
On Modelling Access Policies:
Relating Roles to their Organisational Context

Robert Crook Darrel Ince Bashar Nuseibeh

Department of Computing, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK

Email: {R.P.Crook, D.C.Ince, B.Nuseibeh} @ open.ac.uk

Abstract
The restriction of access is a mechanism by which
organisations protect their information assets.
Requirements models use actor definitions to describe
users and to specify their access policies. Actors normally
represent roles that users adopt, while roles can represent
different things, such as a position in an organisation or
the assignment of a task. Current requirements modelling
approaches do not provide a systematic way of defining
roles for incorporation into access policies. We address
this issue by proposing a framework that facilitates the
derivation of role definitions from their wider
organisational context. We illustrate how our framework
can be used to extend a formal version of i* – to define
and verify access policies definitions – and demonstrate
its applicability via a case study.

1 Introduction
Security incidents can be costly; Nick Leeson’s trading
resulted in losses of over £800 million so causing the
bankruptcy of Barings Bank [7], and John Rusnak
defrauded the Allied Irish Bank of a similar amount in
2002. They both exploited weaknesses in the computer
systems used to the control their trading activities. Thus,
while there is a need to keep outsiders from breaking in,
there is also a need to prevent users with legitimate access
rights not to abuse their privileges. Many organisations
have procedural controls, defined as policies, to prevent
such abuse. The procedures are often enforced by
computer systems, which restrict access. We believe that
early understanding and specification of access policies
are key to effective access control.

Access policies are rules that specify which users can
carry out which actions to enforce principles of
management control [35]. In this paper we focus on access
policies that enforce one of these principles: that of
minimum privileges [2]. This states that users can only
access the functions and resources that they require to
carry out their duties.
Many requirements models represent users as actors or
agents that are assigned to actions. These assignments can
be used to represent access policies [9][10][31]. An actor

definition usually represents a role rather than a specific
person. However, the use of the notion of a role can vary:
from the assignment of a task, as proposed by Yu [47], to
a position within an organisational hierarchy [37].
Existing approaches to modelling requirements are
inadequate for representing complex relationships
between actors in large organisations, such as the lines of
authority, the organisational structure, and the basis by
which work is delegated [39][28]. This can lead to
misunderstandings about the precise meaning of actors,
their roles, and, consequently, their access rights and
privileges. For example, if a doctor is defined as an actor
who can read medical records, then the constraint that a
doctor only has that role with respect to his own patients
cannot generally be represented in existing models.
This missing link between actor definitions and the wider
organisational context is the focus of this paper. A key
contribution is to demonstrate, through a case study of a
large organisation, how access policies satisfying the
minimum privileges principle can be specified precisely,
using an extended version of Formal Tropos [18]. The
paper also shows how such policies can be verified, to
ensure that, when enforced, they only allow users to carry
out the expected activities that fulfil their duties.

The paper is structured as follows. In section 2 we review
the literature on security requirements. In section 3 we
examine the security literature concerned with management
control and access policies. In section 4 we review the i*
framework and a variant known as formal Tropos. In
section 5 we introduce our framework for defining access
policies and show how the framework can be used to
extend formal Tropos with role definitions and specifying
access policies. In section 6 we demonstrate the validity of
our framework by applying it to a case study. The paper
concludes with a discussion and a summary.

2 Modelling of Security Requirements
Security requirements are those requirements concerned
with the protection of valuable assets. They arise from the
top level security objectives such as maintaining
confidentiality, integrity, and availability [8].

To determine security requirements, an important step is
the analysis of threats. Researchers have explored threats
analysis and the evaluation of countermeasures by
extending use cases [40][41][1], by deriving obstacles to
goals [27][24], by bounding the scope of security
problems [29], and by analysing the social context
[46][31]. All these approaches offer systematic
approaches for the identification of possible attacks and
the definition of countermeasures. None however
addresses access policies, which constrain how authority
can be exercised and the freedom by which individuals
can act.

Fontaine [16] proposes how the assignment of actions to
agents maps onto access policies, and presents a formal
systematic approach to defining access policies based on
KAOS [15]. However, his definition of an agent is
ambiguous: it can be a level of authority, a qualification,
or a physical individual.

He and Anton [20] propose a systematic approach to
deriving roles from scenarios for defining restrictions to
satisfy the privacy and security requirements. Their
approach identifies tasks that require access to resources
that are to be protected, and consequent roles. However,
these roles are only derived from tasks, and not the roles
that represent other aspects of the organisational context,
such as position or level of authority.

Liu et al. [31] demonstrate, using the i* framework [47],
how the actor boundary in a Strategic Rationale model
provides a basis for deriving an access control restriction.
An actor boundary encompasses the tasks that an actor
carries out and the resources to which that actor has
access. i* differentiates between agent definitions
(representing physical people) and roles, allowing the
modelling of a user adopting multiple roles. As with the
above approaches however, what a role denotes is not
explicit, so misunderstandings about what a role exactly
means are possible.

3 The Principles of Management Control
and Access Policies

Access policies provide a means to enforce management
controls, controls that may have been in existence long
before computer systems. Control principles include
clearance levels [5], the separation of duties [12], Chinese
walls in the financial services industry [6], supervision
and review [34], accounting principles [2], and minimum
privileges [2]. Access policies are important components
of an overall security policy defined by organisations to
enforce these principles., and which ultimately translate
into access control mechanisms.

Access policies arise from organisational requirements
[45]. The organisational context has been the basis of
policy specification languages such as OASIS [4], ASL

[26] and Ponder [13], all of which have the notion of
roles. The use of roles for defining policies became a
focus of research in the 1990´s on Role-Based access
control (RBAC). Here, a role is a set of permissions, and
can be used to define policies that represent the
assignment of tasks in an organisation [37]. Sandhu et al.
[37] propose that a role inheritance hierarchy can be used
to map onto an organisational hierarchy, whereby senior
roles inherit the permissions of junior roles within the
hierarchy. However, as Moffett observes [34], a manager
does not necessarily inherit the roles of his juniors.
Moffett and Lupu [33] address this problem by proposing
separate hierarchies to capture different aspects of the
organisation, such as functional specialisation using an
inheritance hierarchy, division of tasks using an
aggregation hierarchy, and a supervisory hierarchy to
model the seniority of roles with respect to each other.

Contextual factors associated with roles have also been
examined. Bertino et al. [3] describe how temporal
constraints can be defined for roles, while Georgiadis et
al. [19] combine contextual information with team-based
access control. Team-based roles [44] are useful for
collaborative working environments, where users are
assigned to teams and get access to the team’s resources.

Researchers have also explored techniques for deriving
roles. Role Engineering, as outlined by Coyne [11], is a
systematic process of identifying the activities of a single
user and defining this as a role. Fernandez and Hawkins
[17] propose deriving roles from use case actor definitions
and Neuman and Strembeck [36] propose deriving roles
from scenarios of the work-process. This is a bottom up
approach to deriving roles from tasks and largely ignores
the wider organisational context.

Research into organisational structures also gives insights
into the way in which groups are formed. The
organisational structure, which is fundamental to
management control, includes the allocation of formal
responsibilities to interrelated groups and roles. The two
key dimensions are lines of authority, referred to as
vertical differentiation, and division of work, referred to as
horizontal differentiation [21]. Mintzberg [32] describes
two fundamental characteristics by which horizontal
differentiation is achieved: functional and market
characteristics. Functional characteristics include the
division of work on the basis of function, qualification,
and work process. Market characteristics include
organisational division based on customers, service,
product, location, or time; functions are replicated but the
market for which the organisational division or unit is
responsible differs. In large organisations, several of these
characteristics are often used. The National Health Service
in the UK, for example, is divided into regional health
authorities that, in turn, are composed of hospitals to serve
the different population centres, so that the authority and

the hospitals are organised on a geographical basis. A
hospital, however, is organised on a functional basis.
Similarly, retail banks have autonomous branches
dispersed to serve local markets, with an identical
functional structure in each branch.

The mid 1990’s saw requirements engineering (RE)
research relating goals to organisational context. For
example, ORDIT [14] focused on the delegation of
responsibilities to agencies, rather than the structural
organisational relationships. In contrast, the teleological
approach of Loucopoulos and Kavakli [28] focused on
deriving goals from the organisational activities, but did
not clarify the lines of authority and delegation. However,
with the exception of i* described in the next section,
other RE approaches have largely ignored the
organisational context.

4 The i* Framework and Formal Tropos
We focus on extending the i* framework because of its
relevant focus on the intentions of actors in a social
context. The organisational context is closely related to
the social context, in that an organisation is a group of
individuals that relate to one another. In modelling the
social context, i* goes further than other approaches in
modelling relationships between actors.

Liu et al. [31] propose the use of i* Strategic Rationale
(SR) models for defining policies, and suggest using the
actor boundary on which to base a policy. From this, a
constraint can be defined in an RBAC access control
system, such that the role is derived from the actor
definition and the permissions are derived from the tasks
within the boundary. An example SR model that illustrates
this is shown in Figure1. The actor in the diagram is a
Family Doctor. The goal of this actor is to provide a
regular clinical service. In order to achieve this goal, the
actor needs to open new medical records. Open new
medical record is therefore defined as a task dependency
of the goal, and a means-end link relates this task to the
resource medical record. Family Doctor is defined as an
agent, which is a type of actor. Liu et al. also give an
example of an instantiation of this SR diagram, where an
instantiation of an agent Dr. Jones can access the medical
record of Mr. Smith. Resources within an actor boundary
that represents an instantiation, are also themselves
instantiations. The medical record of Mr. Smith is an
instantiation of medical record. This provides a useful
means of verifying a policy. In effect, this instantiation is
a scenario, and since stakeholders can relate more easily
to scenarios then abstract definitions, scenarios can be
used to elicit and validate requirements [22].

An actor in i* can be an agent, role, or position. An agent
is a physical entity such as a human, a role is an abstract
actor that can be adopted by a physical agent (such as

conducting a task), and a position represents a set of roles
that can be assigned to an agent.

Formal Tropos [18] formalises i* in order to allow model
checking of its descriptions. Formal Tropos describes the
relevant objects of the modelled domain and has two
layers. The outer layer models the classes, which can be
an actor, a dependency, or an entity. Entities do not exist
in i* and are used to represent elements that do not appear
in the model as they are not directly related to actors’
strategic goals. Attributes in the class definitions represent
relationships between classes. The inner layer of the
formal Tropos language is a first order predicate language
with temporal constraints. In formal Tropos, an example
of an actor assigned to a goal is as follows, taken from the
SR diagram in figure 1:
Actor Family Doctor
 Goal Provide Regular Clinical Service
 Mode Achieve

Family
Doctor

 Provide Regular

Clinical Service

 Open a New

Medical Record

Medical
Record

Figure 1: Strategic Rationale Diagram

Any tasks or resources related to the goal can be
represented within a fulfilment condition, using the first
order predicate language. Instantiation and verification is
achieved by translating the model into an intermediate
language, which is then interpreted by the model checking
tool NuSMV to automatically instantiate objects and
ensure model constraints are enforced. We will be
deviating from this philosophy somewhat, but adhering to
the approach proposed by Liu et al. using i*, where tasks
and resource are explicitly defined and related to the goal
within an actor boundary. We will also be adopting Liu et
al.’s approach to instantiation, where the modeller
explicitly defines a scenario to verify the more abstract
definitions. We will therefore be using the same
declarative notation but with some modifications.

5 A Framework for Modelling Policies
We now present our framework for modelling access
policies. It consists of a meta-model that describes domain
independent abstractions – which we refer to as meta-
concepts – and how they relate to one another. The
framework enables policies to be defined using domain
concepts by instantiating the meta-concepts. Examples of
meta-concepts include ‘role’, and ‘organisational
function’. An example of a domain concept is a Hospital
Doctor, which is an instantiation of the meta-concept ‘role’.
A policy is verified by instantiating domain concepts, and
checking whether the policy is consistent with that
instantiation. For example, Greenfield Hospital is an
instantiation of the organisational domain Hospital, and Dr
Smith is an instantiation of an ‘agent’.

We present our framework formally using the state-based
Z notation [42]. This reduces ambiguity and has allowed
us to check policies developed using our framework. A
state-based notation is appropriate for our purposes
because we are concerned with maintaining a secure state
of the system for any arbitrary point in time. State-based
formal methods are usually associated with proof tools.
However, performing proofs – even with the support of a
tool – can be an arduous process [43]. So, we have
adopted a lightweight formal modelling language and tool,
Alloy [25], which is a subset of Z, to compile and verify
our models. Fuxman et al. [18] highlight the benefits of
using tools to verify requirements models; in particular
they assist in checking for inconsistencies and animating
specifications.

We first introduce our framework’s meta-model elements:
the domain independent abstractions in access policy
specifications. These include roles and organisational
structural elements of organisational domains,
organisational functions, and levels of authority. We then
relate roles to the organisational contextual elements at the
meta and domain levels. We elaborate on how aggregation
and inheritance between these organisational contextual
elements can be used to represent characteristics of the
organisational structure. We then explain how tasks and
assets relate to one another. We then suggest how access
policies can be defined and verified, and show how,
through the formal Tropos notation, the i* framework can
be extended based on the concepts of our policy
framework. Finally, we show how a model in formal
Tropos can be translated into our framework and verified.

5.1 Framework Meta-Concepts
Since policies define restrictions on access to valuable
information assets, and such access is required to carry out
tasks, we need the meta-concepts of asset and task:
 [asset] An asset represents a resource that we wish to protect.
 [task] A task represents the activity that an organisational unit or
individual carries out.

In order to describe restrictions with respect to individuals
we also need the meta-concepts of an agent and role:
[agent] An agent represents a physical person.

[role] A role represents an assignment of an obligation, of
performing some function, which is a composite element
representing the organisational function, organisational domain,
and authority.

As we need to link a role to the wider organisational
context, we also need some additional meta-concepts:
[org_function] represents a functional grouping within an
organisation. Members of a functional grouping will be expected to
carry out tasks that will be delegated this group.

[org_domain] represents a “market based” grouping i.e. a
grouping that is delegated a market to serve, such as a set of
clients in a specific geographic location. An example of this would
be a branch in a bank, which serves customers in their locality.

[authority] represents the seniority of a role.

5.2 Relating Roles to the Organisational Context
The main objective of our framework is to enable the
definition of roles that are linked to their wider
organisational context with respect to the two key
dimensions by which work is differentiated within
organisations. These are the lines of authority (vertical
differentiation) and the division of work (horizontal
differentiation). We can capture this through the three
framework elements: [authority] representing a level of
authority, [org_function] representing the differentiation
of functions, and [org_domain] representing
differentiation according to market based characteristics.
An element role is assigned a product of these three types:
role = authority x org_function x org_domain

A role thus represents a position in an organisation, for
example a role representing a nurse. A nurse has a level of
seniority, independent of the medical speciality in which
he works. The nurse is assigned to a medical speciality,
such as orthopaedics, which in our role definition is
represented as an organisational function. Finally the
nurse executes his function in a ward or operating theatre,
which is represented as an organisational domain.

5.3 Inheritance and Aggregation Hierarchies
Our framework includes inheritance hierarchies in order to
represent appropriate levels of abstraction. For example,
we can define medical practitioner as a role and surgeon or
physician as specialisations of this. We model this as:
inhf : org_function ß org_function

Moffett and Lupu [33] explain the usefulness of an
inheritance hierarchy for organisational functions. In a
hospital, for example, there are many types of medical
specialists. It is more efficient to define a single policy
restricting the access of medical records to medical
specialists rather than specific ones for the different types
of physicians and surgeons. The inheritance of roles is
represented by the following function:

inhr : role ß role

The domain role inherits from the range role. Formally, to
determine whether a role inherits from another, we need a
reflexive transitive closure. So, to specify the condition
that a role, role2, is inherited by role1 we can write:
 role2 e ran inhr* r role1

If a role has an organisational function that is inherited
from an organisational function of another role, and these
two roles have an identical organisational domain and
level of authority, then there exists likewise an inheritance
relationship between the two roles.

For organisational domains, an aggregation hierarchy can
also be useful, in order to capture the subdivision of
markets [32], such as subdividing bank regions into local
branches. This is expressed as:
aggd : org_domain ß org_domain

5.4 Levels of Authority
The meta-concept ‘level of authority’, as part of a role,
represents the seniority of that role. If we want to
represent the organisational hierarchy as proposed by
Moffet and Lupu, then we need to identify the hierarchical
relationships between roles that represent the lines of
authority. In fact for the purposes of modelling minimum
privileges we do not need to represent the hierarchy;
however, we do need to represent it if we are to extend our
framework to model other principles, such as delegation.
So, in order to capture the lines of authority, we introduce
the function senior, which models the seniority as follows:
senior: authority ß authority

Seniority is a function that maps junior levels of authority
to senior levels, i.e. a junior level can at most map to one
senior level, in a single organisational domain. In matrix
or project based organisations an individual can be
assigned to more than one group [21] and hence report to
more than one superior. This can be represented in this
framework by assigning an agent multiple roles in
different organisational domains.
5.5 Organisational Assets and Tasks
Tasks can often be subdivided. It is important to model
this, because if a task is assigned to an individual then this
will entail carrying out all its constituent subtasks. This
subdivision can be represented as an aggregation
hierarchy, where aggregation can be modelled as:
aggt : task ß P task

Tasks can be divided down to the lowest level of
granularity, to the point at which they represent a single
action, where the action can be assigned to an asset or
group of assets. Tasks at the lowest level in the
aggregation hierarchy can be mapped onto actions or tasks
in existing requirements models. The relationship between

tasks and assets is represented by a task asset dependency
relationship:
task_asset_dependency : task f P asset

Assets belong to organisational domains. This reflects the
subdivision of work based on market-based
characteristics. We represent this as:
asset_domain : asset f org_domain

5.6 Policy Definitions
We define policies using an authorisation_policy
function:
authorisation_policy Í role x task

Within this policy, there are two implicit assumptions:
firstly, the policy applies to any subtasks of the task in the
policy; and secondly, the organisational domain in the role
of the policy applies to all assets associated with the task
through the relation task_asset_dependency.

5.7 Policy Verification through instantiation
In the previous section we described the example
proposed by Liu et al. [31], where an instantiation of an
agent was used to verify a requirement. We now explain
how our own framework can be used to verify that an
instantiation is consistent with a policy specification.

First, we create an instantiation, which in effect is a
simple scenario of an agent executing an action. In
creating this scenario, not all domain concepts can be
instantiated. The level of authority and the organisational
function are constants. For example, if we define a
function for a medical specialist, then this function will
not change for the instantiation, nor for the level of
authority. Instantiations are required of organisational
domains, roles, assets, and agents.

An organisational domain instantiation will represent a
specific organisational unit. For example, if a bank has
branches, a branch is a domain description of an
organisation unit, but the Sheffield branch is an
instantiation. Since an organisational domain is a
composite part of a role, roles also need to be instantiated.
So, if we define a customer advisor of a bank as an abstract
role, then an instantiation of this would be a customer
advisor in the Sheffield branch.

In order to represent instantiation, we define a number of
functions. For simplicity, we do not use separate types to
represent instantiations; an earlier version of our
framework [9] did include them and resulted in invariants
that were difficult to read and manipulate. For
organisational domains the instantiation is:
insd : org_domain ß org_domain,

where the domain org_domain is instantiated from the
range, and likewise the instantiation for roles is:

insr : role ß role

Instantiated roles are assigned to agents, which represent
humans:
assigned_role : agent ß P role

We also need to define a task execution that represents the
carrying out of a task on a specific instance of an instance.
This we represent via a function performs, which defines
an agent performing a task on an asset:
performs: agent ß task x P asset

For convenience we can define the act of performing a
task on a set of assets as a task_execution:
task_execution : task x P asset

These definitions now allow us to verify that a specific
instantiation is consistent with a policy, through an
invariant:
Auser : agent, A user_task : task_execution • user_task e perfoms
(user) fi Erole : assigned_role (user) • Epolicy :
authorisation_policy • policy.role e ran inhr* r insr(role)
policy.task = user_task.task
Aasset : user_task,asset • asset_domain(asset) = role.org_domain

This invariant is defined in the form: P fi Q. P is the
assertion that an agent has executed a task (though P can
be a set of mappings between agents and task executions),
and Q is the logical condition that there is a policy (or set
of policies) that permits P. In order for Q to be satisfied a
policy must exist for which three conditions must be
satisfied. First, there is some role assigned to the user that
is compatible with a policy. The user role is an
instantiation of an abstract role and if this role is
equivalent to or inherited from a role defined in a policy,
then the role is compatible with the policy. Second, the
task defined in the policy must be equivalent to the task in
the task_execution. Third, the assets being accessed
through the task execution must be in the same
organisational domain as the user.

The invariant is therefore a check on the performs
function, which contains all mappings between agents in
the system and task executions, i.e. tasks they have
executed. If we define a mapping between an agent and a
task execution in the performs function, the invariant tells
us whether it is permissible. If the invariant is true, then
the task execution could be performed by that agent.
There are similarities between an instantiated specification
as we have presented it and an RBAC system. The key
difference however is that our instantiated specification
contains only organisational phenomena; an RBAC
system in contrast is a computerised implementation.

5.8 Framework Invariants
There are a number of assumptions in the framework that
should be defined as invariants. For example, a role can

not inherit itself and only instantiated roles can be
assigned to agents. Due to limitations of space we have
not included them in this paper.

5.9 Extensions to Formal Tropos
Having outlined the conceptual elements of our
framework, we now consider how to incorporate them into
Formal Tropos. Associated tasks and resources are
defined below, using an indentation to represent the
means-end to a goal, and the resource dependency
relationship. We have added a type attribute to actor to
enable us to differentiate between agents, positions, and
roles. Inheritance, aggregation, and instantiation between
domain elements, are represented by using the keywords
ISA, Part, and INS respectively, as used in i*.
Actor Customer Advisor
 Type Agent
 Goal Provide Credit
 Mode Achieve
 Task Evaluate Credit
 Resource Credit Conditions
 Resource Credit Application
 Resource Credit History

Next we consider the modelling of roles and associated
organisational characteristics. Referring back to the
example of Liu et al., Family Doctor was defined as an
agent and Dr. Antony as an instantiation of that agent. In
this particular example, the abstract agent and
instantiation of an agent in i* correspond to a role and an
agent, respectively, in our framework. As discussed
earlier, an actor can alternatively be a position or a role.

A role in the i* framework has a very specific meaning in
that it represents an assigned task. Hence it is not
appropriate to use here. One could possibly define it as a
position in i*, but we would still need to assign this to
some agent, adding to the complexity of the model. We
have therefore decided to map role definitions of our
framework onto abstract agent definitions.

We need to link agent definitions to the organisational
contextual elements, level of authority, organisational
function, and organisational domain, which we can define
as classes in Formal Tropos. So, for example, we can
define the agent of Family Doctor as:
Actor Family Doctor
 Type Agent
 Organisational Function General Practice
 Organisational Domain Practice
 Authority Consultant
 Task Administrate Medical Record
 Resource Medical Record

This represents an extension to the authorisation policy
that we presented in section 4. We have added a level of
authority to the definition, reflecting a seniority grade that
exists within the National Health Service in the UK, and
the organisational domain Practice, the domain in which
the Family Doctor executes his function. In order to verify
the policy, we must not only instantiate the agent but also

the organisational domain and resource. An instantiation
of the domain is defined as:
Organisational Domain Dr Antony´s Practice INS Practice

Since the policy involves the access to a medical record,
we also need an instantiation for that:
Resource Medical Record of Jim Smith INS Medical Record

Having defined these instantiations we can then define the
instantiation of the agent:
Actor Dr Anthony INS Family Doctor
 Type Agent
 Organisational Function General Practice
 Domain Dr Antony´s Practice INS Practice
 Authority Consultant
 Task Administrate Medical Record
 Resource Medical Record of John Smith INS Medical Record

6 Case Study
To validate our framework, we used a case study from the
literature [38] that explores several principles of
management control, including the minimum privileges,
delegation, and the separation of duties, making it
particularly well suited to exploring access policies. Here
we continue to focus on the minimum privileges principle.

The case study is based on an access control system of a
European Bank. The bank has 50,000 employees, over
thousand branches, and provides banking services for
local communities. Schaad [38] reviews the bank’s access
control system and how it satisfies organisational control
principles. Although the focus is on the access control
system, many of the requirements can be inferred from it.
We consider the requirements of a system for a branch,
and within the constraints of this paper, consider a few
requirements identified by Schaad.

One of the key services is that of providing credit, for
example, extending an overdraft, providing a mortgage, or
offering a sum of money. Each of these involves different
actors and different information assets. The controls to be
applied to these services also differ. We focus on the
requirements of two of these services: the provision of a
fixed sum of money and share trading. These two are
mutually exclusive subject to the principle of separation of
duties. Although we will not formally define a policy, we
discuss how role definitions as we have made them can
help in formulating such a policy. The flow diagram in
figure 2 shows some of the steps involved.

Figure 2: Basic credit application process

This is carried out by the group customer advisory services.
The provision of an initial consultation and the evaluation

of credit are carried out by the customer advisor clerks. The
approval of credit is done by the advisor’s manager. The
functions customary advisory services are carried out within
a branch; within each branch are several hierarchies of
authority, for each of the different specialised functions.
The head of a branch is responsible for general banking
services and has a personnel function, dealing with
disciplinary matters for example, but management of
specialised functions such as customer advisory services is
achieved through its own hierarchy; thus a customer advisor
clerk would take instructions from a manager in the same
function to whom he is assigned rather than from the
branch manager. Another function within a branch is share
trading; there is a strict separation of duties between the
customary advisory services and share trading within a branch.

In deriving actor definitions for our policies, the first step
is to define the groupings within the organisation. The
groupings form a composite structure. For the bank this is
represented in Figure 3. We can then identify whether a
grouping represents a domain in that it exists to serve a
specific market or whether it is purely functional. From
these groupings we can then derive the organisational
domains and organisational functions that are as follows:
Organisational Function Customary Advisory Services

Organisational Function Share trading

The domains are the regional domain and for each branch:
Organisational Domain Region
Organisational Domain Branch
 Part Region

Within each grouping there is a hierarchical structure.
Focusing on the branch customary advisory services, there
exist the following levels of authority. In decreasing order
of authority they are:
Authority Head of Branch

Authority Manager
 Senior Head of Branch

Authority Clerk.
 Senior Manager

The definition of seniority levels is necessary to
distinguish roles within the same domain and
organisational function. For defining the minimum
privileges it is not necessary to know which role is senior,
nevertheless, if we were to define delegation policies, then
it becomes useful. We can now define positions within
these groups, where an actor definition is created for each
level of authority. For example, the following definition
shows the Customer Advisory Services Manager position
associated with the customary advisory services:
Actor Customer Advisory Services Manager
 Type Agent
 Organisational Function Customary Advisory Services
 Organisational Domain Branch
 Authority Manager

Provide
Initial
Consultation

Evaluate
Credit

Approve Credit

 Hence the actor definition is a composition of the level of
authority, organisational function, and organisational
domain.

Dresdener Private
Bank
 Market Based

Figure 3: Organisational Structure of the Dresdener Bank

A similar definition can be given for a clerk and head of
branch. We can now define the tasks and the resources
associated with these tasks:
Task Initial Consultation
 ResourceCredit Contract

Task Evaluate Credit
 Resource Credit Contract, Credit History

Task Approve Credit Contract
 Resource Credit Contract

This enables us to extend our actor definitions with task
assignments and hence create policies. The minimum
privileges policies associated with the Customary Advisory
Services Manager and Clerk are:
Actor Customer Advisory Services Manager
 Type Agent
 Organisational Function Customary Advisory Services
 Organisational Domain Branch
 Authority Manager
 Task Approve Credit

Actor Customer Advisory Services Clerk
 Type Agent
 Organisational Function Customary Advisory Services
 Organisational Domain Branch
 Authority Clerk
 Task Initial Consultation, Evaluate Credit

The authority levels of manager and clerk are applicable to
different functional groupings. For example, there are
clerks assigned to customer advisory services, other clerks
assigned to business advisory services, share trading, and so
on. A manager is distinguished from a clerk in that he has
the authority to delegate tasks to clerks. In order for a clerk
or manager to be able to execute a function, they need to
be assigned to a functional grouping in a specific branch.

We can now demonstrate how the formal Tropos
definitions map onto our framework. The definition of the
authority of Clerk is:
Clerk : authority
senior : {Clerk å Manager}

Similarly, definitions exist for the other authority levels,
organisational functions, organisational domains, tasks,
and resources, which we will not repeat here. An example
of one of the role definitions is:
CustomerAdvisoryServicesClerk.org_function =
CustomerAdvisoryServices
CustomerAdvisoryServicesClerk.org_domain = Branch
CustomerAdvisorServicesClerk.authority = Clerk

The above role definition is a mapping from the Formal
Tropos actor definition of a Customer Advisory Services
Clerk. One of the policies related to this definition, in order
to restrict the use of Initial Consultation, is defined as:
InitialConsultationPolicy : authorisation_policy
InitialConsultationPolicy.task = InitialConsultation
InitialConsultationPolicy.role=CustomerAdvisoryServicesClerk

Similarly, for the other tasks such as Evaluate Credit and
Approve Credit Conditions, we can also define corresponding
policies.

The next step is to define an instantiation to verify the
policy. In the following instantiation, we check that a
Customer Advisory Services Clerk can evaluate credit and
alter the credit conditions of a customer of the branch to
which he is assigned. First, we define a domain
instantiation for the Frankfurt branch:
Organisational Domain Frankfurt Branch INS Branch

Then, we can define an instantiation of a Customer Advisory
Services Clerk in the Frankfurt branch:
Actor Jim Smith INS Customer Advisory Services Clerk
 Type Agent
 Organisational Domain Frankfurt Branch
 Organisational Function Customer Advisory Services
 Level of Authority Clerk

These two Tropos definitions map onto the policy:
FrankfurtBranch : org_domain
CustomerAdvisoryServicesClerkFrankfurt : role

The following definition shows that Frankfurt Branch
instantiates the Branch, i.e. it is a branch:
insd : { Frankfurt Branch å Branch}

The following definitions represent the instantiated role
for a Customer Advisory Service Clerk in the Frankfurt Branch:
CustomerAdvisoryServicesClerkFrankfurt.authority = Clerk
CustomerAdvisoryServicesClerkFrankfurt.org_function
=CustomeryAdvisoryServices

Bank Operations Function
Based

Marketing

Customer Advisory
Services

Share Trading Function
based

 Market Based

Market Based

Regional Customary
Advisory Services

Regional Share Trading
Service

Branch Customary
Advisory Services

Branch Share Trading

CustomerAdvisoryServicesClerkFrankfurt.org_domain = Frankfurt
Branch

insr : {CustomerAdvisoryServicesClerkFrankfurt å
CustomerAdvisoryServicesClerk}

We also need to define the instantiation of assets. So we
define the assets credit application and credit history of the
customer Philip Stokes. We assign these assets to the
Frankfurt branch:
Resource CreditApplication of Philip Stokes INS CreditApplication
 Organisational Domain Frankfurt Branch

Resource CreditHistory of Philip Stokes INS CreditHistory
 Organisational Domain Frankfurt Branch

These definitions then translate into our policy
framework. First, we create the asset affected:
CreditApplication of Philip Stokes, CreditHistory of Philip Stokes :
asset

We then define them as instantiations:
insa : { CreditApplicationOfPhilipStokes å CreditApplication,
CreditHistoryOfPhilipStokes å CreditHistory }

EvaluateCredit, AlterCreditConditions and
ApproveCreditConditions

We define performs as follows:
performs = { JohnSmith å InitialConsultation x CreditApplication
of Philip Stokes,
JohnSmith å EvaluateCredit x {CreditApplication of Philip Stokes,
CreditConditions of Philip Stokes }}

Since this performs definition satisfies the invariant
definition described in section 5.7, the instantiation is
consistent with the policy. What we could also try is an
instantiation of an agent who should not be able to
perform a task on a certain asset, such as Customer Advisory
Service Clerk in another branch accessing a credit application
of a customer not in his branch. The invariant definition
would then be false.

The way in which we have defined roles separating the
level of authority, organisational function, and
organisational domain is very similar to the way in which
the Dresdener Bank has actually designed its access
control system [38]. Roles in the Dresdener Bank RBAC
system are composed of a function, a position, and an
organisational unit. A function reflects an organisational
function in our framework, a position reflects a level of
authority, and the organisational unit reflects an
organisational domain. Thus, definitions derived in the
way would map easily onto Dresdener’s RBAC system.
Although there are similarities, these are coincidental. An
earlier version of the framework was developed around an
example in the medical domain [9].

7 Summary and Conclusions
This paper has addressed the problem of modelling access
policies to ensure that security goals can be achieved and
that operational requirements are consistent with access
policies. We first identified the importance of a macro-
organisational analysis before specifying actor or role
definitions in the context of modelling of access policies.
The lack of this in current modelling approaches makes it
difficult to unambiguously express access policies and to
refine them into operational constraints. We proposed a
novel way of deriving roles from the macro-organisational
context. We demonstrated how to identify the groupings,
the levels of authority, and the management domains from
which role can be defined. It is relating roles to
identifiable phenomena of the organisational context, i.e.
the levels of authority and groupings, that gives us a more
precise definition.

A key contribution of our work is that we demonstrated
how access policies satisfying the minimum privileges
management control principle can be specified
unambiguously and verified using an extended version of
Formal Tropos. However there are other principles that
remain to be investigated. Accounting principles, for
example, can lead to complex procedures, whereby
workflows need to be modelled and financial constraints
such as credit ratings need to be included in the policies.

In addition to extending Formal Tropos, there are other
avenues worth investigating. In particular we need to
combine our approach with the other approaches
identified in section 2 with regard to threats and
countermeasures analysis.

Acknowledgements. Thanks Jonathan Moffett and Qingfeng He
for their helpful comments on an earlier draft of the paper.
Nuseibeh was supported by grants from the Leverhulme Trust
and the Royal Academy of Engineering.

Reference
[1] I. Alexander, “Modelling the Interplay of Conflicting Goals

with Use and Misuse Cases”, Proc. of 8th Int. Workshop on
Requirements Engineering: Foundation for Software
Quality (REFSQ-02), Essen, Germany, 9-10 Sept. 2002.

[2] R. Anderson, Security Engineering - A Guide to building
dependable distributed Systems, Wiley, 2001.

[3] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC:
Temporal Role-based Access Control Model”, Proc. of 5th

ACM Work. on Role-based access control, 21-30, Jul 2000.
[4] J. Bacon, M. Lloyd, and K. Moody, “Translating Role-

based Access Control within Context”, Proc. of Int.
Workshop Policies for Distributed Systems and Networks
(Policy 2001), Bristol, UK, Jan. 2001, Springer, 107-119.

[5] D. Bell, and L.J. LaPadula, Secure Computer Systems: A
Mathematical Model, MITRE Tech Rep. 2547, Vol 2, 1973.

[6] D.F.C Brewer, and M.J. Nash, “The Chinese wall security
policy”, Proc. of the IEEE Symposium on Security and
Privacy, 206-214, 1989.

[7] S. J. Brown and O. W. Steenbeek, “Doubling: Nick
Leeson’s Strategy”, Pacific Basin Journal, 2001.

[8] British Standards Institution, BS799-1:1999 Information
security management - Part 1: Code of Practice for
Information Security, London, 1999.

 [9] R. Crook, D. Ince, and B. Nuseibeh, “Towards an
Analytical Role Modelling Framework for Security
Requirements”, Proc. of the 8th Int. Workshop on
Requirements Engineering: Foundation for Software
Quality (REFSQ02), Essen, Germany, 2002.

[10] R. Crook, D. Ince, and B. Nuseibeh, “Modelling Access
Policies Using Roles in requirements Engineering”,
Information and Software Technology, 45(14): 979-991,
November 2003, Elsevier.

[11] E.J.Coyne, “Role Engineering”, Proc. of 1st ACM Workshop
on Role-based access control, 1996.

[12] D.D Clark, and D.R Wilson, “A comparison of commercial
and military computer security policies”, Proc. of IEEE
Symposium on Security and Privacy, 184-194, 1987.

[13] N. Dulay, E. Lupu, M Sloman, and N. Damianou, “A Policy
Deployment Model for the Ponder Language”, Proc.
IEEE/IFIP Intl. Symposium on Integrated Network
Management (IM’2001), Seattle, USA, May 2001.

[14] J.E. Dobson and M.R. Strens, “Organisational
Requirements Definition for Information Technology
Systems”, Proc. of 1st IEEE Int. Conference on
Requirements Engineering (ICRE '94), 158-165, Colorado
Springs, Colorado, USA,18-22 April 1994.

[15] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed Requirements Acquisition”, Science of Computer
Programming, Volume 20, 1993.

[16] P. Fontaine, “Goal oriented elaboration of security
requirements”, Project Dissertation, Universite Catholique
de Louvain, Belgium, 2001.

[17] E.B. Fernandez, and J.C. Hawkins, “Determining role rights
from Use Cases”, Proc. of 2nd ACM workshop on Role-
based access control, 121-125, 1997.

[18] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso,
“Model Checking Early Requirements Specifications in
Tropos”, Proc. of 5th IEEE Int. Symposium on Requirements
Engineering Conference (RE’01), Aug 2001, Canada.

[19] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K.
Thomas, “Flexible team-based access control using
contexts”, Proc. of 6th ACM Symposium on Access control
models and technologies, 21-27 , May 2001.

[20] Q. He and A. I. Antón, “A Framework for modeling privacy
requirements Role Engineering”, Proc. of 9th Intl. Workshop
on Requirements Engineering: Foundation for Software
Quality (REFSQ'03), 137-146, Austria, 16-17 June 2003.

[21] C. Handy, Understanding Organisations, Penguin, 1985.
[22] A. Lamsweerde “Requirements Engineering in the year 00:

A Research Perspective”, Proc. of Int. Conf. on Software
Engineering (ICSE’2000), Ireland, June 2000, ACM Press.

[23] A. Lamsweerde, “Formal Specification, A Roadmap”,
ICSE-2000 Future of Software Engineering, A. Finkelstein
(Ed.), ACM Press, June 2000.

[24] A. van Lamsweerde, “Elaborating Security Requirements
by Construction of Intentional Anti-Models”, Proc.26th Int.
Conference on Software Engineering (ICSE-04), 148-157,
Edinburgh, UK, May 2004.

[25] D. Jackson , Micromodels of Software: Lightweight
Modelling and Analysis with Alloy Software, Design Group.
MIT Lab. for Computer Science, 2002.

[26] S. Jajodia, P Samarati, and V.S. Sabrahmanian, “A Logical
Language for Expressing Authorisations”, Proc. of IEEE
Symposium on Research in Security and Privacy, 31-42
Oakland, USA, May 1997.

[27] A. Lamsweerde, S. Brohez, R. Landtsheer and D. Janssens,
“From System Goals to Anti-Goals: Attack Generation and
Resolution for Security Requirements Engineering”, Proc.

of 2nd Int. Workshop on Requirements for High Assurance
Systems (RHAS 2003), Monterrey, USA. September 2003.

[28] P. Loucopoulus and E.Kavakli, “Enterprise Modelling and
the Teological Approach to Requirements Engineering”,
Int. Journal of Intelligent and Cooperative Information
Systems, 4(1): 45-79, 1995.

[29] L. Lin, B. Nuseibeh, and D Ince, “Using Abuse Frames to
Bound the Scope of Security Problems”, Proc. of 3rd Int.
Works. on Requirements for High Assurance Systems, 2004.

[30] L. Liu, E. Yu, and J. Mylopoulos, “Analyzing Security
Requirements as Relationships Among Strategic Actors”,
2nd Symposium on Requirements Engineering for
Information Systems (SREIS’02), 2002.

[31] L. Liu, E. Yu, and J. Mylopolous, “Security and Privacy
Requirements Analysis within a Social Setting”, Proc. Of
11thIEEE Int. Conference on Requirements Engineering
(RE’03), Monterrey, USA, 2003.

[32] H. Mintzberg, Structure in Fives: Designing effective
organisations, Prentice Hall, 1992.

[33] J. D. Moffett, E. C. Lupu, “The uses of role hierarchies in
access control”, Proc. of 4th ACM workshop on role-based
access control, 153-160, October 1999.

[34] J. D. Moffett, “Control principles and role hierarchies”,
Proc. of 3rd ACM workshop on Role-based access control,
63-69, October 1998.

[35] J. D. Moffett and Morris S. Sloman, “The Source of
Authority for Commercial Access Control”, IEEE
Computer 21(2): 59-69.1988.

[36] G. Neumann and M. Strembeck, “A scenario driven role
engineering process for functional RBAC models”, Proc. of
7th ACM symposium on access control models and
technologies, 33-42, 2002.

[37] R. Sandhu, E. Coyne,H. Feinstaein, C. Youmann, “Role
Based Access Control Models”, IEEE Computer, 29(2): 38-
47, Feb. 1996.

[38] A. Schaad, “Framework for Organisational Control
Principles”, PhD Thesis, Dept. of Computer Science,
University of York, UK, 2003.

[39] M.R. Strens and J.E. Dobson, “Responsibility Modelling as
a Technique for Requirements Definition”, IEE Intelligent
Systems Engineering, 3(1): 20-26, 1994.

[40] G. Sindre and A. L. Opdahl, “Eliciting Security
Requirements by Misuse Cases”, Proc. of TOOLS Pacific
2000, 120-131, 20-23 Nov. 2000.

[41] G. Sindre and A. L. Opdahl, “Templates for Misuse Case
Description”, Proc. 7th Int. Workshop for Requirements
Engineering, Foundation for Software Quality
(REFSQ‘2001), Interlaken, Switzerland, 4-5 June 2001.

[42] J. Spivy, The Z-Notation - A Reference Manual, 2nd Edition,
Prentice Hall, 1992.

[43] S. Stepney, “A Tale of two Proofs”, BCS-FACS 3rd
Northern Formal Methods Workshop, Ilkley, UK, Sept.‘98.

[44] R.K. Thomas, “Team-Based Access Control: A Primitive
for Applying Role Based Access Controls in Collaborative
Environments”, Proc. of 2nd ACM workshop on Role-based
access control, Fairfax, USA 1997.

[45] R.K.Thomas and R.S. Sandhu, “Conceptual foundations for
a model of task-based authorizations”, IEEE Proc. on
Computer Security Foundations Workshop VII, CSFW 7,
66-79, 1994.

[46] E. Yu and L. Liu Modelling, “Trust in the i* Strategic
Actors Framework”, Proc. of 3rd Workshop on Deception,
Fraud and Trust in Agent Societies, 2000.

[47] E. Yu, “A Framework for Organizational Modeling”, PhD
Thesis, Department of Computer Science, University of
Toronto, Canada, 1995.

	Modelling of Security Requirements
	The Principles of Management Control and Access Policies
	Framework Meta-Concepts
	Relating Roles to the Organisational Context
	Inheritance and Aggregation Hierarchies
	Levels of Authority
	Organisational Assets and Tasks
	Policy Definitions
	Policy Verification through instantiation
	Framework Invariants
	Extensions to Formal Tropos

	Case Study
	Summary and Conclusions
	Reference

