N,

& The Journal of

{t

4 Systems and

ﬂ Software
ELSEVIER The Journal of Systems and Software 58 (2001) 171-180

www.elsevier.com/locate/jss

Making inconsistency respectable in software development ™

Bashar Nuseibeh **, Steve Easterbrook °, Alessandra Russo ©

& Computing Department, The Open University, Walton Hall, Milton Keynes MK7 644, UK
b Department of Computer Science, University of Toronto, 6 King’s College Road, Toronto, Ont., Canada M5S 3HS5
¢ Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

Received 21 August 2000; accepted 8 September 2000

Abstract

The development of software systems inevitably involves the detection and handling of inconsistencies. These inconsistencies can
arise in system requirements, design specifications and, quite often, in the descriptions that form the final implemented software
product. A large proportion of software engineering research has been devoted to consistency maintenance, or geared towards
eradicating inconsistencies as soon as they are detected. Software practitioners, on the other hand, live with inconsistency as a matter
of course. Depending on the nature of an inconsistency, its causes and its impact, they sometimes choose to tolerate its presence,
rather than resolve it immediately, if at all. This paper argues for “making inconsistency respectable” [A phrase first used by D.
Gabbay and A. Hunter (in: Proceedings of Fundamentals of Artificial Intelligence Research’91, Springer, Berlin, p. 19; in: Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, Lecture Notes in Computer Science, Springer, Berlin, 1992, p. 129) to
describe the same sentiments that motivated our work.] — sometimes avoided or ignored, but more often used as a focus for learning
and as a trigger for further (constructive) development actions. The paper presents a characterization of inconsistency in software
development and a framework for managing it in this context. It draws upon practical experiences of dealing with inconsistency in
large-scale software development projects and relates some lessons learned from these experiences. © 2001 Elsevier Science Inc. All

rights reserved.

Keywords: Software specification; Requirements engineering; Inconsistency management; Inconsistency handling; Conflict

1. Introduction

Software Engineering has been described as a disci-
pline of description (Jackson, 1995). Software engineers
make use of a large number of different descriptions
throughout the development process, including analysis
models, specifications, designs, program code, user
guides, test plans, change requests, style guides, sched-
ules and process models. These descriptions are con-
structed and updated by different developers at different
times during development. Establishing and maintaining
consistency between these descriptions is a difficult
problem for a number of reasons:

e The descriptions vary greatly in their formality and
precision. Sometimes sketchy or imprecise descrip-
tions are used just to gain an understanding; at other

*This paper is a revised and expanded version of the paper that
appeared in Nuseibeh et al. (2000).
: Corresponding author.
E-mail addresses: B.A.Nuseibeh@open.ac.uk (B. Nuseibeh),
sme@cs.toronto.edu (S. Easterbrook), ar3@doc.ic.ac.uk (A. Russo).

times, detailed and precise descriptions are crucial to
ensure correctness, safety, security, etc.

Individual descriptions may themselves be ill-formed
or self-contradictory.

The descriptions will continue to evolve throughout
the software development lifecycle, at different rates.
Checking consistency of a large, arbitrary set of de-
scriptions is computationally expensive. For example,
imagine we could translate all the descriptions into a
formal predicate logic. The problem of determining
consistency of a set of logic formulae is NP-hard —
in practice, this means that as our sets of descriptions
grow, it very quickly becomes infeasible to test their
consistency. Furthermore, incremental or localized
consistency strategies will not guarantee global con-
sistency (see Appendix A). In practice, it may be pos-
sible to find fast consistency checking techniques for
specific types of description, but in the general case,
the problem is intractable.

Existing approaches to this problem have been ad hoc,
or have only addressed a limited part of the software
development lifecycle. For example, tools exist to check

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(01)00036-X

172 B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180

the consistency of specific documents (e.g., that a set of
object models are consistent), but not for testing con-
sistency between these and other software development
artifacts. Many existing software development tech-
niques assume consistency, and many software devel-
opment environments attempt to enforce it.
Inconsistency is viewed as undesirable, to be avoided if
at all possible.

However, inconsistency is a pervasive problem
throughout the software development lifecycle. Practi-
tioners recognize that their descriptions are frequently
inconsistent, and they learn to live with these inconsis-
tencies with a view to resolving them at some time in the
future or because they judge that any adverse impact of
these inconsistencies is tolerable. We have found that a
systematic approach to handling inconsistency is help-
ful, and we view inconsistency management as a central
activity throughout software development. We argue
that maintaining consistency at all times is counter-
productive. In many cases, it may be desirable to
tolerate or even encourage inconsistency, to facilitate
distributed collaborative working, to prevent premature
commitment to design decisions, and to ensure all
stakeholder views are taken into account. Inconsistency
also helps focus attention on problem areas, and as such
may be used as a tool for learning, for directing the
requirements elicitation process, and as a validation and
verification (V&V) tool for analysis and testing.

This paper presents a characterization of inconsis-
tency in software development and a framework for
managing it in this context. It draws upon our practical
experiences of dealing with inconsistency in large-scale
software development projects and relates some lessons
learned from these experiences.

2. What is inconsistency?

We use the term inconsistency to denote any situation
in which two descriptions do not obey some relationship
that is prescribed to hold between them (Nuseibeh et al.,
1994). A precondition for inconsistency is that the de-
scriptions in question have some area of overlap
(Spanoudakis et al., 1999). A relationship between de-
scriptions can be expressed as a consistency rule, against
which descriptions can be checked. In current practice,
some such consistency rules are captured in various
project documents, others are embedded in tools, and
some are not captured anywhere.

Table 1 gives some example consistency rules, ex-
pressed in natural language. Rule 1 is a simple rule for
two descriptions written in the same notation (in this
case DFDs). Rule 2 is a consistency rule between three
different documents; the area of overlap is the use of the
terms “user’” and ““borrower”. Rule 3 is an example of a
rule about the development process. If program code

has been entered before the sign-off has occurred, then
the project is inconsistent with a process policy (which,
presumably, is documented somewhere). Note that in
this last example, the area of overlap concerns the sta-
tus, rather than the contents, of the descriptions.

Rules 2 and 3 reflect a common pattern: a consistency
relationship exists between two descriptions because
some third description says it should. Problems occur if
changes are made to one of the three descriptions
without cross checking the others, or if cases the third
description is not properly documented. The move to-
wards better modeling of software processes has helped
to ensure that more such relationships are documented,
but note that not all such relationships are process ori-
ented (e.g. Rule 2).

This definition of inconsistency is deliberately broad:
it encompasses many types of inconsistency that occur
in software development. In particular, the notion of
logical inconsistency is subsumed within our definition,
where the relationship that should hold is that it should
not be possible to derive a contradiction from a set of
propositions. ! Defining inconsistency in this way pro-
vides some flexibility, as it does not tie us to any par-
ticular notation and allows us to consider many different
forms of inconsistency throughout the development
process. So, for example, checking descriptions against
consistency rules may reveal stakeholder conflicts
(Robinson, 1990), divergent goals (van Lamsweerde and
Letier, 1998), faults in a running system (Littlewood,
1994), and deviations from documented development
processes (Cugola et al., 1996).

3. Tolerating inconsistency

Inconsistency is a problem in software engineering if
it leads to misunderstandings and errors. However, the
problem is not with inconsistency per se, but with in-
consistency that remains undetected. In many cases, we
may wish to tolerate a known inconsistency. For ex-
ample, a change to a code module may violate as-
sumptions made in modules with which it interacts,
cause several test scripts to be re-written because they
were based on the structure of the module, and lead to a
change in the user manuals. Inconsistency arises here
because a change has been made while some of the
consequences have not been addressed. Because it is not
feasible to carry out a change and all the consequent
alterations as a single atomic action, we have to accept
that there will be times during development when the set
of software descriptions is inconsistent. We would ex-
pect such inconsistencies to be temporary: they reflect a

! In logic, two propositions are contradictory if it is possible to derive
both some fact, X, and its negation, not X.

B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180 173

Table 1
Informal examples of consistency rules

Example consistency rules

Rule 1

In a data flow diagram, if a process is decomposed in a separate diagram, then the input flows

into the parent process must be the same as the input flows into child data flow diagram

Rule 2

For a particular Library System, the concept of operations document states that “User”” and

“Borrower” are synonyms. Hence, the list of user actions described in the help manuals must
correspond to the list of borrower actions in the requirements specification

Rule 3

Coding should not begin until the Systems Requirement Specification has been signed off by

the Project Review Board. Hence, the program code repository should be empty until the SRS

has the status “approved by PRB”

period of uncertainty, as a document evolves. In such
cases, we would prefer an environment that permits the
inconsistency and tracks it for us, rather than an envi-
ronment that prohibits it.
There may be times during development when toler-
ating inconsistency is beneficial:
¢ Inconsistency may indicate deviations from a process
model. The rationale for process modelling is that it
facilitates process improvement. Cugola et al. (1996)
argues that this can be achieved by allowing devia-
tions from the prescribed process, and by providing
support for dealing with the resulting inconsistencies.
e Inconsistency may facilitate flexible collaborative
working. Schwanke and Kaiser (1988) consider the
problem of incremental development in the presence
of inconsistency. They argue that attempting to en-
force total consistency can be difficult, and it is there-
fore preferable to allow inconsistencies to occur, and
to resolve them periodically rather than prevent
them. Narayanaswamy and Goldman (1992) also
present an incremental inconsistency handling solu-
tion based on announcing and interleaving “pro-
posed changes’, while Balzer introduces the notion
of “pollution markers” to flag portions of program
code that contain inconsistencies which can be cir-
cumvented in order to continue development.

¢ Inconsistency can be used to identify areas of uncer-
tainty. If a team of developers work together on a set
of descriptions, then inconsistencies in those descrip-
tions can indicate areas where the developers’ shared
understanding has broken down. Easterbrook (1996)
describes how these cases can be used to improve un-
derstanding within a team. Gabbay and Hunter
(1991, 1992) and Finkelstein et al. (1994) also suggest
that inconsistency can be used to trigger further de-
velopment actions, while Hunter and Nuseibeh
(1998) describe a “Quasi-Classical” logic that allows
reasoning in the presence of inconsistency.

The view that inconsistency is prevalent in and a driver

of software development is the subject of increasing re-

search in the software engineering community (Ghezzi

and Nuseibeh, 1998, 1999).

4. A framework for managing inconsistency

To clarify our understanding of inconsistency man-
agement research and practice, we have developed the
framework shown in Fig. 1. Central to this framework is
the explicit use of a set of consistency rules, which
provide a basis for most inconsistency management ac-
tivities. The consistency rules are used to monitor an

Manage Inconsistency

rule o checking %, apply ,
pPlY o rules - % Ules
) A RN 4y,
kS 4 0 S
‘e'(“\e %’@
§ Diagnose Handle og
E =
= Ei=
S 39
o

- Zo
S — 59 -
5 | inconsistency Inconsistency Inconsistency \@ @
Q | detected handled /8 @
o i 9.-2
H S
73 23
g lassi =3
& classify 2
o

< 5

N N

‘ Measure inconsistency ‘

Analyze impact & risk ‘

Fig. 1. A framework for managing inconsistency.

174 B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180

evolving set of descriptions for inconsistencies. When
inconsistencies are detected, some diagnosis is per-
formed to locate and identify their cause. One of a
number of different inconsistency handling strategies
can then be chosen, including resolving it immediately,
ignoring it completely, or tolerating it for a while.
Whatever action is chosen, the result is monitored for
undesirable consequences.

4.1. Consistency checking rules

As developers iterate through the consistency man-
agement process, the set of consistency rules is expanded
and refined. Hence, we do not expect to ever obtain a
complete set of rules covering all possible consistency
relationships in a large project. Rather, we regard the
rulebase as a repository for recording those rules that
are known or discovered, so that they can be tracked
appropriately.

Consistency rules can arise from:

o The definitions of notations. For example, for a
strongly typed programming language, the notation
requires that the use of each variable should be con-
sistent with its declaration.

o The development method(s). A method provides a set
of notations, together with guidance on how to use
them. This guidance includes many consistency rules.
For example, a method for designing distributed sys-
tems might require that for any pair of communicat-
ing subsystems, the data items to be communicated
are defined consistently in each subsystem’s interface.

o The development process model. A process model typ-
ically defines development steps, entry and exit condi-
tions for those steps, and constraints on the products
of each step. Rule 3 in Table 1 is an example.

o Local contingencies. Sometimes, a specific consistency
relationship occurs between specific descriptions,
even though the notation, method or process model
does not predetermine this relationship. For example,
if a particular timeout in one specification must be
greater than a timing constraint in another specifica-
tion, this needs to be recorded as a consistency rela-
tionship.

o The application domain. Many consistency rules arise
from domain-specific constraints. For example, the
telecommunications domain might impose con-
straints on the nature of a telephone call, to specify
certain undesirable feature interactions. Such con-
straints can be specified as consistency rules to be
checked during development.

4.2. Monitoring for inconsistency
With an explicit set of consistency rules, monitoring

can be automatic and unobtrusive. If certain rules have
a high computational overhead for checking, the

monitoring need not be continuous; but instead can be
checked at specific points during development, using a
lazy consistency strategy such as that outlined in Na-
rayanaswamy and Goldman, 1992. In either case, our
approach is to define a scope for each rule, so that
each edit action need only be checked against those
rules that include in their scope the locus of the edit
action.

4.3. Diagnosing inconsistency

There may be many reasons why a particular con-
sistency rule is broken. The diagnosis process begins
whenever an inconsistency is detected. Diagnosis in-
cludes:

e Locating the inconsistency — that is, determining what
parts of a description have broken a consistency rule.

o [Identifying the cause of an inconsistency — normally
by tracing back from the manifestation (i.e. a consis-
tency rule broken) to the cause (e.g., missing informa-
tion, misunderstanding, coordination breakdown,
etc). If the history of all edit actions is available, with
an owner or source for each action, this becomes a
process of identifying the sequence of the actions that
led to the inconsistency.

o Classifying an inconsistency — classification is an im-
portant step toward selecting a suitable handling
strategy. Inconsistencies can be classified along a
number of different dimensions, including the type
of rule that was broken, the type of action that caused
the inconsistency, and the impact of the inconsis-
tency.

4.4. Handling inconsistency

The choice of an inconsistency handling strategy de-
pends on the context and the impact it has on other
aspects of the development process. Resolving the in-
consistency may be as simple as adding or deleting in-
formation from a software description. However, it
often relies on resolving fundamental conflicts, or taking
important design decisions. In such cases, immediate
resolution is not the best option, and a number of
choices are available:

o [gnore — it is sometimes the case that the effort of fix-
ing an inconsistency is too great relative to the (low)
risk that the inconsistency will have any adverse con-
sequences. In such cases, developers may choose to
ignore the existence of the inconsistency in their de-
scriptions. Good practice dictates that such decisions
should be revisited as a project progresses or as a sys-
tem evolves.

e Defer — this may provide developers with more time
to elicit further information to facilitate resolution
or to render the inconsistency unimportant. In such
cases, it is important to flag the parts of the descrip-

B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180 175

tions that are affected, as development will continue
while the inconsistency is tolerated.

e Circumvent — in some cases, what appears to be an in-
consistency according to the consistency rules is not
regarded as such by the software developers. This
may be because the rule is wrong, or because the in-
consistency represents an exception to the rule that
had not been captured. In these cases, the inconsis-
tency can be circumvented by modifying the rule, or
by disabling it for a specific context.

o Ameliorate — it may be more cost-effective to “im-
prove” a description containing inconsistencies with-
out necessarily resolving them all. This may include
adding information to the description that alleviates
some adverse effects of an inconsistency and/or re-
solves other inconsistencies as a side effect. In such
cases, amelioration can be a useful inconsistency han-
dling strategy in that it moves the development
process in a ‘“desirable” direction in which inconsis-
tencies and their adverse impact are reduced.

4.5. Measuring inconsistency and analyzing impact and
risk

Measurement is central to effective inconsistency
management in a number of ways. For example:

e Developers often need to know the number and se-
verity of inconsistencies in their descriptions, and
how these numbers are affected by various changes
they make. For example, they may use these measures
to compare descriptions to assess which choice is
“more consistent”.

e Developers often need to prioritize inconsistencies in
different ways, for example, to identify those inconsis-
tencies that need urgent attention.

e Developers may need to assess their progress, for
example, by measuring their conformance to a pre-
defined development standard or process model.

Often, the actions taken to handle inconsistency depend
on an assessment of the impact of these actions on the
development project. Measuring the impact of incon-
sistency handling actions is therefore a key to effective
action in the presence of inconsistency. An assessment of
the risks involved in either leaving an inconsistency or
handling it in a particular way is also crucial.

5. Inconsistency management in practice

In our research into inconsistency, we have per-
formed a number of case studies of NASA software
development projects. These have helped us to refine the
framework described above, and have provided some
insights into the nature of inconsistency and its man-
agement. The first two studies concern the requirements
specifications of parts of the International Space Station

(ISS) Command & Control software (Easterbrook and
Callahan, 1997; Russo et al., 1998). The third case study
concerns the design of a dual redundant controller for a
deep space probe (Schneider et al., 1998). All three case
studies were based on analysis of existing, evolving,
specifications expressed in a mixture of prose, tables,
flowcharts and other diagrams.

While each case study applied different techniques for
analyzing the specifications, our approach in each case
was to re-represent and re-structure the specifications
more precisely, more formally and at different levels of
abstraction, in order to permit more detailed analysis
than would otherwise have been possible. In the first
study, we used two formal notations, SCR (Heitmeyer
et al., 1996) and pPROMELA (Holzmann, 1997) for veri-
fying portions of the Fault Detection, Isolation & Re-
covery (FDIR) requirements for the control of a
communications bus. This study demonstrated that
translating the informal specifications into a formal no-
tation helps identify ambiguities and inconsistencies, and
allows some of the analysis to be automated. The second
study also concentrated on the FDIR requirements for
the space station. Fragments of the original FDIR
specification were restructured using ‘‘viewpoints”
(Nuseibeh et al., 1994), revealing both explicit and im-
plicit relationships between these fragments. The third
case study concentrated on the verification of an existing
design for a mark and rollback scheme that allows a ““hot
backup’ processor to take control of the spacecraft at an
appropriate point in a sequence of operations when a
fault occurs in the main processor. The study addressed
the question of whether the proposed design met the re-
quirements for fault tolerance. The design was modeled
as a state machine in PROMELA. The fault tolerance re-
quirements were expressed as temporal logic formulae,
and tested against the model using the spPIN model
checker (Holzmann, 1997). The analysis revealed three
potential errors, which were then turned into test cases to
check whether they occurred in the implementation.

The three case studies provided us with a number of
insights that we discuss below.

5.1. Some inconsistencies never get fixed

This observation seems counter-intuitive at first. Al-
though we have argued that inconsistencies can and
should be tolerated during the process of developing
specifications, we had always assumed that inconsis-
tencies are temporary. For example, we assumed that
eventually a consistent specification would be needed as
a basis for an implementation. In practice, this is not
true. Many local factors affect how an inconsistency is
handled, including the cost of resolving an inconsis-
tency, the cost of updating the documentation, and the
shared understanding of the developers. Ultimately,
the decision to repair an inconsistency is risk based. If

176 B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180

the cost of fixing it outweighs the risk of ignoring it, then
it does not make sense to fix it.

In our first case study, one section of the specification
contained a flowchart and some corresponding textual
requirements. The flowchart was intended as a graphical
representation of the text, but as the specification had
evolved, the diagram and text had diverged. Due to the
cost of updating the documents, the developers chose
just to ameliorate this inconsistency by adding a dis-
claimer that the text should be regarded as definitive
whenever it is inconsistent with the diagram. Despite the
inconsistency, the diagram was still useful as it provided
an overview of the requirements expressed in the text.

It is worth examining the risk analysis underlying the
decision to leave this inconsistency unresolved. The
document in question was a large (~300 pages) base-
lined specification. Each new version of the document is
passed through a formal technical review. The partici-
pants in the review write an issue report for each
problem found in the document. In a typical review,
several hundred issues may be raised. A review panel
examines the issue reports, and decides which ones need
to be addressed. Addressing all the issues would be
prohibitively expensive, so a prioritization is performed.
Some issues are rejected, while for others, quick fixes are
accepted. The example above is typical of a quick fix: it
reduces the risk without eliminating it, and allows the
issue to be closed immediately, without requiring it to be
tracked and re-reviewed. There is a small risk that the
document will be misunderstood if someone looks at
the diagram and does not realize it is inconsistent with
the text, but this risk is relatively minor in relation to
other issues arising from the review. One of the incen-
tives for our work on tolerating inconsistency is to
develop techniques that reduce this residual risk by
clearly flagging unresolved inconsistencies when they are
detected, but without imposing any additional docu-
mentation overhead.

A second example concerns the analysis models we
abstracted from the original specifications. Typically,
these were state machine models, where the behavior of
the model captured the behaviors described in the
original specification. Sometimes, our analysis models
were inconsistent with either the specification or the
implementation, because they did not cover the same set
of behaviors. Despite these inconsistencies, however, the
analysis models were still extremely useful, as partial
checks of key properties were still possible. In some
cases the inconsistency could not be fixed because the
formal notation would not capture certain aspects of the
specifications. In other cases, fixing the formal model
would introduce complexities that could interfere with
the analysis.

In both these cases, the inconsistency did not need to
be resolved; it was sufficient just to be aware of its ex-
istence. In each case, the decision to ignore the incon-

sistency was based on a careful analysis of the risk
involved. If the inconsistency was not detected, no such
risk analysis can be performed. Undetected inconsis-
tencies can be dangerous, but some inconsistencies can
be safely ignored after they have been detected.

5.2. Living with inconsistency means continuously re-
evaluating the risk

The decision to tolerate an inconsistency is a risk-
based decision. Because the risk factors change during
the development process, it is necessary to re-evaluate
the risk periodically. Ideally, this is done by monitoring
each unresolved inconsistency for changes in the factors
that affect the decision to tolerate it. In practice, such
monitoring is not feasible with current tools. Hence, the
usual approach is to identify key points in the future at
which the decision needs to be re-evaluated.

As an example, consider the Ariane-5 disaster
(Nuseibeh, 1997). Ariane-5 reused much of the software
from Ariane-4. In Ariane-4 an inconsistency had been
tolerated between the safety requirement that all ex-
ceptions be handled, and the implementation in which
floating-point exception handling was turned off for
some exceptions to meet memory and performance re-
quirements. In Ariane-4, the risk of tolerating this in-
consistency was thoroughly analyzed. The analysis
concluded, correctly, that the floating-point overflow
would never occur, and so the inconsistency could be
tolerated. Ariane-5 experienced a larger horizontal bias
because its trajectory differs from that of Ariane-4, such
that the floating-point overflow did occur. Unfortu-
nately, the risk analysis was never repeated when the
software was reused in Ariane-5. The problem was not
that the decision was wrong for Ariane-4, but that there
were no tools available to indicate that the risk needed
to be re-evaluated for Ariane-5.

We observed a similar example in our third case
study. There was an inconsistency concerning the be-
havior of the two processors on the spacecraft at the end
of a critical sequence. To allow for hardware delays, the
fault processing logic requires a three-second delay be-
fore an operation is considered successfully completed.
If a fault occurs within three seconds of the end of the
critical sequence, the main processor will rollback and
repeat the last section of the sequence. The backup
processor should do likewise, but has already suspended
itself. However, this inconsistency may not matter, de-
pending on how the critical sequences are written. For
example, if the sequences are written in such a way as to
include a delay at the end, then the problem disappears.
When we performed the analysis, none of the critical
sequences had been designed. Hence, our recommen-
dation was to defer resolution until the critical sequences
were written. At this point the risk analysis would have
to be repeated.

B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180 177

Knowing when and how to re-evaluate these deci-
sions is critical. In the Ariane-5 example, the developers
did not have a method to warn them to revisit decisions
when the design parameters changed. In our spacecraft
example, the need to revisit the decision was explicitly
recorded.

5.3. Some consistency checks are not worth performing

We argued above that the act of resolving an incon-
sistency has a cost associated with it, and that it might
not always be worth doing. An observation from the
case studies was that the application of a consistency
check also has a cost associated with it, and that it might
not always be worth performing.

For example, in the first case study, we discovered an
error with the sequencing of the fault diagnosis steps in
the original specification. The need to apply the steps in
a specific order had not been described in the text, and
without this sequencing they would not work as in-
tended. We discovered this problem while building a
formal model, which we had planned to use to check
that the fault handling design was consistent with the
high level requirements. We made some assumptions
about the correct sequencing and continued to build the
model and perform further consistency checks. In the
meantime, the authors of the original specification up-
dated it to correct the problem. Their changes were so
major that none of the consistency checking we had
performed on our model was relevant anymore. Hence,
the effort we expended to perform these checks was
wasted.

This observation raises an important question: how
do you know when to apply each consistency check, and
how do you know when to stop checking consistency?
The answers to these questions are often problem-spe-
cific, but they may also lie in project process models. As
part of our research into guiding the inconsistency
management process, we have examined the conditions
under which consistency checking should and should
not be performed, and the mechanisms for guiding this
process (Leonhardt et al., 1995).

5.4. Inconsistency is deniable

Our framework relies on a well-defined set of rela-
tionships between descriptions. As long as these rela-
tionships are precisely defined, determination of
consistency is an objective process. However, we have
found that in practice, developers often debate whether
a reported inconsistency really was an inconsistency.
Example reactions to reported inconsistencies in our
case studies included: ‘“‘that’s not inconsistent because

you’ve assumed...”, “that inconsistency doesn’t matter
’,

because...”; “oh, your model’s wrong...”; or, quite
often “yes, we already fixed that...”.

There are two factors at work here. The first is a
face saving device. People generally do not like other
people finding fault with their work. The V&V teams
we worked with at NASA strive to maintain a col-
laborative relationship with the developers, such that
both parties feel they are working towards the common
goal of a high quality product. However, inconsistency
still carries a stigma, implying poor quality work. If an
inconsistency is reported in a public manner (e.g., at a
formal review), there is a tendency for authors to be-
come defensive. We observed two common face saving
devices: the author may give an argument for why
the inconsistency is not really an issue, or the author
might claim that he or she is already aware of the
problem and has fixed it (or is in the process of fix-
ing it).

The second factor is a modelling issue. It is possible
for descriptions to be inconsistent because one or more
of them is inaccurate or vague. Although we can for-
malize a description such that we can say objectively
whether it is inconsistent at the syntactic and semantic
levels, it is often possible to deny the inconsistency at
the pragmatic level. In effect, such a denial questions the
formalization of either the description itself, or the con-
sistency rules. This sometimes results in a useful
discussion of the nature of the descriptions, which may
in turn lead to an improvement in how the descriptions
(models) are expressed. On the other hand, such denials
are sometimes merely obfuscation, and it is often hard
to tell whether the ensuing debate will lead to anything
useful.

6. Conclusions

Inconsistency arises throughout the software devel-
opment lifecycle, as various development documents
evolve. It arises because of interdependencies within and
between documents. Whilst general principles of mod-
ularity and information hiding help to reduce such de-
pendencies, they do not eliminate them. Moreover, any
single change to a document may affect many different
parts of a project, and it can be difficult to identify all
the dependencies in that project. Some such dependen-
cies are captured in traceability matrices and interface
documents; however, these typically capture the exis-
tence of a relationship only, without its semantic con-
tent. Hence, reasoning about the impact of a change still
has to be done by hand, and can be tedious and error
prone.

In this paper, we have argued that the problems of
establishing and maintaining consistency are endemic to
software development. We argued that it is not always
possible to avoid inconsistency, and that tools that tol-
erate and manage inconsistency provide more flexibility.
We also argued that it is undetected inconsistency that

178 B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180

causes the most problems. Known inconsistencies can be
tolerated, provided they are managed carefully.

Determining whether a set of descriptions is incon-
sistent depends on knowing what relationships should
hold between them. We capture these relationships as a
set of well-defined consistency rules, and use these as the
basis for tracking both resolved and unresolved incon-
sistencies. There are a number of tools available that
detect inconsistency in different phases of software de-
velopment. In general, each tool concentrates on one
particular type of description, and defines consistency
narrowly in terms of integrity rules for that type of de-
scription. For example, the formal specification tool
SCR has a built in set of consistency checks that es-
tablish the well-formedness of an SCR specification,
according to the semantics of SCR. Such method-spe-
cific consistency checking is extremely useful, but covers
only a fraction of the range of consistency relationships
that are of interest during software development. So, as
well as checking the internal consistency of an SCR
specification, one might also wish to check the consis-
tency between the SCR specification and a design model,
or between the SCR specification and a set of test cases.
Further work is needed to develop our framework into a
software development environment in which inconsis-
tency management becomes a core activity throughout
development.

Acknowledgements

We would like to thank our colleagues Frank
Schneider, John Hinkle, Dan McCaugherty and Chuck
Neppach, who all worked on the case studies. We would
also like to thank the participants at the ICSE-97
workshop on “Living with Inconsistency” for lively
discussions of these ideas. Nuseibeh and Russo ac-
knowledge the financial support of the UK EPSRC for
the projects MISE (GR/L 55964) and VOICI (GR/M
38582).

Appendix A. On local vs global consistency checking

In principle, global consistency cannot be proved
through local consistency checking. For example, it is
possible to add a statement to a set of descriptions that
is consistent with each description, but which makes the
whole set inconsistent. Consider the two viewpoints
shown in Fig. 2. Each is expressed in a simple proposi-
tional logic, and we will assume that the terms have the
same designations in each viewpoint (i.e. that a in T,
means the same as a in T,). Let us also suppose that
there is a simple consistency relationship between them,
that when composed, it should not be possible to derive
a contradiction.

T, T,

Fig. 2. Two consistent viewpoints.

Now consider the proposition —b. This proposition
can be added to either viewpoint without making them
internally inconsistent. However, adding it to either
viewpoint will break the consistency rule that holds
between them, as it will be possible to derive both b and
—b. In general, elaborating a viewpoint, even if it pre-
serves local consistency, may introduce inconsistencies
with other viewpoints.

Furthermore, it is possible to establish the consis-
tency of set of descriptions just by making local com-
parisons, even if you exhaustively compare, say, every
pair of sentences. Consider the three viewpoints shown
in Fig. 3. It is not hard to show that the three are con-
sistent. We can merge them to form T:

T=T,UT,UTs;.

Note that T + d.
Consider a new piece of information, ¥, such that

Y.:d — —a.

¥ is consistent with each of T;, T, and T; individually,
but is not consistent with T

TU¥PF-a and TUYFa.

Pairwise consistency checking between the viewpoints is
not sufficient to reveal this. We could add ¥ to each of
the viewpoints in turn and each pairwise union of the
viewpoints would be consistent; i.e. each of:

PYUT,UT,,
PYUT,UT;,
PYUT,UT,

is consistent. Finally, note that T-a and TUY - a.
Imagine a is an important safety property to be checked
in the specification composed from the three viewpoints.
We could use a theorem prover to prove that a holds in
T. After adding ¥ to one of the viewpoints, we can re-
peat the same proof to demonstrate that a still holds.
Unless we check global consistency, we will not notice
that in the latter case we can also derive —a.

T, T, T,

Fig. 3. Three consistent viewpoints.

B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180 179

Hence, we have demonstrated that a set of descrip-
tions can be consistent when compared pairwise, but
inconsistent when taken together. Furthermore, adding
a new statement that is consistent with each description
individually can still make the whole set of descriptions
inconsistent. This has important implications through-
out software engineering. For example, it is well known
that testing pairwise integration of a set of software
modules is not sufficient; system level testing is still
necessary.

References

Balzer, R. Tolerating inconsistency. In: Proceedings of 13th Interna-
tional Conference on Software Engineering (ICSE-13), Austin, TX,
USA. IEEE Computer Society Press, Silver Spring, MD, 1991,
pp. 158-165.

Cugola, G., Nitto, E., Fuggetta, A., Ghezzi, C., 1996. A frame-
work for formalizing inconsistencies and deviations in human-
centered systems. Trans. Software Eng. Methodol. 5 (3),
191-230.

Easterbrook, S., Callahan, J., 1997. Formal methods for V&V of
partial specifications: An experience report. In: Proceedings of 3rd
International Symposium on Requirements Engineering (RE’97),
Annapolis, USA. IEEE Computer Society Press, Silver Spring,
MD, January 5-8, pp. 160-168.

Easterbrook, S.M., 1996. Learning from inconsistency. In: Proceedings
of 8th International Workshop on Software Specification and
Design (IWSSD-8), Paderborn, Germany, March 22-23, 1996.
IEEE Computer Society Press, Silver Spring, MD, March 22-23,
pp. 136-140.

Finkelstein, A.C.W., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh,
B., 1994. Inconsistency handling in multi-perspective specifications.
Trans. Software Eng. 20 (8), 569-578.

Gabbay, D., Hunter, A., 1991. Making inconsistency respectable: a
logical framework for inconsistency in reasoning, Part 1 — A
position paper. In: Proceedings of Fundamentals of Artificial
Intelligence Research’91. Springer, Berlin, pp. 19-32.

Gabbay, D., Hunter, A., 1992. Making inconsistency respectable: a
logical framework for inconsistency in reasoning, Part 2. In:
Symbolic and Quantitative Approaches to Reasoning and Uncer-
tainty, Lecture Notes in Computer Science. Springer, Berlin,
pp. 129-136.

Ghezzi, C., Nuseibeh, B.A., 1998. Special issue on managing incon-
sistency in software development (1). Trans. Software Eng. 24 (11),
906-1001.

Ghezzi, C., Nuseibeh, B.A., 1999. Special issue on managing incon-
sistency in software development (2). Trans. Software Eng. 25 (11),
782-869.

Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G., 1996. Automated
consistency checking of requirements specifications. Trans. Soft-
ware Eng. Methodol. 5 (3), 231-261.

Holzmann, G.J., 1997. The model checker spin. Trans. Software Eng.
23 (5), 279-295.

Hunter, A., Nuseibeh, B., 1998. Managing inconsistent specifications:
reasoning, analysis and action. Trans. Software Eng. Methodol. 7
(4), 335-367.

Jackson, M., 1995. Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices. Addison-Wesley,
Reading, MA.

Leonhardt, U., Finkelstein, A., Kramer, J., Nuseibeh, B., 1995.
Decentralised process modelling in a multi-perspective develop-
ment environment. In: Proceedings of 17th International Confer-

ence on Software Engineering, Seattle, Washington, USA. ACM,
New York, April 23-30, pp. 255-264.

Littlewood, B., 1994. Learning to live with uncertainty in our software.
In: Proceedings of 2nd International Symposium on Software
Metrics, vols. 2-8, London. IEEE Computer Society Press, Silver
Spring, MD, October 24-26.

Narayanaswamy, K., Goldman, N., 1992. Lazy consistency: a basis for
cooperative software development. In: Proceedings of 4th Interna-
tional Conference on Computer Supported Cooperative Work
(CSCW’92), Toronto, Canada. ACM SIGCHI & SIGOIS, pp. 257—
264.

Nuseibeh, B., 1997. Ariane 5: Who Dunnit?. IEEE Software 14 (3), 15—
16.

Nuseibeh, B., Easterbrook, E., Russo, A., 2000. Leveraging inconsis-
tency in software development. Computer 33 (4), 24-29.

Nuseibeh, B., Kramer, J., Finkelstein, A.C.W., 1994. A framework for
expressing the relationships between multiple views in requirements
specification. Trans. Software Eng. 20 (10), 760-773.

Robinson, W.N., 1990. Negotiation behaviour during multiple agent
specification: a need for automated conflict resolution. In: Pro-
ceedings of 12th International Conference on Software Engineering
(ICSE-12), Nice, France. IEEE Computer Society Press, Silver
Spring, MD, March, pp. 268-276.

Russo, A., Nuseibeh, B.A., Kramer, J., 1998. Restructuring require-
ments specifications for inconsistency analysis: a case study. In:
Proceedings of 3rd International Conference on Requirements
Engineering (ICRE98), Colorado Springs, USA. IEEE Computer
Society Press, Silver Spring, MD, pp. 51-60.

Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.,
1998. Validating requirements for fault tolerant systems using
model checking. In: Proceedings of 3rd International Conference
on Requirements Engineering (ICRE-98), Colorado Springs, USA.
IEEE Computer Society Press, Silver Spring, MD, April 6-10, pp.
4-13.

Schwanke, R.W., Kaiser, G.E., 1988. Living with inconsistency in
large systems. In: Proceedings of the International Workshop on
Software Version and Configuration Control, Grassau, Germany.
Teubner, Stuttgart, January 27-29, pp. 98-118.

Spanoudakis, G., Finkelstein, A.C.W., Till, D., 1999. Overlaps in
requirements engineering. Automated Software Eng. 6 (2), 171-198.

van Lamsweerde, A., Letier, E., 1998. Integrating obstacles in goal-
driven requirements engineering. In: Proceedings of 20th Interna-
tional Conference on Software Engineering (ICSE-20), Kyoto,
Japan. IEEE Computer Society Press, Silver Spring, MD, April
19-25, pp. 53-62.

Bashar Nuseibeh is a Professor of Computing at The Open University
and Director of the Centre for Systems Requirements Engineering at
Imperial College, London, UK. Previously, he was a Reader at the
Department of Computing, Imperial College, London, and Head of its
Software Engineering Laboratory. His research interests are in Re-
quirements Engineering, Software Process Technology, Software De-
sign, and Technology Transfer. He is Editor-in-Chief of the
Automated Software Engineering Journal, and current Program Chair
the 5th IEEE International Symposium on Requirements Engineering
(RE’01), which will be held in Toronto, Canada, in 27-31st August
2001. More information at: http://mcs.open.ac.uk/ban25.

Steve Easterbrook is an Associate Professor in Department of Com-
puter Science at the University of Toronto. Previously, he was a faculty
member of the School of Cognitive and Computing Science at the
University of Sussex, UK, from 1990 to 1995, and a Research Asso-
ciate Professor at the NASA Independent Software Verification &
Validation facility in West Virginia, from 1995 to 1999, where he led
the facility’s research team. His research interests focus on the prob-
lems of managing conflict and change in software requirements. Dr.
Easterbrook regularly serves on program committees for conferences
in requirements engineering and automated software engineering, and
is General Chair for the International Symposium on Requirements
Engineering (RE’01).

180 B. Nuseibeh et al. | The Journal of Systems and Software 58 (2001) 171-180

Alessandra Russo is a Lecturer in the Department of Computing, Im-
perial College, London, UK. Previously she was a Research Associate
and Ph.D. student also at Imperial College. Her research interests are
in both mathematical logic and software engineering in general, and in

the applications of logic and automated reasoning in requirements
engineering. She serves on a number of international program com-
mittees and as an investigator on a UK EPSRC project on “Handling
Inconsistency and Change in Evolving Requirements Specifications”.

