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Abstract

Jackson’s Problem Frames provide a means of analysing
and decomposing problems. They emphasise the world out-
side the computer helping the developer to focus on the
problem domain instead of drifting into inventing solutions.
The intention is to delay consideration of the solution space
until a good understanding of the problem is gained.

In contrast, early consideration of a solution architec-
ture is common practice in software development. Soft-
ware is usually developed by including existing components
and/or reusing existing frameworks and architectures. This
has the advantage of shortening development time through
reuse, and increasing the robustness of a system through the
application of tried and tested solutions.

In this paper, we show how these two views can be rec-
onciled and demonstrate how a choice of architecture can
facilitate problem analysis, decomposition and subsequent
recomposition, within the Problem Frames framework. In
particular, we introduceArchitectural Frames– combina-
tions of architectural styles and Problem Frames – and il-
lustrate their use by applying them to two problems from the
literature.

1 Introduction

Problem Frames [23, 24] classify software development
problems. They structure the analysis of the problem and
the world in which it is located — the problem space —
describing what is there and what effects one would like a
system located there to achieve. With its emphasis on prob-
lems rather than solutions, the Problem Frame approach
uses an understanding of a problem class to allow the prob-
lem owner with their specific domain knowledge to drive
the Requirements Engineering process.

Three characteristics of modern software development
are in competition with this approach.

Firstly, even modestly complex problems can force prob-
lem owner and solution engineer into negotiation over

trade-offs and consideration of details of the solution [1].
Secondly, in practice, the development of new systems is
very rarely green-field: new software is usually developed
from existing components [6] or within existing frameworks
[11] and architectures [32, 1]. Finally, the expertise of the
developer in specific domains is also the subject of reuse
[13].

Whereas Problem Frames are used only in the prob-
lem space, we observe that each of these competing views
uses knowledge of the solution space: the first through the
software engineer’s domain knowledge; the second through
choice of domain-specific architectures, architectural styles,
development patterns,etc; the third through the reuse of
past development experience. All solution space knowledge
can and should be used to inform the problem analysis for
new software developments within that domain. Time to
market of quality systems is shortened through the reuse of
such solution space structures and experience.

The main contribution of this paper is to use architectural
styles [1, 32], located in the solution space, to guide the
analysis of the problem space. To do this, we define a new
tool within the Problem Frame framework, that of anAr-
chitectural Frame(or AFrame). AFrames characterise the
combination of a problem class and an architecture class.
Their use is to guide problem decomposition, a fundamen-
tal part of the analysis process, and solution recomposition,
a fundamental part of the synthesis process. The approach is
validated through the application of AFrames to two prob-
lems from the literature. The work here builds on that re-
ported in [16], where we focused on component-based de-
velopment.

The paper is organised as follows. Section 2 pro-
vides background information and motivation for the work.
Section 3 introduces the notion of Architectural Frame
(AFrame) and the associated decomposition techniques.
Sections 4 and 5 introduce two AFrames and their appli-
cation to examples from the literature. Section 6 includes
some reflections on the work, and Section 7 concludes the
paper.
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2 Background and motivation

Problem Frames [23, 24, 27] are an increasingly popular
framework for requirements engineering [9]. They iden-
tify and characterise basic classes of problems that recur
throughout software development, for reuse in requirements
analysis. Each class is captured by a Problem Frame, an ini-
tial catalogue being provided in [24]. Problem characterisa-
tion is through the identification and description of relevant
problem domains and shared phenomena. A diagramatic
notation is used for problem representation, cataloguing,
documentation and communication. Their semantic foun-
dation characterises their use in requirements engineering
[15], and allows for the construction and discharge of cor-
rectness arguments [17, 19].

Essential elements of a problem analysis process based
on Problem Frames are the building of descriptions for do-
mains, phenomena and requirements, followed by problem
decomposition and recomposition. Problem decomposition
is through templated applications ofproblem frame dia-
grams, a process reminiscent of analysis patterns [12], lead-
ing to grounded instances. The result of the instantiation is
a (sub-)problem diagram, which can either be further anal-
ysed and decomposed, or is in a form which admits solution.
Problem recomposition combines sub-problem solutions by
ensuring that destructive interference is not created.

While recognising the conceptual clarity and semantic
richness of the Problem Frames framework, we acknowl-
edge certain criticisms raised of the approach.

Firstly, a ‘green-field’ development process is assumed
in which problem analysis is made without reference to any
solution space structures, such as existing components, ar-
chitectural styles,etc; this is at odds with current software
development practice. In [24], the machine is assumed to be
a general purpose computer – essentially, a Turing machine
– and all development isab initio.

Secondly, Problem Frames rely on the expertise of prac-
titioners to understand which decompositions (and subse-
quent recomposition) of a problem into its constituent sub-
problems are appropriate and will lead to a ‘good solution’.
This expertise is not assumed to have any particular form,
nor that it has, or indeed can be encoded; in [24] there
is only a small set of generic heuristics for decomposition
guidance.

Thirdly, Problem Frames work from fixed descriptions
of problem domain artefacts and phenomena. In real life,
problems do not stay still in this way, and a necessary de-
velopment skill is the tracking of changing problems.

Problem Frames are unlikely to become a part of main-
stream software development if such concerns cannot be ad-
dressed satisfactorily.

In this paper, we address the first two of these criticisms,
leaving the third to other strands of our work (see [4]). In

particular, we show how to use solution structures – in this
case, architectural styles – to aid problem analysis, problem
decomposition and solution synthesis through recomposi-
tion. For this to happen, work is required, as described in
this paper: a) to recognise the role of solution structures in
the problem space; b) to notate them suitably therein; and c)
to develop problem frame analysis, decomposition and re-
composition techniques which exploit that annotation. This
reflects into the problem domain via Problem Frames the
important work of others, including [32, 1, 25]. In pre-
vious work, the authors have shown how such techniques
can work when components are available: [16] looked at
integrating Problem Frames and component-based develop-
ment.

We relate the first two criticisms above to limitations of
the original Problem Frame framework. These are that:

• the machine, which is the object of design, is consid-
ered an unstructured general purpose computing de-
vice;

• there is little specific problem decomposition guid-
ance;

• there is little specific solution recomposition guidance.

We address these limitations in this paper.
The structuring of problem problem domains and asso-

ciated requirements has been the subject of considerable
work in recent years [22, 21, 34, 27, 37, 7, 36]. Similarly,
The structuring of the solution domain has also been inves-
tigated thoroughly [35, 1, 40]. However, the relationship
between requirements and architectures has only recently
become the object of attention [5, 2], and none of the ap-
proaches reported in the literature has explicitly focused
on problem decomposition as their goal. Brandozzi and
Perry [3] have suggested the use of intermediate descrip-
tions between requirements and architecture that they call
‘architectural prescriptions’, which describe the mappings
between aspects of requirements and those of an architec-
tural description. Recent work on software product lines
and system families has focused on identifying core require-
ments (identified perhaps through a process of requirements
prioritisation) and linking them to core architectures (iden-
tified perhaps by examining the stability of various archi-
tectural attributes over time) [38]. Wile [39] has examined
the relationship between certain classes of requirements and
their corresponding dynamic architectures, to enable re-
quirements engineers to monitor running systems and their
compliance with these requirements. Finally, Grunbacheret
al [14] explore the relationships between software require-
ments and architectures, and propose an approach to recon-
ciling mismatches between requirements terminology and
concepts with those of architectures.
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3 Introducing Architectural Frames

We introduce the notion of anArchitectural Frame(or
AFramefor short) as a new element of the Problem Frames
framework. The intention of AFrames is to provide a practi-
cal tool for sub-problem decomposition and recomposition
that allows the Problem Frames practitioner to separate and
address, in a systematic fashion, the concerns arising from
the intertwining of problems and solutions. The rationale
behind AFrames is the recognition that solution structures
can be usefully employed to inform problem analysis.

An AFrame captures the combination of a class of
problems, represented by a Problem Frame, and a class
of solution structures, represented by architectural styles
[32, 1, 25]. Notationally, an AFrame shares the Problem
Frame diagram of the corresponding problem class, aug-
mented by a further annotation of the machine domain,
which records the intention of producing a problem solu-
tion which is based on a particular architectural style (we
will illustrate AFrame diagrams in the following sections).

Architectural styles characterise software architecture
classes in terms of the architecture’s element types and their
topology, and the patterns of data and control among ele-
ments. The characterisation of architectural styles for use
within the Problem Frames framework entails ways of rep-
resenting those architectural elements that impact the prob-
lem description. In this paper, this means representing gen-
eralised topologies, and binding domains and phenomena.
This is achieved throughdecomposition templates, an inte-
gral part of every AFrame definition. Decomposition tem-
plates capture a standard and systematic way of decompos-
ing the problem into sub-problems; they complement clas-
sical Problem Frames decomposition by providing further
guidance and decomposition rules. Notationally, they are
frame diagrams, augmented, in some cases, with an indi-
cation of domain multiplicity (again, we will illustrate the
notation in the following sections).

An essential step in problem analysis is addressing
recomposition concerns once sub-problem decomposition
and analysis is completed. AFrames simplify the recompo-
sition step by providing an indication of how sub-problems
fit together and how the frame concern of the problem class
distributes across those sub-problems. That the frame con-
cern should also be addressed at recomposition is due to the
fact that the argument is motivated by the problem indepen-
dently of the solution structure, and so should be discharge-
able by any solution to that problem. We are then left with
the task of discharging the frame concern from the proper-
ties of the solved sub-problems.

4 A Pipe-and-Filter AFrame

The machinery of AFrames, reflecting architectural
styles in the problem domain, must cope with their com-
plexity there. The Pipes-and-Filters style is familiar enough
to provide a convenient vehicle for their introduction. Later
in the paper, we develop a more realistic (and useful)
AFrame for the Model-View-Controller (MVC) style.

The Pipe-and-Filter architectural style [1] sees a system
as a series of filters (or transformations) on input data. Data
enter the system and then flow through the components one
at a time until they reach some final destination. Filters are
connected by pipes that transfer data. A common topology
of architectures based on this style, and one that we consider
in this section, is the linear pipeline, in which each filter has
precisely one input pipe (its source) and one output pipe (its
sink). See Figure 1 for an illustration.

Filter[1] Filter[2] Filter[n]
Pipe[0] Pipe[1] Pipe[2] Pipe[n-1] Pipe[n]

...

Figure 1. The Linear Pipe-and-Filter

The benefits and uses of Pipes and Filters are well
known.

To relate Pipes and Filters to Problem Frames: Pipes and
Filters ‘solve’ transformation problems, i.e. transforming
some input into some output of a particular format, applying
certain rules in the process. Transformation problems are
captured in Problem Frames by the Transformation Frame
[24]. Their frame diagram is shown in Figure 2. Its correct-
ness argument is given in Figure 3. (Please refer to [24] for
definitive details on the form and use of correctness argu-
ments.)

Outputs
X

TM!Y2

Inputs

XIN!Y1

IO relation

Y4

Y3

Transform
machine

Figure 2. The Transformation Frame Diagram

The (Linear) Pipe-and-Filter Transformation AFrame1

representsthe class of transformation problems whose solu-
tion is to be provided through the Pipe-and-Filter architec-
tural style. There are three components to the AFrame: the
AFrame diagram– an annotated Problem Frame diagram,

1For simplicity in this paper, we restrict to a linear Pipe-and-Filter.
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Outputs

IO relationTranform machine

Inputs

1a
(specification)

2a
(domain properties) 3a

(requirement)

1b
(specification) 3b

(requirement)

4
(requirement)

2b
(domain properties)

1a By traversing the input domain in this sequence...

1b and simultaneously traversing the output domain in this
sequence...

2a finding these values in the input domain structured like
this...

2b and creating these values in the output domain struc-
tured like this...

3a the machine ensures that these input domain values...

3b produce these output domain values...

4 which satisfy the IO relation.

Figure 3. The Transformation Frame Concern

shown in Figure 4; a collection ofdecomposition templates
– shown in Figure 5; and acorrectness argumentto deter-
mine correct recomposition – shown in Figure 6.

Outputs
X

TM!Y2

Inputs

XIN!Y1

IO relation

Y4

Y3

Transform
machine

PF

Figure 4. The Pipe-and-Filter Transformation
AFrame

The AFrame diagram records the decision to use the
Pipe-and-Filter style. For the Pipe and Filter Transforma-
tion Aframe, the AFrame diagram is an annotated Trans-
formation Frame. The annotation is used in the same way
as other problem domain annotations in that it indicates the
domain must satisfy some constraints – in this case, be an
instance of the Pipe-and-Filter architectural style.

The decomposition templates for the Pipe and Filter
Transformation AFrame, shown in Figure 5, identify the
following sub-problems as needing considerationif the
Pipe-and-Filter Architectural style is to be the chosen so-

Filter[j]

Input

XIN!Y1

Input stream

Y3

Input machine

Pipe[0]

IM!Y2 Y4

X

Output
X

OM!Y2

Pipe[n]
XP n

!Y1

Output

Y4

Y3

Output machine

(a) Input/Output sub-problems

Pipe[j]
X

F!Y2

Pipe[j-1]
XP j-1

!Y1

IO relation [j]

Y4

Y3

Filter[j]

(c) Transformation sub-problem(s)

Fair schedule*SC!C3

C2

Scheduler
C

(b) Scheduling sub-problem

Output machine

Input machine

SC!C1

SC!C5

C4

C6

C

C

Figure 5. Decomposition templates for the
Pipe-and-Filter Transformation AFrame

lution architecture:

• the input and output sub-problems: in a Pipe-
and-Filter solution data are streamed between filters
through pipes. The input/output sub-problem ad-
dresses the problem of converting data into suitable
formats. The indexing of the ‘pipe domains’ provides
the linear topology. Asdesigned domains[24], (in-
dicated by their single vertical bar) the pipe domains
reside within the solution machine, hence may have
their data structures explicitly specified to solve the in-
put/output problem.

• the transformationsub-problem: this is where the
essence of the transformation problem, stripped of
other considerations, is found.

• the schedulingsub-problem: as we work in the prob-
lem space, we can make no assumptions as to the hard-
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ware architecture. This means that part of the prob-
lem is the scheduling of filter transformations2. In this
sub-problem, therefore, we specify the requirements
for fair scheduling of machine components.

In use, the sub-problems provide the decomposition
guidance. Instantiation of an AFrame may require more
than one instance of the same template to be applied for a
given problem. For instance, in a typical Pipe-and-Filter
solution, many applications of the filter template will be
needed. The consideration of each such filter may require
a separate instance of the transformation sub-problem. The
linear Pipe-and-Filter architecture is enforced by the index-
ing of the filters and pipes.

Input

Output

IO relation
Filter[1]

Pipe[0]

Filter[n]

Output

Scheduler

Input

Pipe[1]

Pipe[n]

...
...

1a
(specification)

2a
(domain properties)

3a
(requirement)

1b
(specification)

3b
(requirement)

4
(requirement)

2b
(domain properties)

1c
(specification)

Figure 6. Pipe-and-Filter recomposition

After appropriate filters have been found, the synthe-
sis step of recomposing the solutions to sub-problems ad-
dresses the overall transformation problem, with the rela-
tionship between the sub-problem machines considered in
terms of their shared phenomena. The topology of the re-
composition is informed by the architectural style, which
also influences the form of the resulting overall frame con-
cern. The topology for the recomposed AFrame is illus-
trated in Figures 6. The correctness argument is derived
from that of the transformation frame of Figures 3 by the
addition of the following step:

1c knowing that the transformations occur on this
way...

The new frame concern requires that an appropriate
traversal of the input and output domains exists, that it can
be completed, and that the composition of the individual fil-
ters, which solve the sub-problems, compose to produce the
original transformation. The first part is discharged from
the detail of the specifications of the solutions to the input
sub-problem (given appropriate description of the pipes).

2Note that we annotate the Filter domain with a star (*) to indicate that
there may be many filters that share phenomena with the Scheduler.

The second part is discharged by the requirement of fair-
ness on the scheduling sub-problem, which prevents any
machine from being starved, and so failing to traverse the
domains. The third part is discharged by appropriate design
(or choice, where they exist already) of filter components.

In addition, in a general Pipe-and-Filter Architecture
deadlock between filters could prevent the chosen traver-
sal from being completed. Care must therefore be taken to
show that any sub-problem solutions when recomposed will
be deadlock-free. Of course, by choosing a linear pipeline,
as we have done, we avoid deadlocking concerns. In the
general case, this would be done by a correctness argument
for recomposing the sub-problem solutions, based on any
appropriate architectural constraints.

4.1 Using AFrames

Consider a simple but well known transformation prob-
lem from the literature: the ‘keywords in context’ (KWIC)
problem ([31]). The problem is to produce the keywords
for a sequence of lines, indexed by context. We show how
the application of the (linear) Pipe-and-Filter Transforma-
tion AFrames could lead the developer to the classical solu-
tion to the KWIC problem (for instance, [32]) highlighting
the assumptions that are needed to reach this solution.

The first non-trivial application (i.e. withn > 0) of the
(linear) Pipe and Filter solution to this problem, produces
two (filter) sub-problems, leading to the sub-problem de-
composition shown in Figures 7 (the filters sub-problems)
and 8 (the input and output subproblems). Together with
this would be an instantiated scheduling sub-problem; one
benefit of the AFrames approach is that sub-problems that
have generic solutions – such as scheduling – are high-
lighted, but do not require further analysis. From the filter
sub-problems and the correctness argument, we know we
require two filters whose composition is the KWIC trans-
formation. These must either be designed or, more likely,
reused; of course, AFrames, as representatives of architec-
tural styles, cannot remove the need for creativity in the ap-
plication of the style.

For completeness of the example, we have assumed that
the developer has available a box of filters for reuse, includ-
ing a circular shift filter (CS) and a sort filter (Sort), and can
reason that theKWIC transformation is equal aCStransfor-
mation followed by aSorttransformation. This removes the
need for further problem analysis in this paper.

Finally, in the figures, we assume that phenomena have
been chosen so that the correctness argument can be dis-
charged. In particular:

• input and output are text files, made up of text lines
and characters;

• all pipes have enough capacity to contain the result of
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intermediate transformations.

Y2CSF!Y2

CS filter

Pipe[1]

Circular 
shifts rules

Pipe[0]
P0!Y1

Y1

Y3SF!Y3

Sort filter

Pipe[2]

Sort rules

Pipe[1]
P1!Y2

Y2

Y1 : {TextLines} Y2 : {CircularShifts}
Y3 : {IndexedLines}

Figure 7. KWIC filters sub-problems through
the Pipe-and-Filter Transformation AFrame

Y1
Input
machine

Pipe[0]

Input

Input

Y2

IN!Y1

IM!Y2

Y3
Output
machine

Output

Pipe[2]

Output

Y4

P2!Y3

OM!Y4

Y1 : {File, Line, Char} Y2 : {TextLines}
Y3 : {CircularShifts} Y4 : {File, Line, Char}

Figure 8. KWIC input and output sub-
problems through the Pipe-and-Filter Trans-
formation AFrame

5 An MVC AFrame

In this section we consider a second AFrame, resulting
from the combination of control problems and the MVC so-
lution architecture.

The MVC (short for Model-View-Controller) (see e.g.,
[1]) is a way of structuring a software solution into three
parts – a model, a view, and a controller – to separate and
handle concerns related, respectively, to the modelling of a

domain of interest, the visual feedback to the user, and the
user input. The controller interprets user inputs and maps
them into commands to the model to effect the appropriate
change. The model manages one or more data elements,
responds to queries about its state, and responds to instruc-
tions to change state. The view is responsible for feedback
on the model’s state to the user. Standard communication
patterns (e.g., the Observer pattern [13]) apply between the
MVC parts.

We consider the class of control problems with feedback
to the operator, which are captured by the User Commanded
Behaviour Frame [18]. More precisely, the problem is that
of building a machine that will accept the user’s commands,
impose control on some part of the physical world accord-
ingly, and provide suitable feedback to the user3. The User
Commanded Behaviour Frame is illustrated in Figure 9.

Controlled
domain

C
OM!C2

CD!C3
Required

behaviour and feedback

C4

Operation
machine

User
B

OM!Y1US!C1
C1,Y1

Figure 9. User Commanded Behaviour Frame

The frame concern for the User Commanded Behaviour
Frame is given in Figure 10. From the figure you will notice
that the argument has two parts: satisfying the required be-
haviour of the domain (from 1 to 4); and providing suitable
feedback to the user (5 and 6).

By combining MVC and User Commanded Behaviour
Frame we obtain an AFrame which representsthe class
of user commanded behaviour problems with feedback for
which an MVC solution is to be provided. Again, the in-
tention of using the MVC in the solution space is recorded
through an annotation of the machine as illustrated in Fig-
ure 11. Guidance on decomposition is again in the form of
decomposition templates, which are applied to obtain sub-
problem diagrams. The decomposition templates for the
MVC AFrame are given in Figure 12.

It can be seen from the figure that the original prob-
lem is decomposable into two sub-problems, whose ma-
chine domains are the View and Controller machines (in the
MVC sense). Also, a Model domain is introduced which
represents a faithful abstraction of the domain to be con-
trolled. This is a designed domain, i.e. a domain designed

3[24] introduces a subclass of this frame, the Commanded Behaviour
Frame, which does not require the user to receive any feedback.
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Controlled
domain

C

Required
behaviour and feedback

Operation
machine

User
B 6. 

(requirement)

2. 
(specification)

4. 
(requirement)

3. 
(domain 

properties)

5. 
(specification)

1. 
(requirement)

1 Given a choice of commands in the current state, when
the user issues this command (it may or may not be
sensible)..

2 if sensible or viable the machine will cause these
events...

3 resulting in this state or behaviour...

4 which satisfies the requirement...

5 and which the machine will relate to the user...

6 thus satisfying the requirement in every case.

Figure 10. The frame concern for the User
Commanded Behaviour Frame

as a faithful representation of the domain of interest, which
will reside inside the solution machine4 The resulting sub-
problems are then: that of building a View machine to dis-
play the Model’s representation of the state of the controlled
domain; and that of building a Controller machine that acts
on the Model, which will pass on the commands to the con-
trolled domain. In Problem Frames terms, the Model acts
as aconnection domain[24] between the real-world domain
and presentation and control subsystems.

The recomposition diagram for the AFrame, together
with the correctness argument, is given in Figure 13.

5.1 An example

We consider the following example of a user com-
manded behaviour problem (derived from that reported in
[29, 10, 20]). A computer system is required to control the
safe and efficient operation of the catalyst unit of a chemical
reactor. The system should allow an operator to issue com-
mands for activating or deactivating the catalyst unit, and to
monitor outputs. The application of the MVC AFrame to

4Another MVC AFrame for the User Commanded Behviour frame is
defined in [?]. This includes a third sub-problem template for establishing
the equivalence of a model and a complex controlled domain.

Controlled
domain

C
OM!C2

CD!C3
Required

behaviour and feedback

C4

Operation
machine

User
B

OM!Y1US!C1
C1,Y1MVC

Figure 11. MVC annotation of the User Com-
manded Behaviour Frame

User
B

US!C1

Required behaviour

C1

Controller

Model
Controlled

domain
C

MO!C
3

CO!C
2 C4

User
B

VI!Y3

Feedback

Y2

View

Model

MO!Y2 Y1

CD!C4

Controlled
domain

C

CD!Y1

(b) View sub-problem

(a) Controller sub-problem

Figure 12. Decomposition templates for the
MVC AFrame

this problem results in the decomposition of Figure 14.
A possible description of the interaction rules could be

as follows. The machine must allow the user to control the
catalyst under the following constraints:

1. catalyst statusis a faithful representation of the state
of the catalyst

2. the initial state of the catalyst iscatalyst closed

3. possible user commands areopencatalyst or
closecatalyst

4. allowed state transitions are represented in Figure 15.

6 Discussion

We see at least two strengths of AFrames. The first is
that they suggest how a problem would need to be restruc-
tured to fit a particular solution form; for instance, in the
MVC case, that an abstract model of the catalyst needs to be
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Controller User
B

View

Required
behaviour and feedback

Controlled
domain

C
Model

6. 
(requirement)

4. 
(requirement)

3. 
(domain 

properties)

5. 
(specification) 1. 

(requirement)

2. 
(specification)

1 Given a choice of commands in the current state, when
the user issues this command (it may or may not be
sensible)..

2 if sensible or viable the machine, through the model,
will cause these events...

3 which, given a faithful model, results in this state or be-
haviour...

4 which satisfies the requirement...

5 and which, given a faithful model, the machine will re-
late to the user...

6 thus satisfying the requirement in every case.

Figure 13. Correctness argument in MVC re-
composition

produced. This begins to address the ‘green site’ criticism
that we mentioned previously. The second is that they help
in solution synthesis by guiding the recomposition of sub-
problem solutions into a solution for the original problem.
Recomposition is facilitated through knowledge encoded in
the links among architectural elements that are exploited
during AFrame decomposition. This begins to address the
previously mentioned ‘need for expertise’ criticism.

In deriving decomposition and recomposition guidance
from architectural styles (and, we assume, architectures,
and components too) AFrames offer to extend greatly the
usefulness of the Problem Frame framework. We expect
that the return on the investment of time to encode architec-
tural artefacts as AFrames will be good, given the promise
of Problem Frames, and the richness of Architectures.

AFrames, like Problem Frames, make no unreasonable
assumptions of machines or humans: they are not, for in-
stance, a substitute for creativity. Nor do they constrain
the design process unreasonably; AFrames provide very
general decomposition guidance so as not to second-guess
choices that are properly part of design and implementation.
In addition, an AFrame is an annotated machine domain to-

User
US!a

Catalyst 
behaviour

a

    Controller

Model Catalyst

MO!d

CO!c
e

User
VI!b

Feedback

b

View

Model

MO!d e

CA!e

Catalyst
CA!e

b : {catalyst status} a : {opencatalyst, closecatalyst}
d : {is open, is closed} c : {opencatalyst, closecatalyst}
e : {open, closed}

Figure 14. MVC decomposition of the user
commanded behaviour sub-problem

catalyst_opencatalyst_closed

open_catalyst

close_catalyst[catalyst_closed]

[catalyst_open]

waiting_open

waiting_closed

Figure 15. State machine model for the cata-
lyst

gether with a fixed number of sub-problem templates. The
complexity of any AFrame is therefore constant. And yet,
over the appropriate problem class, the decomposition guid-
ance that an AFrame offers scales to complex problems of
that class.

In addition, as we have seen, AFrames support reuse of
artefacts and designs: although templates can identify many
sub-problem classes, the generated sub-problems will, in
being motivated by existing solution space structures, corre-
spond to existing solution space artefacts; even in the worst
case, they will have produced sub-problems that are closer
to solution (with recomposition, through the architecture,
being the basis of the discharge of the correctness argu-
ment).
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7 Conclusions and Future Work

In this paper, we have shown how to use solution struc-
tures to guide problem decomposition.

This work specifically addresses three limitations of
Problem Frames by providing a way of interpreting existing
solution structures within the Problem Frames framework.
We note that this is much more systematic and general than,
say, providing ad-hoc guidance for decomposition and re-
composition. We believe that the translation of existing
architectural styles to the problem domain will bring with
it much of the related development expertise. These will
then be available to strengthen the promise of the Problem
Frames framework.

We have defined two AFrames corresponding to Pipe-
and-Filter and MVC architectural styles as applied to trans-
formation and control problems, respectively, and applied
them to two problems from the literature, to produce de-
tailed sub-problem decompositions. We have also discussed
how properties of the sub-problem solutions contribute to
recomposition and the discharge of the frame concern.

We have argued that the introduction of AFrames into
the Problem Frames framework addresses some of the crit-
icisms made of Problem Frames. In doing so, we have
brought the benefits of a problem focus closer to the main-
stream of software development.

Future work will extend the approach presented in this
paper in many directions. Firstly, the scope of the work
must be widened to include generic software architectures
and realistic applications. Also, to become practically rele-
vant, the approach must be demonstrated to be both useful
and usable. A measure of its usefulness and usability must
be developed and the approach validated empirically, above
and beyond the limited validation offered in this paper.

Secondly, the relation between the provided architectural
analysis techniques in the problem space, and more tradi-
tional trade-off analysis techniques in the solution space [8]
will need exploring, in particular with a focus on the non-
functional requirements and emergent non-functional char-
acteristics of candidate designs.

Finally, the implications of the approach in terms of the
analysis and synthesis processes will need considering. As
already noted in the literature (see, e.g., [1, 30]), the design
of software is a process that iterates between problem and
solution spaces. In this paper, we have detailed a single iter-
ation within the problem space via the solution space. Fur-
ther iterations are then possible by considering the products
of the problem decomposition. In this case, a major issue
is the recomposition of solutions derived from different ar-
chitectures to produce a solution for the original problem;
there are a number of recomposition concerns that need in-
vestigation.
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