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Abstract
Problem Frames are a systematic approach to the
decomposition of problems that allows us to relate
requirements, domain properties, and machine
specifications. Having decomposed a problem, one
approach to solving it is through a process of
composing solutions to sub-problems. In this paper,
we contribute to supporting such a process by
providing a way to compose multiple Problem
Frames. We develop a systematic approach to
composing inconsistent requirements. We introduce
Composition Frames, a requirements construct that
models relevant aspects of composition and thus deals
with unwanted effects, such as interference of
overlapping reactions to events. Throughout the paper
we use a simple case study to illustrate and validate
our ideas.

1. Introduction

Problem Frames are an approach to the
decomposition of problems [17]. Given a good
decomposition of a problem into sub-problems, a
range of benefits would arise if we were able to provide
a solution by solving the sub-problems in isolation
and then composing the partial solutions to give a
complete system [25, 26, 5]. The benefits include:
scalability (due to working at the level of simpler sub-
problems), traceability (since sub-problems map
directly to their solutions), and easier system evolution
(changes to sub-problems can be addressed by
modifying corresponding solutions or compositions).

The composition problem is important, since
solving it supports a better separation of concerns
between requirements analysis and the design phase.
The ability to compose solutions allows us to take a
set of decomposed requirements, provide individual
solutions to discrete requirements and then address the
overall system requirements by recomposing solutions.
This is consistent with an iterative approach to
development [21,14].

The composition problem involves a number of
difficult areas: Are the requirements to be composed
consistent? Do the specifications to be composed share
assumptions about their environment? Do they
embody consistent models? How do we deal with
interference between the effects of machines on the
problem domain? We focus on the first and last of
these questions, but in doing so address the others to
varying degrees.

 The contribution of this paper is to show how to
address the composition problem for inconsistent
requirements. We propose ways to weaken the
conjoined requirements, resolving any inconsistencies,
in a manner that allows us to satisfy them. We
introduce Composition Frames, to express the
requirements of composition, allowing us to provide
arguments showing their satisfaction. Composition
Frames model composition in order to deal with
unwanted effects: that is interference of overlapping
reactions to events. Composition Frames include the
specification of a Composition Controller. In solution
space terms these correspond to the notion of an
architectural connector [1]. This allows us to move
backwards and forwards between architectural and
requirements perspectives using the Composition
Frame as a reasoning tool. Thus trade-offs can be made
between design and analysis issues.

 The paper is organized as follow. In section 2 we
present a simple problem decomposition whilst giving
a brief introduction to Problem Frames. In section 3
we present our approach to the composition problem.
We begin by considering the semantics of requirements
composition, then introduce Composition Frames as a
way of reasoning about the relationship between
composed requirements a n d  composition
specifications.  We give specifications for some
example compositions. In section 4 we compare our
work with other approaches.  Section 5 is a discussion
drawing some lessons about the composition of
requirements, the composition of solutions, and their



relationship. We conclude in section 6 and present
future work.

2. Introductory Example

Throughout this paper we will use an example that
involves specifying the requirements for the control of
a sluice gate. The example is based on material in [17]
which explores a number of further aspects of the
problem that do not concern us here. The sluice gate
has a motor that can be controlled by pulse events
(Clockw, Anti, On, Off) to move it up or down, and a
sensor that indicates when it is fully open or shut by
generating events (Top, Bottom). The problem is to
control the sluice gate by moving it up and down
subject both to pre-programmed control (P) that
ensures it is open for 10 minutes in each three-hour
period whilst also allowing for intervention by a
human operator (OI). The human operator may wish to
raise, lower, or stop the gate. The problem is
represented in the problem diagram in figure 1.

a: C!{Clockw,Anti, On,Off}      b:G{Open,Shut}
   G!{Top,Bottom},                    c:O!{Raise,Lower,Stop}

Figure 1. Problem Diagram

The diagram shows us the relationship between a
machine domain (Control) that implements a solution,
problem domains, that is entities in the world that the
machine must interact with (Gate and Operator), and
the problem requirements (the dotted oval). The
requirements are to be met by providing a suitable
machine. The machine domain (indicated by double
lines on its left side) is a domain that is to be designed
and for which we will provide a specification. The
lines between domains labeled a, b, c represent
interfaces between those domains i.e. shared
phenomena by which they interact. In the example, the
phenomena are given as sets of events. The prefixes,
such as C!, show which domain controls a set of
events (in this case the machine Control). Ultimately,
we wish to show that given a particular machine
specification the requirements are met; this requires us
to have appropriate descriptions of the domains. In the
above diagram we show that requirements P and OI are

to constrain the operation of the gate (the dotted
arrow), they reference the behaviour of the operator (the
dotted line). We will work with the following
specification of P and OI.

P – The gate should be opened for the first ten minutes of
each three-hour period

OI – The gate should respond to Raise, Lower and Stop
commands issued by the operator.

It is clear that there is some potential inconsistency
between the requirements P and OI. For example, what
if the Operator wants to raise the gate when the Timed
machine is lowering it? This inconsistency is an
example of “divergence”  [19]. In section 3.1 we
propose ways to weaken the conjoined requirements,
resolving any inconsistencies, in a manner that allows
us to satisfy them. Our two domains are described as
follows:

Gate : The Gate, when stopped, will react to a
<Clockw, On> event sequence by moving upwards,
unless already fully open. When stopped, it will react
to an <Anti, On> event sequence by moving
downwards, unless already fully closed. When it
receives an Off event it will turn its motor off,
stopping any motion. When it detects that it is fully
open it will generate a Top event. When it detects that
it is fully closed it will generate a Bottom event.

Operator: The operator will generate Raise commands
to request the gate moves upwards, Lower commands
to request the gate moves downwards, and  Stop
commands to request the gate stops.

The domain descriptions given above, along with
the interface topology, gives us a framework for
checking whether a given machine specification meets
our requirements. One immediate difficulty is how we
arrive at that specification. The Problem Frames
approach involves decomposing a Problem Frame by
identifying sub-problems (projections of the original
problem) that match well-known diagram forms,
known as basic Problem Frames. These are problems
in a form that are both relatively simple and well
understood to the extent that we can expect to address
them directly. In our example, we can decompose the
problem into the pre-programmed and operator
intervention sub-problems as shown in figures 2 and 3.

The Problem Frame for requirement P is of a well-
known form called a Required Behaviour Frame,
drawn from a catalogue of five basic Frames identified
in [17].
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a: T!{Clockw,Anti, On,Off}      b:G{Open,Shut}
   G!{Top,Bottom},                     

Figure 2. Problem Frame for Req. P

We postulate that the following specification for the
machine called Timed, along with the above
description of the Gate, is sufficient to establish that
the requirement P is satisfied. The obligation to
demonstrate that such a predicate holds is known as
the frame concern, and the case for it holding needs to
be made either formally or informally depending on
context.

STimed: 
At (time mod 180) = 0, start to open the gate
(issue a <Clockw, On> event sequence).

At (time mod 180) = 10, start to close the
gate (issue an <Anti, On> event sequence).

On receiving Top or Bottom events from
the gate and motor, issue an Off event.

a: I!{Clockw,Anti, On,Off}      b:G{Open,Shut}
   G!{Top,Bottom},                    c:O!{Raise,Lower,Stop}

Figure 3. Problem Diagram for Req. OI

The Problem Frame for requirement OI is similarly
of a well-known form and is called a Commanded
Behaviour Frame. Again, we postulate that given the
above descriptions of the domains Gate and Operator,
the following specification for the machine Interactive
will ensure that the requirement OI is met.

SInteractive:
On receiving an operator Raise
command, issue a <Clockw, On> event
sequence.

On receiving an operator Lower
command, issue an < Anti, On> event
sequence.

On receiving an operator Stop command,
issue an Off event.

At this stage, we have taken our problem and
decomposed it into two sub-problems. In itself this
process is useful as it gives us a better understanding
of the problem domain [17]. We have also provided
solution specifications for the sub-problems. But how
do we compose the two machines specified for
Interactive and Timed, in order to produce a
specification for the machine named Control in figure
1 that meets the frame concern of that diagram?  To
address this question for more than the simplest of
disjoint requirements, we need to deal with the
inconsistencies between requirements. We assume that
the two machine specifications are likely to be
composed in such a way that their implementations
can be run on a single physical machine.

3. Composing Requirements

In this section we propose a way to deal with the
issue of composing inconsistent requirements. In
section 3.1 we present some systematic options for
resolving inconsistencies. In section 3.2 we present a
modeling construct – Composition Frames - allowing
us to relate composed requirements to composed
solutions. In sections 3.3 we illustrate how to specify
a composition consistent with a Composition Frame.

3.1 Requirement Composition Options

In composing requirements, we need some way to
address inconsistencies between them. There is a time
dimension to this problem, in that there may be times
when requirements are inconsistent and times when
they are consistent [19]. From a Problem Frames
perspective, inconsistencies will manifest themselves
in terms of machine specifications producing
interfering effects on problem domains. For example,
the timed machine may try to raise the gate whilst the
interactive machine is trying to lower it. However, in
order to separate concerns between problem and
solution spaces, we want to deal with requirements
inconsistencies purely in requirements, rather than
implementation terms. In this section we show how
this can be done. We need to reason about interactions
between our two machines and the problem domain in
order to see if conflicts of control can arise. Given a
machine M and a domain D, let us take the phrase, “D
is currently reacting to M” to mean that M has
generated an event that D is in the process of reacting
to, i.e. the event has caused some activity in the
domain which has yet to terminate. Note that we do
not require the reaction to generate an event shared
with either the original or any other machine. In the
sluice gate system, for example, the sluice gate and its
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motor will be currently reacting to a machine that has
caused a clockwise or anticlockwise pulse, followed by
an On pulse. This condition will cease once an Off
pulse is received by the motor.

In general, we will need to analyse individual
Problem Frames in order to establish what observable
phenomena allow us to determine when a domain
becomes under active machine control and when this
ceases. We would expect this analysis to be amenable
to at least partial automation.

In the absence of any knowledge about the internal
structure of D, we must assume that any machine that
generates a further event shared with D may interfere in
some manner with the original reaction. In the sluice
gate example we have a number of options:

1 .  Take no steps to prevent interference between
operator and timed commands.

2. Only allow a machine to generate events shared
with the Gate domain if that domain is not
currently reacting to the other machine.

3. Establish priorities between the two machines, so
that one of them is allowed to generate events
shared with the Gate domain even though it is
currently reacting to the other machine, but not
vice versa.

4 .  As in 3, but attach priorities to the events
themselves, i.e. work with smaller units of
granularity.

In order to clearly state our composition
requirements, we need to describe these options
independently of solution-space concerns and in more
general terms. To this end we propose the following
ways of combining two general requirements R1 and
R2. For the example above, R1 and R2 are the
requirements for the timed gate and operator controlled
gate respectively.

Option 1: No Control
Let R1  ^{any}  R2 be the requirement that R1 and

R2 should each be met at times when they are not in
conflict, but there is no requirement that any conflicts
should be resolved, and if there are times when
conflicts occur any emergent behaviour is acceptable.

Option 2:  Exclusion
Let  R1  ^{active}  R2  be the requirement that both

R1 AND R2 should hold at all times except that when
R1 leads to some activity in the world, R2 may be
suspended and vice versa.

Option 3: Exclusion with Pre-emption
Let  R1  ^{R1}  R2  be the requirement that both R1

and R2 should hold except that when R1 leads to
some activity in the world, R2 may be suspended.

Option 4: Exclusion & Fine Grain Pre-emption
Let  R1  ^{important, R1}  R2  be the requirement that

R1  ^ {R1}  R2 holds, except that any sub-requirement
associated with the phenomenon important should be
given top priority. For the sluice gate example,
important might be instantiated as the operator Stop
event.

Option 1 is unacceptable in the context of the sluice
gate problem. For example, the domain properties
given above do not tell us the effect of overlapping a
raise command from the operator with the lowering of
the gate by the timed machine. In general, however,
there might be cases where interference between the
behaviours specified by two requirements is allowed or
even desirable. In this paper we will investigate
Options 2 and 3, leaving Option 4 for further work,
but noting that many of the principles developed here
will also apply.

3.2 Composition Frames

We need to address the problem of composing two
machines, each specified separately using Problem
Frames, in order to address combined requirements.
The solution we present below is to introduce a new
form of Problem Frame: a Composition Frame. These
frames include all of the domains from the two
Problem Frames being combined, including the
machine domains. Additionally we need a mechanism
to resolve conflicts between requirements, which we
develop below in the context of our running example.
We have developed a single Composition Frame that
can address either Option 2 or Option 3 above. We
show below how the choice of a machine specification
allows us to select between one of these two options.

We want our Composition Frame to clearly express
the requirements of composition, allowing us to
provide arguments showing their satisfaction. This
requires us to overcome the tendency to address
composition in design or implementation terms. Once
again we start by making a strategic retreat: looking at
some solution space concerns and then reverse
engineering the requirements. In this we follow [14,
21] in recognizing that it is not always desirable or
possible to ensure a complete separation of concern
between problem and solution spaces.

Now consider the sluice gate example in terms of
Option 2 and Option 3 from section 3.1. These
options share some implementation concerns. We need
to model whether the gate domain is reacting to a
particular machine, and impose control over which
machine(s) is allowed to interact with the gate on the
basis of this model. These two concerns cannot be seen
as belonging solely to the solution space. Both issues
are tightly bound to our problem domain descriptions.



One possible diagram for specifying this form of
composition is given in figure 4. Note that this is not
a problem diagram: there is no requirement shown (and
also there are two machines included). In this diagram,
a Composition Controller is interposed between the
machine and the world in order to control what events
each side sees. In architectural terms, this corresponds
to imposing a connector [1] between the machines and
the interfaces to the Gate and Operator. The Controller
will monitor events to build up a global view of what
is happening and provide appropriate control. However
this view is based on a premature jump into the
solution space.

a: T!{Clockw,Anti, On,Off} a’: I!{Clockw,Anti, On,Off}      
    C!{Top,Bottom},     C!{Top,Bottom},
a’’: C!{Clockw,Anti, On,Off} c:C!{Raise,Lower,Stop}
      G!{Top,Bottom},                     c’:O!{Raise,Lower,Stop}

Figure 4. Composition Diagram

In figure 5 we move back to a requirements
perspective. Whilst the layout of this diagram is less
suggestive of the idea of interposing the Controller (an
implementation concern), it is more illustrative of the
need to establish a frame concern (requirement) by
arguing from a machine specification (Controller) via
domain properties. Our original machines now become
given problem domains. The diagram, which we will
call a Composition Frame, has a requirement attached
to it, denoted RC. The idea is that we can address
either of the requirements options 2 and 3 of section
3.1 using machines that fulfill requirements R1 and
R2 and a Controller meeting a suitable RC.

a: T!{Clockw,Anti, On,Off} a’: I!{Clockw,Anti, On,Off}      
    C!{Top,Bottom},     C!{Top,Bottom},
a’’: C!{Clockw,Anti, On,Off} c:C!{Raise,Lower,Stop}
      G!{Top,Bottom},                     c’:O!{Raise,Lower,Stop}
b:G{Open,Shut}

Figure 5. Composition Problem Frame

We will parameterise the requirement RC with a
protocol Prn, such that the frame can address either of
Option 2 or Option 3 above. The protocol Pr2 for
Option 2 is that the original machines (Timed and
Interactive) retain control of the gate once they gain it,
until they voluntarily relinquish it. The protocol Pr3

for Option 3 is that the Timed machine retains control
of the gate but can forcibly grab control from the
Interactive machine. Support for Option 4 can be given
within a similar scheme, but to do so would
complicate the presentation of our main ideas.

Requirement RC:

The requirement RC can be expressed as two sub-
requirements:

RCa: The Timed and Interactive Machines
shall gain mutually exclusive control to the
gate. This is done subject to a protocol Prn.

RCb: Operator commands received whilst the
gate is under timed control shall be rejected.
Otherwise commands shall be passed to the
Interactive machine.

Notice that the extent to which the requirement RC
can be said to be expressed independently of
phenomena at the machine interface is debatable.
Nonetheless the requirement is expressed precisely.
Furthermore, it will become clear that we can address
the requirement RC using a decomposition that
addresses RCa and RCb independently.

In figure 6 we see that requirement RCa is a
constraint on the behaviour of the gate (it must only
respond to a machine that has gained control according
to Protocol Prn). The requirement involves references
to the phenomena sets a, a’ and b.

a: T!{Clockw,Anti, On,Off} a’: I!{Clockw,Anti, On,Off}      
    C!{Top,Bottom},     C!{Top,Bottom},
a’’: C!{Clockw,Anti, On,Off} b:G{Open,Shut}
      G!{Top,Bottom},                     

Figure 6. Frame for Rca
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In figure 7, the requirement RCb involves knowing
whether the gate is actively under the control of the
Timed machine. So we include all the phenomena
references from figure 6. Furthermore, the requirement
references the phenomena set c, representing the
operator issuing commands, and constrains the
behaviour of the gate according to whether they are
accepted or ignored. Notice that the diagram has helped
us to refine requirement RCb from its original
expression in terms of which events get passed to the
Interactive machine to its expression in terms of the
Gate behaviour.

a: T!{Clockw,Anti, On,Off} a’: I!{Clockw,Anti, On,Off}      
    C!{Top,Bottom},     C!{Top,Bottom},
a’’: C!{Clockw,Anti, On,Off} c:C!{Raise,Lower,Stop}
      G!{Top,Bottom},                     c’:O!{Raise,Lower,Stop}
b:G{Open,Shut}

Figure 7: Frame for RCb

3.3 Controller Specification and Frame
Concerns

In sections 3.1 and 3.2 we showed how to specify
composition requirements and relate them to machine
specifications addressing sub-problems. We now need
to show how to provide specifications for the new
machine introduced by a Composition Frame.
Furthermore, in order to provide a framework for
verifying composition correctness we need to state a
frame concern [17]: the shape of an argument allowing
us to show the composition specification meets the
composition requirements. Below, we show how to
address these problems using our running example. We
first deal with Option 2, and then show that Option 3
can be dealt with by extending the specification for the
machine in Option 2.

Now consider the frames introduced in section 3.2,
in respect of Option 2. We need to clarify the frame
concerns for figures 6 and 7 in relation to the
requirements (P  ^{active} OI). The frame concern for
figure 6 is that the Timed or Interactive machines do
not generate events that cause a reaction in the gate if
the gate is currently reacting to the other machine. The

frame concern for figure 7 is that operator commands
be rejected when the gate is currently reacting to the
Timed machine. Since both of these concerns require a
machine that models the status of the gate it is
sensible to provide one specification for the Controller
that meets both frame concerns. As a consequence of
doing so, we avoid introducing a second composition
problem!

The controller can be viewed as a state machine that
must be able to deal with three states: neither machine
considered active; the Timed machine considered
active; and the Interactive machine considered active.
In the first case we are concerned with monitoring the
Timed and Interactive machine to detect that they wish
to be considered active. In the latter two cases we need
to pass events from one of the machines to the gate
and ignore the other machine. We also need to detect
when the machine considered active can be treated as
passive. When the interactive machine is active we
need to pass events from the operator to the gate. An
operational specification based on such a state machine
can be provided systematically.

timedMActive = False
interactiveMActive = False
LOOP
  WHILE NOT (timedMActive OR interactiveMActive)
    wait and accept an event
    CASE event OF
      T:event: pass event to Gate;
      timedMActive = True;
       O:event: pass event to Interactive;

interactiveMActive = True;
      ENDC
    ENDLOOP
    WHILE timedMActive
      wait and accept an event
      CASE event OF
        T:Off: pass event to Gate;
      timedMActive = False;
        T:event: pass event to Gate;
        O:event: reject event;
      ENDC
    ENDLOOP
    WHILE interactiveMActive
      wait and accept an event
      CASE event OF
        T:event: reject event;
        I:Off: pass Off to Gate;
      interactiveMActive = False;
        I:event: pass event to Gate;
        O:event: pass event to Interactive;
       ENDC
    ENDLOOP
ENDLOOP

Figure 8: Specification for machine to
meet RCa and RCb for P ^ {active} OI

On this basis a specification to meet the frame
concerns of figures 6 and 7 is given in figure 8.  The
specification is operational in form. It encodes the state
machine discussed above, in a pseudo code including a
pattern matching facility. Note that in the case
statements we have chosen to prefix events by the
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initial of the domain that generates them. Thus T:event
represents the binding of an event generated by the
Timed machine to a variable named event. More
specific cases are given by pattern matching with
specific event names, e.g. T:Off. In this example this
is unambiguous and aids comprehensibility. The
specification makes a number of important
assumptions. Firstly we assume the frame is not super-
imposed on machines that are already actively in
operation. Removing this assumption leads to an
initialization problem (of the world and the machine!)
which is almost certainly worthy of a problem diagram
in itself. We also assume that the Timed and
Interactive machine are correctly specified. For example
in the first inner loop we do not explicitly deal with
the situation where the Interactive machine generates an
event: we assume it doesn’t do so as it has not yet
received any operator commands. The possibility that
in another scenario we are required to deal with a
number of such anomalies demonstrates the
desirability of our systematic approach to the
composition problem.

A scenario in which the Timed machine generates
an event whilst the Interactive machine is controlling
the gate is dealt with in the third inner loop. The
Controller will reject the event from the Timed
machine. The timed machine might generate all the
correct events (and none other) to meet its specification
in isolation from the composed frame. However, the
overall system will be meeting the requirements of the
composed frame that allows for a weakening of the
behaviour specified for the timed machine.

The difference between the semantics of
composition for Option 3 compared to Option 2 is that
the timed machine should be able to forcibly gain
control when the Interactive machine is currently
controlling the gate. Clearly the Controller
Specification is a variant on that for Option 2, and
requires us to make changes only to the third inner
loop of that specification. That loop is shown in figure
9 with changes in italics.

WHILE interactiveMActive
      wait and accept an event
      CASE event OF
        T:event: issue Off event to Gate

interactiveMActive = False
timedMActive = True
issue event to Gate;

        I:Off: pass Off to Gate;
      interactiveMActive = False;
        I:event: pass event to Gate;
        O:event: pass event to Interactive;
       ENDC
    ENDLOOP

Figure 9: Changes to Controller to meet
RCa and RCb for P ^ {P} OI

4. Related Work

There are very few other general approaches to
decomposing problems rather than solutions. Notable
exceptions are the goal-based approaches of KAOS [20]
and the NFR framework [6]. However these two
approaches are not immediately suited to our
composition approach, as they do not focus on domain
properties.

Composition of software artifacts has been
addressed by a range of aspect-oriented techniques [7].
However with the notable exceptions of  [15],  [23],
and [3], aspect-based approaches, whilst capable of
addressing design and implementation issues, do not
address requirements and their decomposition. The
approaches of [15] and [23] are mainly concerned with
reconciling inconsistencies between a range of non-
functional requirements and do not fully address
decomposition of functional requirements. While [3]
does consider requirements and their relationship to
design and implementation, it does not focus on the
issues of composition.

A number of formal approaches exist where
emergent behaviours due to composition can be
identified and controlled [1,8].  Our approach differs
from these in that we identify how requirements
interact and remove non-deterministic behaviour by
imposing priorities over the requirements set.

The whole area of inconsistency management
[11,12,13] offers a variety of contributions to dealing
with inconsistencies in specifications. Robinson, in
particular [24], reviews a variety of techniques for
requirements interaction management, and Nuseibeh et
al [22] discusses a range of ways of acting in the
presence of inconsistency. None of these approaches
address the decomposition and recomposition of
requirements to facilitate problem solving.

In [10], a run-time technique for monitoring
requirements satisfaction is presented. This approach is
taken further in [9], where requirements are monitored
for violations and system behavior dynamically
adapted, whilst making acceptable changes to the
requirements to meet higher-level goals. This requires
that alternative system designs be represented at run-
time. One view of our approach is that it involves the
monitoring of when a requirement leads to system
activity (and the taking of appropriate action). Our
approach differs further, in that it is more lightweight:
we do not need to maintain alternative system designs
at run-time.

Our work is related to the feature interaction
problem, identified in the field of telecommunications
[25]. While less ambitious about the extent to which
requirements can be composed, our work is less
domain-specific. In [26] work is presented on the
conjunction of specifications as composition in a way
that addresses multiple specification languages, but the



emphasis is less on the relationship between
requirements and specifications.

The need to compose frames is identified in [17]
which provides a frame called a Composite frame to
this end. However Composite Frames omit any detail
of how to reconcile inconsistencies between the
requirements of the machines being composed, or how
to deal with interference between phenomena.

In [18] we sketched some options in composing a
sluice gate control machine with a safety machine in
order to address safety concerns. That was in the
context of a more philosophical discussion of
composition and decomposition. The work presented
in this paper differs, in that we embody the
composition as an extra machine (in Problem Frame
terms).  This gives us the potential to deal with a
wider range of compositions.

In [16] other concerns of a timed sluice gate are
dealt with, in a more formal setting. An example of
composition is given, but the conjoining of
specifications takes place in a context where the
outputs of the two specifications are distinct. As a
result, the difficulties dealt with in this paper do not
arise.

Our approach is strongly related to the mutual
exclusion problem [2] of concurrent resource usage, but
with an explicit emphasis on requirements satisfaction.

5. Discussion

We have shown how to systematically analyse the
requirements for composing two specific Problem
Frames and arrive at the specification for a machine to
control the composition. We have given an instance of
a new form of Problem Frame encapsulating these
ideas. The composition is done non-intrusively in the
sense that we have made no changes to the
specifications of the machines being composed. In this
section we consider how our work can be generalized,
alternative composition semantics, and the significance
of our work.

It is well understood that in producing a machine to
solve a real-world problem there is usually a need to
implement an (analogic [17]) model of at least part of
the problem domain. Of course arriving at a conceptual
model that can subsequently be implemented is often
very problematic in itself. In the case of our Timed and
Interactive machines not only are the models very
simple but they are also rather implicit. This is partly
because the original machine specifications assume that
no other entity interacts with the sluice gate. For
example, the Timed machine assumes that the sluice
gate is in the last position it left it in. So we just have
a simple cycle of open-wait-close at fixed times. What
happens if we start to open the gate from a position
other than fully closed? Luckily for us this is not
problematic as the gate indicates when it has reached

the fully open position by generating a Top event. If,
for example, the domain description of the sluice gate
had said that the sensor that produces the Top event
was unreliable, and that failing to stop the gate when it
reaches the fully open position could burn out the
motor, we would be in more problematic territory. In
such a situation we would probably have calculated
how long it takes to raise the gate from fully closed to
fully open and timed the point at which we needed to
generate an Off event. The Timed machine would then
be more robust (assuming a reliable timer and that the
motor raises the gate at the right speed). However the
composed system may still result in a damaged gate if
the operator leaves the gate in positions other than
fully closed.

To fully resolve the problems in the scenario above,
we would need to explicitly model the position of the
gate. Composing machines containing such models is
more complex, unless they have been originally
designed to model changes to domains affected by
entities other than themselves. The problem is that the
model in one machine may become inconsistent with
the world, due to the world being changed by another
machine.

This paper has demonstrated that composing
machine specifications in order to meet a conjoined
requirement requires careful analysis, involving both
implementation and requirements issues. However we
have also shown one way in which composition comes
for free. This was demonstrated in section 3.3 where
requirements RCa and RCb were addressed using one
shared specification. In a realistic system development,
we would expect to have to address many composition
problems, so being able to deal with some cases in a
lightweight manner is important.

It is not difficult to see how the Composition
Frame can be generalized to two machines A and B
and a domain C under their control. In the
specification we used the notion of a machine
becoming active when the gate is currently reacting to
it. We modelled the state of the system with respect to
either or no machine being active, and had to identify
and deal with phenomena involving a change in that
state. Of course, for other examples, examining how
some domain in the world comes to be ‘actively
reacting to a machine’, and how that condition changes
might be much more complex.

Our Composition Frame deals with two specific
Problem Frames, a Required Behaviour and a
Commanded Behaviour Frame. It is fairly easy to see
that it would generalize to composing two Required
Behaviour Frames, or similarly two Commanded
behaviour Frames. We can deal with other basic
Problem Frames in a similar fashion. The basic set of
Problem Frames in [17] also includes frames to
display information, edit data, and transform data. The
interaction issues that need to be dealt with in such



cases by the Controller go beyond those illustrated in
this paper to include issues such as sequencing and
scheduling [17].

An alternative semantics for composition is a
situation where we know that at any given time a
specific requirement should apply; e.g., the sluice gate
should be subject to operator control during weekdays
but timed behaviour at night and during weekends. At
first sight this seems to simplify the design of the
Controller, as we do not need to dynamically deal with
inconsistencies in requirements. We suggest that this
may not be the case, since in general we presumably
still need to effect a smooth transition between the
Timed and Interactive machine [18]. We would go
further and say that systematic analysis of the issues in
switching between two machines is an important issue
in its own right.

Whilst much work has been done on protocols for
controlling mutual access to resources in program
code, less attention seems to have been paid to the
problem of systematically gaining control over  
domains in the real world [14]. This oversight seems
all the more serious when consideration is given to the
potential complexities of determining both when a
domain begins to react to a machine and when this
stops, taking into account in the latter case issues
associated with momentum, acceleration and
deceleration etc.

6. Conclusions and Future Work

We have shown how to combine two inconsistent
requirements in terms of the operator given in section
3.1. We have given a simple example of developing a
system through a process of decomposition and re-
composition, with solutions to sub-requirements being
developed in isolation from other concerns. Our
Composition Frame allowed us to reason about the
relationship between sub-solutions and sub-
requirements. It allows us to arrive at the specification
of a Composition Controller (a connector in
architectural terms) in order to meet our overall
(sub)system requirement. We were able to specify
composition at a requirements level (RC) rather than
solely in design or implementation terms.

In principle our approach could be extended to deal
with n requirements. However practical limits exist
due to the fact that, in principle, global consistency
cannot be proved through local consistency checking
[22]. In this respect it may be helpful to consider
issues of scoping.

As noted above, our approach is strongly related to
the typical mutual exclusion problem of concurrent
resource usage. Clearly one area for future
consideration is a mechanism for queuing rather than
dropping events that we choose to not immediately
respond to.

We are currently looking at combining the Problem
Frames approach with the architectural approach of
coordination contracts [4], giving us the ability to
exploit a more developed architectural approach
underpinned by a solid mathematical semantics [8].

Future work is planned in order to tighten up the
relationship between our requirements composition
operators, the problem frames for sub-problems, the
composition requirements (RC) and the composition
sub-requirements (RCa and RCb). In this context we
will also investigate re-use of composition
requirements.

We also need to address a wider range of
compositions, both in terms of the options in section
3.1 and across a larger set of basic Problem Frames.
The set of basic frames in [17] includes 5 such frames,
i.e. 10 possible combinations. The latter generalization
may not be as difficult as it sounds since we can
pattern match on shared domains. On the other hand,
particularly in a large Problem Frames development,
sub-parts of domains and amalgamations of domains
can appear in different frames.

We would like to be able to automate some of the
work of deriving a Composition Frame and its
corresponding Composition Controller specification.
Related to this is a need to explore more complex
examples. We would expect to address this by
providing tool support for investigating scenarios
implied by our “domain D is currently reacting to
machine M” property. It might be possible to develop
patterns for particular domain areas.

Finally we would like to explore the relationship
between the work presented here, that has quite a
pragmatic flavour, and more theoretical work both on
inconsistency in requirements and composition.
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