish the notion of nocuous
ambiguities, which are those that are likely to lead to mis-
understandings. We test our approach on coordination am-
biguities, which occur when words such as and and or are
used. Our starting point is a dataset of ambiguous phrases
from a requirements corpus and associated human judge-
ments about their interpretation. We then use heuristics,
based largely on word distribution information, to automat-
ically replicate these judgements. The heuristics eliminate
ambiguities which people interpret easily, leaving the nocu-
ous ones to be analysed and rewritten by hand. We report on
a series of experiments that evaluate our heuristics’ perfor-
mance against the human judgements. Many of our heuris-
tics achieve high precision, and recall is greatly increased
when they are used in combination.

1 Introduction

Ambiguity — where something can be interpreted in
more than one way — is endemic in natural language, and
is therefore a considerable problem for requirements that
are written in natural language [4] [14]. If stakeholders in-
terpret a requirement in different ways, this can result in
an incorrect implementation. Gause and Weinberg recog-
nise the crucial position that ambiguity has in requirements
engineering (RE) [11], and Berry et al. suggest that unin-
tended ambiguity is the “Achilles’ heel” of software require-
ments specifications [4]. Ambiguity can be more intractable
than other defects, such as incompleteness, and research has
shown it more frequently results in misunderstandings [16].

Our work is driven by the desire to locate ambiguities
that will lead to misunderstandings, and so to incorrect im-
plementations: “ambiguity is characteristic of poor quality
requirements, and poor quality requirements are character-
istic of challenged projects” [6]. Locating ambiguities dur-

ing requirements analysis is a relatively cheap solution to
the problem, as the cost of fixing errors at later stages of
a system’s development process can be orders of magni-
tude higher [5]. However, locating errors is nontrivial, and
even requirements documents that have been checked many
times can still contain defects [12] [13].

As well as ambiguities that lead to misunderstandings,
there are others which have only one obvious interpreta-
tion. We refer to the former as nocuous and to the latter as
innocuous. Nocuous ambiguities can be both those recog-
nised as being present — acknowledged ambiguities — and
those that go undetected — unacknowledged ambiguities.
The latter are especially dangerous as they are carried over
into future stages of the system development process.

This paper presents a technique that helps requirements
developers identify nocuous ambiguities by automatically
identifying innocuous ambiguities, and reporting only the
remaining nocuous ones; the latter can then be disam-
biguated, and maybe rewritten, at a later stage. Our tech-
nique therefore offers a partial solution, which we believe is
more appropriate than attempting a fuller understanding of
ambiguities [28]. Natt och Dag et al. cite industrial experi-
ence that motivates the need for such automated support for
requirements management [22], and Gervasi and Nuseibeh
suggest that this is both feasible and useful [12] [13].

To test our approach, we look at ambiguity arising from
coordinations, which are recognised as “a pernicious source
of structural ambiguity in English” [25]. Coordination am-
biguities are structural in that alternative readings result
from the different ways that sequences of words can be
grammatically structured. They represent only a small pro-
portion of the ambiguity that occurs in texts, but they pro-
vide a useful demonstration of how to distinguish nocuous
from innocuous ambiguities. For instance, the requirement:

Patients’ conditions are inspected and recorded automatically

contains a coordination ambiguity which is nocuous: auto-
matically could just as easily apply to both inspected and
recorded as to just recorded, and a misunderstanding might
result. Our techniques are transferable to other ambiguities.

Previous work on ambiguity in the requirements engi-
neering literature, e.g. [16] [4] [17] [26] [9], has tended
to focus on ambiguities that the authors have experienced
as being a problem for requirements engineers. This is un-
derstandable, but it relies too greatly on the experience and
wisdom of the authors concerned. The potential dangers
of some specific types of ambiguity are not rigorously ex-
plored, and these may cause more frequent and unexpected
misinterpretations than any one author can anticipate. Fur-
thermore, previous research in RE has not fully explored
the differentiations between nocuous and innocuous ambi-
guity and between acknowledged and unacknowledged am-
biguity. The contribution of this paper is to address these
issues in requirements documents, using coordination am-
biguities as test data, by developing and adapting techniques
from natural language processing (NLP). The paper there-
fore bridges the two disciplines of RE and NLP.

Our approach is to gather a set of actual requirements
containing ambiguous coordinations from a corpus of re-
quirements documents. Then we determine how nocuous
these ambiguities are by making surveys of human judge-
ments on them. We then use heuristics to automatically pre-
dict these human judgements; we combine these heuristics
with aim of maintaining good precision but increasing re-
call. We utilise a cross-validation technique, whereby all
data is used for both training and testing, to avoid obtaining
unrealistically optimistic results for our data.

This paper is structured as follows. In Section 2 we pro-
vide some background for our research, including a discus-
sion of inspection techniques, which bear some similarity
to our approach. In Section 3 we describe our treatment of
ambiguity in requirements, and introduce the ambiguity we
use as out test case. We describe how we create our dataset
in Section 4. In Section 5 we present the heuristics we have
developed to predict innocuous ambiguity, and in Section 6
we describe how we combine these. We discuss some pos-
sible threats to the validity of our approach in Section 7.
Sections 8 and 9 conclude the paper and present proposals
for future work. All the examples we use are from our cor-
pus of requirements documents.

2 Background

Ambiguity can be avoided in requirements by using
techniques such as controlled languages [10] [1], style
guides [20] [29], and references such as lexicons. Alterna-
tively, ambiguity is detected in requirements by using tech-
niques such as inspections, fit criteria, and test cases [16].
However, Kamsties observes that fit criteria and test cases
generally only reduce vagueness and generality, and that
requirements authors can be reluctant to use controlled lan-
guages and style guides [16]. (Generality and vagueness
are similar to ambiguity, but cause misunderstandings due

to lack of specificity rather than to widely differing mean-
ings.) Those who call for the use of lexicons of domain-
specific terminology, e.g. [15], generally expect them to be
of limited size. But to be useful for addressing ambiguity,
they should contain phrases (and in our case coordinations)
that are common in requirements, and would be enormous
even for a narrowly defined domain. Constructing and using
such documents would be a highly unwelcome task.

Inspection techniques are known to be effective and ef-
ficient at reducing errors in requirements documents [31].
Inspection techniques have often been used to detect incon-
sistency and incompleteness in requirements, e.g. [36] [23],
but not so often to detect ambiguities. Some that do address
ambiguity use sets of heuristics or checklists [27] [11] [9],
but tend to be rather wordy and time-consuming techniques:
we hope to offer requirements engineers a quicker solu-
tion. Kamsties et al. observed that most inspection tech-
nique approaches which do consider ambiguity merely ask
the question “is the requirement ambiguous?” [17]. This
is true even for well-developed scenario-based approaches
[23] [31]. This question will bring ambiguity to the read-
ers’ attention, but may not make them aware of the extent
to which misinterpretation might occur.

Kamsties et al. present a study that investigates ambi-
guity in RE documents more thoroughly using inspections
[17]. They report that inspection techniques can be more
successful than using more formal methods. However, as
with the aforementioned researchers, they are solely con-
cerned with detecting ambiguities, and not with determin-
ing whether or not they need to be addressed, so their work
is not directly comparable to our own. Also, they do not
deal explicitly with structural ambiguities like coordina-
tion ambiguity. Sawyer et al. cite coordinations as a clear
cause of potential ambiguity in RE documents [30], but to
our knowledge these have not until now been subjected to
systematic analysis by RE researchers. (Other fields have
recognised the threat: in the legal sector murder cases have
hinged upon the interpretation of coordinations [32].)

3 The Ambiguity Problem

Here we discuss our approach to the problem of ambigu-
ity in text, but first we introduce the type of ambiguity that
we use as our test case.

Coordination ambiguity can occur whenever a coordi-
nating conjunction is used. In this paper we consider the
central coordinating conjunctions [24] and, or, and and/or.
These are widespread, and give ambiguity that is consistent
enough to be used as our test case [24]. In the requirement:

Display categorized instructions and documentation,

it is unclear what is categorised. This is due to uncertainty
about the order in which the meanings of the words are

processed. If the coordination of instructions and documen-
tation takes place before the effect of the external modifier
categorized is considered, then both the instructions and the
documentation are categorized. We call this a coordination-
first reading. If the effect of the external modifier is con-
sidered before the coordination takes place, then only the
instructions are categorised — a coordination-last reading.
The uncertainty about which reading is intended will affect
what type of display is implemented as a result of this re-
quirement. We only include coordinations of this type, with
one modifier and two coordinated phrases, in our dataset.

3.1 Nocuous and Innocuous Ambiguity

Ambiguity is often not a problem for humans: we are ca-
pable of using our knowledge of the world, and the context
supplied by the words surrounding an ambiguity, to disam-
biguate that ambiguity. For instance, in the requirement:

It is describing the size of vector-based inputs and outputs,

a coordination-first reading in this context is by far the most
likely, with vector-based applying to both inputs and out-
puts. This is largely because we guess that inputs and out-
puts have similar characteristics. We say that such ambigui-
ties have a single reading, as they are generally only read in
one way, and are therefore innocuous ambiguities. Innocu-
ous ambiguities will probably not lead to misunderstand-
ings, and can therefore be left in text. Coordination ambi-
guities that are generally read as either coordination-first or
coordination-last are innocuous ambiguities.

We say that ambiguities which people read in different
ways have multiple readings, and are nocuous ambiguities.
The sentence given in the introduction is an example of
the multiple reading situation: both coordination-first and
coordination-last readings are likely. An important aspect
of nocuousness which we must now determine is whether
people acknowledge that multiple readings are possible.

3.2 Acknowledged and Unacknowledged
Ambiguity

Nocuous ambiguity can take two forms in our analysis.
We call an ambiguity that readers realise is present in the
text an acknowledged ambiguity. For instance, the phrase:

Communication and performance requirements,

might be recognised as being ambiguous. It is unclear
whether the requirements are of both performance and com-
munication types, or just the performance type. This could
lead to a misunderstanding if, for instance, the phrase was
used as a job briefing. But, if at least one stakeholder spots
the ambiguity, they can discuss what the most likely mean-
ing is or contact the author to elicit the intended meaning.

Figure 1. Multi-tier ambiguity representation

The ambiguous phrase can then be rewritten in a less am-
biguous form, and incorrect implementation can be averted.

However, two or more readers can interpret a require-
ment differently, yet assume that their own interpretation is
the only obvious one [3]. We call this phenomenon unac-
knowledged ambiguity. For instance, in the requirement:

The user may define architectural components and connectors,

some might consider that architectural applies to both com-
ponents and connectors, others that it only applies to com-
ponents. If there are many types of components and con-
nectors, this unacknowledged ambiguity may have conse-
quences when the requirements are implemented. There is
a risk that none of the stakeholders will acknowledge that
this sentence contains a potentially misleading coordination
ambiguity, and yet they have different readings of it. Then
they will not clarify the meaning of the text, the text will not
get re-written, and an incorrect implementation may occur.

Unacknowledged ambiguity is the same as unrecognised
disambiguation: one of Gause’s five most important sources
of requirements failure [4]. The problem increases when
stakeholders have different language abilities [4], e.g. at
least one is not a native speaker of the language used. The
RE community recognises the danger of unacknowledged
ambiguity [17] [16], and that errors resulting from uncon-
scious misunderstandings are surprisingly common [2].

Both acknowledged and unacknowledged ambiguities
are nocuous because multiple readings are possible. It is
important to capture acknowledged as well as unacknowl-
edged ambiguities, as the former easily become the latter
for any stakeholder who is prone to make minority interpre-
tations. An ambiguity can be both acknowledged and unac-
knowledged in our approach, as these evaluations are made
separately. The relationships between the ambiguity char-
acterisations we have introduced is shown in Figure 1 —
single and multiple structures are discussed in Section 4.1.

3.3 Notification not Disambiguation

Resolving ambiguities has never met with complete suc-
cess, as it is difficult to supply computers with all the knowl-

edge necessary. Our approach is therefore to notify users
of dangerous ambiguities, leaving them to perform disam-
biguation themselves. This uses the proficiency of comput-
ers at finding the ambiguities automatically, and the skill of
requirements engineers’ at deciding how to deal with them.

4 Creating The Dataset

We obtain our data by locating sentences containing co-
ordinations in a corpus of requirements documents, and
then evaluating their ambiguous. Ambiguity is subjective
— a product of the meanings that people assign to language
[34] — so rather than using absolute criteria we use human
judges to determine ambiguity. We use many judges, rather
than relying upon one person’s opinion: this is known to be
very effective (albeit expensive) for tasks such as ours [4].

4.1 Obtaining Suitable Requirements

We have built a corpus of requirements documents, ob-
tained from colleagues and from the public domain. These
documents specify systems from disparate domains, such as
mechanical engineering, human computer interaction and
telecommunications. In this corpus we identify sentences
— including titles, bullet points, etc — that contain co-
ordinations. We eliminate sentences containing coordina-
tions having only one syntactic interpretation, i.e. which
exhibit single structure rather than multiple structure, as
shown in Figure 1. This accounts for a large majority of
the sentences. Common reasons that a coordination has sin-
gle structure are: it conjoins two sentences, no modifier is
present, or the second coordinated phrase begins with an
article. A full explanation of the criteria we use for identi-
fying single structure coordinations is found in [8]. We have
developed specialised chunking software to assist with the
task of identifying the coordinations that interest us. This
does not yet give highly precise results, but can be used to
reliably recall all the coordinations we require along with
others that must then be weeded out by hand.

For this study, we located 639 sentences containing
multiple structure coordination ambiguity with and, or or
and/or in our RE corpus — just over a quarter of the
sentences there. We include sentences in our surveys re-
gardless of how obviously preferable one particular read-
ing may be: such a lack of discrimination is necessary
in order to create realistic data for training and testing.
Sentences containing two or more coordination ambigui-
ties are split into separate sentences. After this process,
we had 138 sentences for this study, each containing a
single multiple structure coordination ambiguity. Each
sentence can be considered to represent a requirement.
The sentences we use in this study, and the raw cor-
pus data from which they are derived, can be viewed at
http://mcs.open.ac.uk/fjc44/Research/Data.htm

Table 1. Computing whether or not a sen-
tence contains a nocuous ambiguity

For sentences (1 . . . i . . . n)

CFi = No. of Coordination First Judgements on Sentence i

CLi = No. of Coordination Last Judgements on Sentence i

QUAi = Quotient Unacknowledged Ambiguity for Sentence i

= min(CFi , CLi)
(CFi + CLi)

Ai = No. of Ambiguous Judgements on Sentence i

AAi: Sentence i is Judged an Acknowledged Ambiguity

IFF (Ai ≥ CFi) AND (Ai ≥ CLi)

UAi: Sentence i is Judged an Unacknowledged Ambiguity

IFF
(

QUAi >

∑
n

i=1
QUAi

n

)

Sentence i is Judged a Nocuous Ambiguity IFF AAi OR UAi

4.2 Obtaining Judgements

The 138 requirements obtained from our corpus were
shown to 17 judges in 4 separate surveys. Our judges are a
group of computing professionals, comprising developers,
academics and research students. They were asked to judge
whether each coordination was to be read coordination-first,
coordination-last, or if it was “ambiguous so that it might
lead to misunderstanding”. The 138 requirements, together
with the judgements on them, form our dataset.

We now determine whether each requirement contains
nocuous or innocuous ambiguity. We use a method that
weights unacknowledged ambiguity as being more impor-
tant than acknowledged ambiguity, as the former is more
immediately dangerous. We say that a requirement contains
an acknowledged coordination ambiguity if that ambiguity
is judged to be ambiguous at least as often as it is judged
to be coordination-first and at least as often as it is judged
to be coordination-last. We say that a requirement contains
an unacknowledged coordination ambiguity if it contains an
above average percentage unacknowledged ambiguity. An
ambiguity is nocuous if it is either an acknowledged ambi-
guity or an unacknowledged ambiguity, and it is innocuous
if it is neither. This is detailed formally in Table 1.

This dividing line between nocuous and innocuous am-
biguity is not the only one that can be used. For highly
safety-critical applications one could classify as innocuous
only those coordinations judged overwhelmingly to be ei-
ther coordination-first or coordination-last. Or, with less
critical applications, and when stakeholders have reliable
language skills, one might allow more ambiguous coordi-
nations to be considered innocuous. This flexibility of clas-
sification can be achieved using ambiguity thresholds [7].

5 Heuristics

Here we describe the individual heuristics we use to pre-
dict innocuous ambiguity. We then describe how we com-
bine them, aiming for coverage which is the union of their
individual coverages while maintaining good precision.

True positives in this study occur when our heuristics
correctly predict that requirements contain innocuous coor-
dination ambiguities. We use measures of precision and re-
call to evaluate how successful our heuristics are at achiev-
ing true positives and avoiding false results, and we use f-
measure [33] to combine precision and recall.

Precision =
No. of True Positives

No. of Positive (Innocuous) Results by Heuristic

Recall =
No. of True Positives

No. of Requirements Judged Innocuous in Surveys

F−Measure =
(1 + β) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall

Precision is much more important to us than recall: we
wish our heuristics to indicate reliably how coordinations
should be read. We therefore use a weighting of β = 0.25
for our f-measure, strongly in favour of precision; our aim
is to maximise this score for the combined heuristics. For
each heuristic we choose a cut-off point that maximises that
heuristic’s contribution to the performance of the combined
heuristics. The cut-off, which is found experimentally for
each heuristic, is a figure at or below (or above) which a
heuristic’s results are deemed to be positive.

We employ 10-fold cross validation, which ensures that
statistics for a small set of data are not biased [35]. It avoids
overfitting, whereby results are maximised unrealistically
for a particular set of data. Our dataset is first randomly
sorted, and then split into ten equal parts. Nine of the parts
are concatenated and used for training to find the optimal
cut-off for each heuristic. The combined heuristics are then
run on the held-out tenth part using those cut-offs. This pro-
cedure is carried out iteratively with a different held-out part
each time and different cut-offs proving to be optimal. The
performances on all the held-out parts are then averaged to
give figures for the combined heuristics.

Most of the heuristics we consider use the intuition that
some form of similarity between the coordinated phrases
will indicate preference for a coordination-first reading.
Three out of four of our successful heuristics use word dis-
tribution information generated by Sketch Engine [19] op-
erating on the British National Corpus (BNC). Sketch En-
gine is an advanced statistical tool supplying information
about word distribution, word similarity and word differ-
ences. The BNC is a modern corpus containing over 100
million words of English. It is collated from a variety of
sources, including some from the same domains as the doc-
uments in our corpus. Other researchers have shown that

utilising statistical NLP techniques in RE support tools is
now a promising area of research [30].

Our system is partially automated. The collection of data
from Sketch Engine is by hand, though we are working on
creation of an automated collection process. Both the cal-
culation of performance statistics for all the heuristics and
the cross-validation exercise are achieved computationally.

The graphs in the following subsections are included to
indicate the individual heuristics’ performance at various
cut-offs. Their performance in these graphs is generally
higher than it is when used in the final evaluation because
they have not been subjected to cross-validation: there, vari-
ables optimised on training data get applied non-optimally
to the test data. Precision baselines are shown on all the
graphs to indicate how much better the heuristics’ perfor-
mance is than pure chance. (The f-measure baselines are
omitted as these are very close to the precision baselines.)

5.1 Coordination-Matching Heuristic

One approach to finding the most likely reading of a
coordination is to find out if that coordination occurs fre-
quently in the language. We hypothesise that if a coordina-
tion in our dataset is found frequently in a generic corpus,
then it is commonly a syntactic unit and a coordination-first
reading is the most likely.

We search the BNC for each coordination in our dataset
using the word sketch facility in the Sketch Engine, which
generates lists of words that are conjoined with and or or.
For each coordination, we input one of the two head words
and Sketch Engine returns a list of words that it is coordi-
nated with in the BNC. The ranking of the other head word
in this list is noted. (A head word is the main word of a
phrase: the other words in that phrase modify it.) The same
procedure must then be performed with the other head word
of the coordination, as the difference in overall frequency
of the two words can give different rankings. We use as our
metric the higher of the two rankings that we have noted.

For the requirement from our dataset:

Security and Privacy Requirements,

Privacy is ranked 19th for Security, and Security is ranked
8th for Privacy, so 8 is the result of the heuristic on this
coordination. Of the 17 survey judges, 4 judged this ambi-
guity to be ambiguous, 12 judged it to be coordination-first
and 1 judged it to be coordination-last. As the number of
ambiguous judgements is not larger than the numbers of ei-
ther of the other two types of judgement, this coordination
is not an acknowledged ambiguity. The percentage unac-
knowledged ambiguity is 1/13 = 7.7%, which is below the
average unacknowledged ambiguity (which is 15.3%), so it
is not an unacknowledged ambiguity. Neither of the criteria
for being nocuous are fulfilled, so this ambiguity is innocu-
ous. For this requirement, this heuristic gives a true positive

Figure 2. Coordination-matches heuristic

result for all cut-offs of 8 or greater.
The results that we obtain, using different ranking cut-

offs in multiples of 5, are shown in Figure 2. Precision
in excess of 21 percentage points above the baseline and
40% recall can be achieved indicating that, even on its own,
this heuristic is a useful predictor of innocuous ambiguity.
When determining the optimum cut-off for the combined
heuristics, we find that the f-measure is optimised when a
maximum of 25 matches is used for 7 of the iterations and
a maximum of 20 matches is used for the other 3.

5.2 Distributional-Similarity Heuristic

The distributional similarity of two words is a measure
of how often those words are found in the same contexts.
Distributional similarity is not a measure of the meaning of
words: for instance, good and bad have strong distributional
similarity even though their meanings are opposite. Our hy-
pothesis for this heuristic, suggested by Kilgarriff [18], is
that strong distributional similarity between the head words
of coordinated phrases indicates that those phrases form a
syntactic unit, indicating a coordination-first reading.

To find the distributional similarity between two head
words, we look one of them up in the Sketch Engine’s dis-
tributional thesaurus, and note the ranking of the other head
word in the list of matches that is returned. As with the
coordination-matching heuristic, we perform this procedure
for each head word of a coordination, using the higher of the
two rankings as our metric. In the requirement:

Definition of electrical characteristics and interfaces

no matches between characteristic and interface are found in
the thesaurus, and so the heuristic always yields a negative
result. Of the 17 survey judges, 9 judged this coordination
to be ambiguous, 4 judged it to be coordination-first and 4
judged it to be coordination-last. This means that it is an
acknowledged ambiguity. The unacknowledged ambiguity
is 4/4 = 100%, so it is also an unacknowledged ambiguity.
On both counts this ambiguity is nocuous, and this heuristic
will always give a true negative result on this requirement.

Our distributional similarity results are shown in Fig-
ure 3. Experimentation has shown us that the predictive

Figure 3. Distributional-similarity heuristic

power of distributional similarity decreases in a log-linear
manner the more matches are considered, so we choose cut-
offs accordingly. As can be seen, precision in excess of
20 percentage points above the baseline can be achieved,
though recall at this level reaches only 20%. We find that
the f-measure is always optimised for the combined heuris-
tics with a maximum of 10 matches, so this is the cut-off we
use for all the iterations in the cross-validation exercise.

5.3 Collocation-Frequency Heuristic

This heuristic differs from the previous two in that it pre-
dicts coordination-last readings. Here we find out if com-
binations of the coordinated phrases and modifiers in our
dataset are common in the language. We hypothesise that if
a modifier is collocated in a corpus much more frequently
with the coordinated head word that it is nearest to than it is
collocated with the further head word, then it is more likely
to form a syntactic unit with only the nearest head word. A
coordination-last reading is therefore the most likely.

We find the frequencies in the BNC with which the mod-
ifier in each sentence is collocated with the head words of
the coordination. Sketch Engine provides lists for most re-
lationships that a word can have with a modifier. We use
as our metric the ratio of the collocation frequency with the
nearest head word over the collocation frequency with the
further head word, with cut-offs set at integer values.

For the requirement from our dataset:

Project manager and designer,

Project has a collocation frequency of 29.55 with manager
in the BNC, but it has no collocations there with designer.
So the heuristic always yields a positive result for this re-
quirement. 5 survey judges acknowledged this coordination
as being ambiguous, 4 judged it to be coordination-first and
8 judged it to be coordination-last. It is not therefore an
acknowledged ambiguity. As 4/8 = 50%, which is greater
than the average unacknowledged ambiguity, this coordina-
tion is however an unacknowledged ambiguity. The heuris-
tic therefore always gives a false positive result.

One aspect of our definition of innocuous ambiguity can

Figure 4. Collocation-frequency heuristic

usefully be pointed out here. This is the possibility that a
heuristic correctly predicts that an ambiguity is innocuous,
but for the wrong reason. For the requirement:

Research and Development Management Information System,

System has a collocation frequency of 14.06 with Devel-
opment and a collocation frequency of 1.96 with Research.
14.06/1.96 = 7.2, and so the heuristic yields a positive result
for this requirement below a cut-off of 8. 4 survey judges
judged this coordination to be ambiguous, 12 judged it to be
coordination-first, nobody judged it to be coordination-last
and 1 judge left no response. It is not therefore an acknowl-
edged ambiguity. Also, as 0/12 = 0, it is not an unacknowl-
edged ambiguity. On this sentence, the heuristic therefore
tends to yield a true positive result but for the wrong reason:
it thinks it is innocuous because it is coordination-last, but
it is innocuous because it is coordination-first.

The results we obtain, using different collocation fre-
quency ratios, are shown in Figure 4. Precision of 6.5 per-
centage points above the baseline can be achieved, with
recall of 18.7%. This performance is modest, but as
this heuristic is the only one that successfully predicts
coordination-last readings, it is a vital contribution to our
combined heuristics’ predictive power. When determining
the optimum cut-offs for the combined heuristics, we find
that the f-measure is always optimised when 4 is the maxi-
mum ratio, so this is the cut-off that we use for all the itera-
tions of the cross-validation exercise.

5.4 Morphology Heuristic

This heuristic attempts to capture aspects of the coordi-
nated phrases’ morphology in order to predict coordination-
first readings. It does not require word distribution informa-
tion or any other external source of data. The inflectional
morphology of a language is the analysis of the changing
of words to signify their tense, number, gender etc: in Eng-
lish it consists largely of suffixes such as -ed to indicate past
tense, -ing to indicate progressive action, and -s to indicate
plurals. The derivational morphology of English is more
complex but suffixes, such as -ation and -able, are also very
common. We hypothesise that, if the trailing characters of

Figure 5. Morphology heuristic

the headwords of the coordinated phrases match, then the
words are likely to be of similar types. They would there-
fore more naturally form a syntactic unit, resulting in pref-
erence for a coordination-first interpretation.

To test our hypothesis, we try to match equal numbers of
trailing characters from the head words, using the number
of characters as our cut-offs. We consider a minimum of
one character, capturing most plurals but also a lot of noise,
and a maximum of 6 letters, since capturing morphology
becomes vanishingly small with consideration of more than
a few letters. For the requirement:

It cannot function with the proper installation and configuration,

the trailing characters of installation match those of config-
uration up to a maximum of 5, so the heuristic gives a pos-
itive result for this coordination up to a cut-off of 5. 2 sur-
vey judges judged this coordination to be ambiguous, 13
judged it to be coordination-first, nobody judged it to be
coordination-last and 2 people entered no response. It is
not an acknowledged ambiguity, and as 0/13 = 0 it is not
an unacknowledged ambiguity, so the heuristic yields a true
positive result on this sentence for all cut-offs up to 5.

The results that we obtain, using different ratios, are
shown in Figure 5. Maximum precision is achieved at a cut-
off of 5, where it is more than 45 percentage points above
the baseline, although recall is only 2.7% here. This shows
that this heuristic has only a limited contribution to make to
the predictive power of our combined heuristics, but it is a
very reliable one. In experimentation to determine the opti-
mum cut-offs for the combined heuristics, we find that the
f-measure is optimised when 5 is the cut-off for 9 of the it-
erations in the cross validation exercise, and 3 is the cut-off
for the remaining one.

5.5 Other Heuristics Considered

We experimented using heuristics based on the lengths of
the coordinated phrases and based on the number agreement
of coordinated nouns. The hypothesis was that disparities in
either of these two factors would suggest a lack of similar-
ity, and a coordination-first reading would therefore be less
likely. We also tested a simple metric of semantic similarity,

Table 2. Performance of our heuristics

Heuristic Recall Precis- Precision Percentage F-Measure F-Measure Percentage
(CV = cross-validation exercise) (%) ion (%) Points above Baseline β = 0.25 (%) Points above Baseline
(Baselines) 100 54.3 - 55.8 -
Coordination-Matches 40.0 75.0 20.7 71.3 15.5
Distributional-Similarity 20.0 75.0 20.7 64.6 8.8
Collocation-Frequency 18.7 60.9 6.6 53.7 -2.1
Morphology 2.7 100 45.7 31.8 -24.0
Heuristics combined (pre CV) 58.7 71.0 16.7 70.1 14.3
Heuristics combined (post CV) 56.3 62.2 7.9 61.6 5.8

based on the closeness of coordinated head words in hier-
archies of hypernyms. However, these heuristics demon-
strated only very weak predictive power. Whether the mod-
ifying phrase appears before or after a coordination appears
to have very little bearing on the preferred reading of a co-
ordination. Also, the part of speech of the coordinated head
words and the part of speech of the modifier also have no
predictive effect for our dataset.

6 Combined Heuristics

Working on research in some ways parallel to ours, Natt
och Dag et al. advocate aggregating disparate similarity cal-
culation techniques in order to improve performance [22].
We combine our heuristics using disjunction: the combined
heuristics are considered to give a positive result if any
one of the individual heuristics gives a positive result. Ta-
ble 2 presents the results of the heuristics combined both be-
fore and after the cross-validation exercise. Combining the
heuristics using logistic regression [21], a technique much
used in medicine to determine the predictive accuracy of
diagnostics, gives us very similar results. The individual
heuristics’ results are also presented in Table 2, without
having been subject to cross-validation, at the cut-off most
commonly used for them.

As can be seen, all our individual heuristics have much
higher precision than the baseline. The precision baseline is
calculated simply by assuming that all the coordinations are
innocuous. As this is an assumption that we in no way want
to make, because it would allow many nocuous ambigui-
ties to pass unnoticed, it is appropriate that the precision of
the individual heuristics is high at the expense of low recall.
Combining the heuristics increases the recall considerably,
indicating that their coverage of innocuous ambiguities is to
some extent complementary. However, the precision of the
combined heuristics is less than the precision of most of the
heuristics. This indicates that the intersection of the cov-
erages of the individual heuristics tends to occur when true
positives are achieved. This decreases the contribution of
these true positives to the combined heuristics’ prediction.

When applying the 10-fold cross-validation exercise to
the data, and adjusting the cut-offs to maximise the f-
measure for the combined heuristics, our performance drops
markedly. This is because the cross-validation exercise is
using non-optimal cut-offs for its calculations on the test
data. However, we still achieve 7.9 percentage points pre-
cision over the baseline, and with a much higher recall than
any of the individual heuristics.

7 Threats to Validity

Here we discuss some ideas which might invalidate our
belief that our approach is suitable for tackling ambiguity in
RE documents.

Context can have a major disambiguating influence. Al-
though easily appreciated by humans, it is notoriously diffi-
cult for computers to capture and interpret the large amounts
of contextual data necessary for interpreting ambiguities.
Also, our judges cannot afford to spend much time on the
task, so we do not show them any context beyond each sen-
tence containing a coordination. The requirements in our
dataset may therefore have been judged to be more ambigu-
ous than they actually are. However, some of the texts from
which they are taken present real coordination ambiguities
even when context is considered. Perhaps the best example
we have, though it is a complex one, is:

Benefits associated with the use of XXX include improved design
quality and decreased construction and operations cost and time

where the coordination ambiguity becomes compounded
and many different structures and readings are possible.

Our approach might be invalidated by using other more
established techniques to solve the problem effectively.
However, many of these fall into the category of techniques
which requirements engineers are reluctant to use, as dis-
cussed in Section 2. Good training in RE practice and termi-
nology would make stakeholders better informed, and of the
same mind, when writing and interpreting RE documents.
Proficiency of all stakeholders in the language used would
prevent some nocuous ambiguity: some of the documents

we collected are written in surprisingly poor English.
Using specific RE corpora, or large corpora of comput-

ing documents, might improve the heuristics’ performance,
but we are not aware of suitable corpora of these types.

The idea that “an ambiguity detection technique needs to
be tailored to an RE context in order to be most effective”
[17] contains some truth, but it mainly applies to domain-
specific ambiguities and not to the type that we consider.

8 Conclusions

Our results show that our heuristics correctly identify a
considerable percentage of requirements which are judged
to contain innocuous coordination ambiguity. Require-
ments engineers then have the simplified task of understand-
ing the remaining nocuous ambiguities and rewriting them
in a less ambiguous form. We would still prefer the pre-
cision of our combined heuristics to be higher, possibly at
the expense of recall: judging nocuous ambiguities to be in-
nocuous is dangerous, whereas including some innocuous
ambiguities with the nocuous ones is merely time wasting.

From the performance of our coordination-matches
heuristic we conclude that a surprising number of coordi-
nations found in specialised requirements documents are
also found in a generic corpus. From the performances
of our distribution-similarity heuristic and our collocation-
frequency heuristic we conclude that a large number of
words that are found together in other relationships in those
documents are also found to have distributional relation-
ships in a generic corpus. This encourages us to believe that
the types of data that we attempt to match are appropriate,
and that in the absence of more domain-specific corpora a
large generic corpus can be very effective.

The precision of our morphology heuristic indicates that
matching the morphology of the head words of a coordina-
tion is a very accurate way of predicting some coordination-
first readings. This may be particularly true in RE as many
words are technical, and such words are often developed
from their base forms using the same linguistic processes.
For instance, the coordinated words installation and config-
uration, introduced previously, both describe the resultant
state of processes. It might be expected that such words
with similar functions are likely to form a syntactic unit in
a coordination, and their morphology reflects this.

The performance of the combined heuristics shows that
recall can be greatly improved at only a small loss of pre-
cision. However, there is scope for improvement. The re-
sults after implementation of the cross-validation exercise
demonstrate the danger of overfitting the data, and the re-
sults are penalised because of this. We feel sure that using
a larger number of sentences would improve our combined
heuristics’ performance by limiting this effect.

We have shown that, even for a relatively small corpus

and for a single type of linguistic construction, a substantial
amount of nocuous ambiguity can be found in requirements:
using the evaluation method presented here, we find it in
2.6% of the sentences in our corpus. We also find that peo-
ple’s judgements can vary quite widely, demonstrated by the
average unacknowledged ambiguity of 15.3% over all the
sentences in our dataset. This represents a large potential
problem, especially as some sentences have an unacknowl-
edged ambiguity that is much higher than this average.

9 Future Work

Two new heuristics in particular may offer us increased
performance. The technical terminology found in require-
ments documents appears to have high morphological com-
plexity, so to exploit this further we are developing a heuris-
tic that we hope will have increased recall by using greater
intelligence about the morphology it is capturing. Secondly,
we are evaluating the effectiveness of hybrid heuristics that
combine the complementary qualities of semantic similarity
and distributional similarity.

We believe our technique is scalable: our model of am-
biguity and use of large corpora would be just as effective
when applied to large volumes of requirements documents
as it is when applied to smaller datasets. Also, we intend
our approach to be extensible so that it can deal with other
types of ambiguity. The most obvious types to address next
are prepositional phrase attachment and noun compound-
ing: these are common, and tractable using the Sketch En-
gine and the BNC. As the nocuous/innocuous distinction
can be applied to all ambiguities, we also propose using it
to address other types known to be particularly problem-
atic in requirements, for instance quantifiers and negations
[4]. Our ultimate aim is to create a tool for requirements
engineers that acts like a wizard in conjunction with a word
processor, distinguishing between nocuous and innocuous
ambiguities of many different types.

Acknowledgements

The authors would like to thank Alistair Sutcliffe and
the anonymous referees for their helpful feedback on earlier
drafts of this paper.

References

[1] C. B. Achour. Guiding scenario authoring. In G. Grosz,
editor, Proceedings of the 8th European Japanese Confer-
ence on Information Modelling and Knowledge Bases, pages
152–171, 1998.

[2] V. Ambriola and V. Gervasi. Processing natural language re-
quirements. In Proc. of the 12th International Conference on
Automated Software Engineering, pages 36–45, Los Alami-
tos, CA, U.S.A., 1997. IEEE Computer Society Press.

[3] D. Berry and E. Kamsties. The syntactically dangerous all
and plural in specifications. IEEE Software, 22(1):55–57,
Jan/Feb 2005.

[4] D. M. Berry, E. Kamsties, and M. M. Krieger. From con-
tract drafting to software specification: Linguistic sources
of ambiguity, 2003. A Handbook.

[5] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, Englewood Cliffs, NJ, U.S.A., 1981.

[6] S. Boyd, D. Zowghi, and A. Farroukh. Measuring the ex-
pressiveness of a constrained natural language: An empirical
study. In Proceedings of the 13th IEEE International Con-
ference on Requirements Engineering (RE’05), pages 339–
352, Washington, DC, USA, 2005. IEEE Computer Society.

[7] F. Chantree, A. Kilgarriff, A. de Roeck, and A. Willis. Dis-
ambiguating coordinations using word distribution informa-
tion. In Proceedings of Recent Advances in Natural Lan-
guage Processing (RANLP), Borovets, Bulgaria, 2005.

[8] F. Chantree, A. Kilgarriff, A. de Roeck, and A. Willis. Us-
ing a distributional thesaurus to resolve coordination ambi-
guities. Technical Report 2005/02, The Open University,
Milton Keynes, U.K., 2005.

[9] D. P. Freedman and G. M. Weinberg. Handbook of Walk-
throughs, Inspections, and Technical Reviews: Evaluating
Programs, Projects, and Products. Dorset House Publishing
Co., Inc., New York, NY, USA, 2000.

[10] N. Fuchs and R. Schwitter. Attempto controlled english
(ace). In Proceedings of the first international workshop on
controlled language applications, 1996.

[11] D. C. Gause and G. M. Weinberg. Exploring requirements:
quality before design. Dorset House, New York, 1989.

[12] V. Gervasi and B. Nuseibeh. Lightweight validation of nat-
ural language requirements: a case study. In Proceedings
of the 4th IEEE International Conference on Requirements
Engineering. IEEE Computer Society Press, 2000.

[13] V. Gervasi and B. Nuseibeh. Lightweight validation of nat-
ural language requirements. Software Practice and Experi-
ence, 32(2):113–133, 2002.

[14] L. Goldin and D. M. Berry. Abstfinder, a prototype nat-
ural language text abstraction finder for use in requirements
elicitation. Automated Software Engineering, 4(4):375–412,
October 1997.

[15] M. J. Hillelsohn. Better communication through better re-
quirements. Crosstalk: The Journal of Defense Software
Engineering, 17(4), April 2004.

[16] E. Kamsties. Surfacing Ambiguity Natural Language Re-
quirements. PhD thesis, Fraunhofer IESE, Kaiserslautern,
Germany, 2001.

[17] E. Kamsties, D. Berry, and B. Paech. Detecting ambi-
guities in requirements documents using inspections. In
M. Lawford and D. L. Parnas, editors, Proceedings of
the First Workshop on Inspection in Software Engineering
(WISE’01), pages 68–80, 2001.

[18] A. Kilgarriff. Thesauruses for natural language processing.
In Proc. of NLP-KE, pages 5–13, Beijing, China, 2003.

[19] A. Kilgarriff, P. Rychly, P. Smrz, and D. Tugwell. The sketch
engine. In Proc. of EURALEX 2004, pages 105–116, 2004.

[20] B. L. Kovitz. Practical Software Requirements: A Manual
of Content & Style. Manning Publications, Greenwich, CT,
USA, 1999.

[21] N. Landwehr, M. Hall, and E. Frank. Logistic model trees.
In N. Lavrac, D. Gamberger, L. Todorovski, and H. Block-
eel, editors, Proceedings of the 14th European Conference
on Machine Learning, pages 241–252. Springer, 2003.

[22] J. Natt och Dag, B. Regnell, V. Gervasi, and S. Brinkkemper.
A linguistic-engineering approach to large-scale require-
ments management. IEEE Software, 22(1):32–39, Jan/Feb
2005.

[23] A. A. Porter, L. G. Votta, and V. R. Basili. Comparing de-
tection methods for software requirements inspections: A
replicated experiment. IEEE Transactions on Software En-
gineering, 21(6):563–575, June 1995.

[24] R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik. A Com-
prehensive Grammar of the English Language. Longman,
New York, 1985.

[25] P. Resnik. Semantic similarity in a taxonomy: An
information-based measure and its application to problems
of ambiguity in natural language. Journal of Artificial Intel-
ligence Research, 11:95–130, 1999.

[26] H. B. Reubenstein and R. C. Waters. The requirements
apprentice: An initial scenario. In S. Greenspan, editor,
Proceedings of the 5th International Workshop on Software
Specification and Design, pages 211–218, Pittsburgh, PA,
U.S.A., 1989. IEEE Computer Society Press.

[27] C. Rupp. Linguistic methods of requirements engineering
(nlp). In Proceedings of European Software Process Im-
provement (EuroSPI 2000), Copenhagen, Denmark, 2000.

[28] K. Ryan. The role of natural language in requirements engi-
neering”. In In Proceedings of the IEEE Int. Symposium on
Requirements Engineering, pages 240–242. IEEE Computer
Society Press, 1993.

[29] J. Ryser and M. Glinz. Scent - a method employing scenar-
ios to systematically derive test cases for system test. Tech-
nical Report 2000.03, Institut für Informatik, University of
Zurich, Switzerland, 2000.

[30] P. Sawyer, P. Rayson, and K. Cosh. Shallow knowledge as
an aid to deep understanding in early phase requirements
engineering. IEEE Transactions On Software Engineering,
31(11):969–981, 2005.

[31] F. Shull, I. Rus, and V. Basili. How perspective-based read-
ing can improve requirements inspections. IEEE Computer,
33(7), July 2000.

[32] L. M. Solan. The Language of Judges. University of Chicago
Press, Chicago, U.S.A., 1993.

[33] C. J. van Rijsbergen. Information Retrieval. Butterworths,
London, U.K., 1979.

[34] T. Wasow, A. Perfors, and D. Beaver. The puzzle of ambi-
guity. In O. Orgun and P. Sells, editors, Morphology and the
Web of Grammar: Essays in Memory of Steven G. Lapointe.
CSLI Publications, 2003.

[35] S. M. Weiss and C. A. Kulikowski. Computer systems that
learn: classification and prediction methods from statistics,
neural nets, machine learning, and expert systems. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1991.

[36] D. Zowghi, V. Gervasi, and A. McRae. Using default reason-
ing to discover inconsistencies in natural language require-
ments. In Proceedings of the 8th Asia-Pacific Software En-
gineering Conference, Macau, China, 2001.

