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Abstract 
 

This paper reports on a preliminary investigation into 
applying work on graphic animation of behavioral models 
to an air traffic control case study – the National Air 
Traffic Services (NATS) Short Term Conflict Alert (STCA) 
system that advises controllers of potential conflicts 
between aircraft in controlled airspace.  Graphic 
animation permits a model to be visualized in the context of 
a problem domain. The paper describes how, in order to 
construct a satisfactory visualization, the finite state 
behavioral model of the STCA system is extended with 
boolean functions over continuous variables to form a 
hybrid model.  The rationale for constructing this hybrid 
model and its potential use in requirements and design are 
discussed. 
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1. Introduction 

A model-based approach to software development 
involves building analysis models early in the software 
lifecycle. These models can be developed shortly after 
initial requirements capture and refined in parallel with 
further requirements elicitation so that early feedback on 
the operation of a proposed system can be sought from 
users and so that potential design problems are highlighted 
early. 

A previous paper[1] proposed graphic animation as a 
means to communicate model behavior and the results of 
analysis to non-technical stakeholders.  The paper 
presented a sound semantic basis for associating graphic 
animations with behavioral models specified using Labeled 
Transition Systems. The paper also described a flexible 
toolkit for animating models developed using the Label 
Transition System Analyzer (LTSA) [2]. In this paper, we 

describe some initial work on applying the ideas and tools 
described in [1] to a real case study.  

The case study is concerned with a system used in air 
traffic control. This National Air Traffic Services (NATS) 
Short Term Conflict Alert (STCA) system, warns air traffic 
controllers of potential conflicts of the required separation 
standards for aircraft in controlled airspace.  The system 
already exists and has been deployed in UK air traffic 
control centers as well as being implemented in other 
international ATC centers.   An existing system was chosen 
so that we could assess the utility of the model and its 
associated visualization. In essence, we can evaluate the 
model against the existing implementation – the reverse of 
the normal use of models. In addition, as we describe in the 
following, the system is subject to ongoing development 
and a successful model will be of use in evaluating changes 
in advance of implementation. 

2. Short Term Conflict Alert (STCA) 

The STCA system is safety net system. Normal ATC 
procedures maintain vertical and lateral separation between 
aircraft. STCA attempts to predict potential conflicts should 
this separation not be maintained. The objective is to give 
the controller sufficient advance warning of a conflict so 
that he/she can take remedial action.  The challenge for the 
STCA designers is achieving this while minimizing false 
warnings as controllers would ignore a system that 
generated too many false alerts.   

The system takes as its input information on the tracks 
of aircraft within a particular region. This track information 
is provided by the radar data processing units of the air 
traffic control center and may be computed from the input 
from more than one radar sensor. The track information for 
an aircraft consists of its identification code, its position 
(X-coordinate, Y-coordinate, altitude) and the rate of 
change of its position, i.e. velocity over the ground and 
climb/descent rate.  

The STCA outputs to an air traffic controller’s console 
by highlighting the pair of aircraft for which a conflict alert 



 

has been detected and by displaying a conflict alert 
indication. The overall architecture of the STCA system is 
depicted in Figure 1. 
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Figure 1 – STCA Architecture 

 
This architecture is designed to reduce the processing 

load of the STCA system. Track data is initially presented 
to the coarse filter, which examines each pair of tracks and 
applies a set of criteria as to whether the pair has the 
potential for future conflict. The filter computes the current 
separation in distance and altitude between the aircraft that 
form the pair and in addition, using the velocity/climb 
information in the track data does a simple linear 
extrapolation to see if they will potentially conflict in the 
near future.  The look ahead time is a parameter of the 
system and is typically in the order of two minutes. A pair 
that fails the coarse filter is not examined further and thus 
incurs no further processing overhead. The STCA system 
runs periodically and the full set of tracks is presented to 
the coarse filter each cycle. Typically the cycle time is 4 or 
5 seconds. 

Track pairs that pass the coarse filter are submitted to a 
set of fine filters. These determine with more accuracy and 
to finer lateral and vertical separation limits, whether the 
predicted future positions of the aircraft will 
simultaneously violate lateral and vertical separation. The 
specific separation distances and heights depend on the 
region of airspace that the aircraft currently occupy. The 
linear prediction filter assumes that aircraft are proceeding 
in straight lines along their current track vectors. The 
current proximity filter considers the current separation of 
the track pair, but also includes a form of prediction that is 
less sensitive to track velocity than the linear prediction 
filter. The manoeuvre hazard filter detects potentially 
hazardous manoeuvres between a pair of aircraft in close 
vertical proximity. The track data contains an indication of 
whether the aircraft is turning and in which direction.  

A track pair that passes any of the filters is a potential 
conflict. However, further filtering is required to avoid 
large numbers of transient alerts. This filtering is provided 
by the alert confirmation stage that requires that fine filter 

“hits” persist over a number of cycles. This number 
depends on both the filter that detected the hit and the 
region of airspace occupied. It is a system parameter.  

This is necessarily a grossly simplified explanation of 
what is in reality a complex system. The complexity arises 
from the requirement to predict the future position of 
aircraft that are controlled directly by a pilot rather than the 
air traffic control system. The further the look ahead 
period, the greater will be the number of false alerts. The 
system attempts to reduce the number of false alerts by 
detecting situations that may cause the fine filters to detect 
hits but which are in reality safe, for example, if aircraft are 
proceeding in level flight on recognised flight levels or if 
they are turning away from each other. This sort of 
condition is used to inhibit or delay alerts in the Alert 
Confirmation stage. 

 The parameters and algorithms used in the STCA 
system are under continuous review by National Air Traffic 
Services Ltd (NATS) to improve the accuracy of the 
system. Radar tracks are recorded at each air traffic control 
center so that any situations that lead to conflict alerts can 
be analyzed to see if the alert signaled a potential danger. 
An offline emulator of the STCA system facilitates this 
analysis. The emulator program is used to explain the 
reason for the alert and its output can be discussed with 
controllers to assess the significance of the alert. This 
output is currently a static document that plots position and 
height against time for each of the pair of aircraft involved 
in the alert. The requirement to capture four dimensions on 
a two dimensional sheet of paper leads to a document that 
is not always easily understood. It is in this context of 
analysis that we foresee an immediate use for the STCA 
model and its associated dynamic visualization that we 
describe in the next section.  

3. STCA Model 

Our approach to modeling the STCA system is firstly, to 
develop a discrete finite state model of the behavior of the 
system as a Labeled Transition System and then to augment 
this model with graphic animation that captures more of the 
continuous behavior of the system. This hybrid model 
provides the benefits of both support for behavior analysis 
using LTSA and support for visualization using graphic 
animation. 

3.1 Discrete Model 

The discrete model of the system captures its behavior 
as a set of processes that communicate through shared 
events. The overall behavior can be formed by sequential 
and parallel composition of these processes. The difficulty 
in constructing this sort of model is choosing an 
appropriate level of abstraction. If we make the model too 
detailed then state space explosion makes the model 
intractable for analysis. If the model is too abstract, then the 



 

model provides only trivial insights into system operation.  
Our major insight in constructing this model was to 

realize that it is only necessary to consider the behavior of 
STCA with respect to a single pair of aircraft tracks. The 
system performs an identical function for each pair of 
tracks. Consequently, we identify the significant events that 
relate to a single pair of aircraft and construct the model 
using this alphabet of events. The significant events we 
consider include coarse filter pass or fail and fine filter hit 
or miss events. We abstract from the continuous variables 
concerned with aircraft position, height and velocity, and 
model only the events output by the filters as a result of 
using these variables as input. The processes involved 
follow naturally from the STCA architecture of Figure 1. 

Figure 2 lists a fragment of the discrete model that 
describes the main processing cycle of STCA. It is 
specified in FSP [3], a simple process algebra used as the 
input notation for the Labeled Transition System Analyzer. 

 
 

||FINE_FILTERS = (PROXIMITY
|| LINEAR
|| MANOEUVRE
|| CONFIRM_ALERT
).

/* main processing cycle */

CYCLE = (cycle -> coarse[pass:Bool] ->
if pass then

FINE_FILTERS ; CYCLE_END
else

(alert[False] -> CYCLE_END)
),

CYCLE_END = (end -> CYCLE).

Figure 2 – Fragment of STCA model 
 
In the FSP notation of Figure 2, ‘||’ is parallel 

composition, ‘;’ sequential composition and ‘->’ means 
action prefix. Action or event identifiers begin with a lower 
case letter and processes with an uppercase letter. The 
action coarse[pass:Bool] followed by the conditional 
represents a choice between the two actions 
coarse[True] and coarse[False] in the LTS compiled 
from CYCLE as shown in Figure 3. 

As mentioned above, we do not model the Coarse Filter 
directly since this is an algorithm involving continuous 
variables. Instead we abstract from it by leaving the choice 
between coarse[True] and coarse[False] to the 
environment.  

We can use this model that abstracts from the operation 
of filters to check for correct operation of the logic of the 
system. Model checking can be used to verify absence of 
deadlock and that safety properties are preserved – for 
example, that an alert is not confirmed if a fine filter has 
not previously detected a conflict hit. However, perhaps the 
greatest use is in exploring the model interactively to 
examine the effect of sequences of filter hits and inhibiting 
conditions. The model, which does not capture the 
complete discrete behaviour of the system, currently 
consists of five pages of FSP and comments. It generates an 
LTS with 25776 state and 89,368 transitions.  
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 Figure 3 – CYCLE Labeled Transition System 

 

3.2 Graphic Animation 

In [1], we described a scheme for associating smooth 
graphic animation with LTS models. The scheme basically 
involves mapping model actions to commands that initiate 
animation activities and mapping animation conditions 
signaling the end of these activities to guards that enable 
model actions. The formal foundation for this scheme is 
Timed Automata [4]. Our animation activities reify the 
clock variables of Timed Automata. Animations are 
constructed from sets of Java Beans (called SceneBeans) as 
directed by an XML document. These beans are of two 
types: graphic beans that are organized into a scene graph 
structure as dictated by the XML document to depict the 
visual image of the animation and behavior beans that 
produce time varying values. These values are associated 
with transformation beans in the scene graph to produce 
movement in the animation. It is these behavior beans that 
are started by actions in the LTS and enable actions when 
they terminate.  The relationship between these elements is 
summarized in Figure 4. The leaf beans of the scene graph 
draw shapes – rectangles, circles, etc – while intermediate 
nodes apply transforms such as translation and rotation to 
the way shapes are drawn. 
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Figure 4 – Graphic Animation elements 

 
The problem posed in applying this animation scheme to 

the STCA model is – how do we include information about 
aircraft tracks? This information has been abstracted from 
the state machine model; however, it is necessary if we 
wish to include aircraft movement in the animation and 
more importantly, to permit the replay of recorded tracks 
leading to STCA conflict alerts in the model.  The standard 
behavior beans in the animation toolkit are simple time 
varying functions that for example generate the value of a 
point moving along a straight line as time progresses.  
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Figure 5 –STCA animation bean 

 
Our solution is to introduce an STCA behavior bean 

PlanePair that takes as a parameter a pair of aircraft tracks. 
This bean is depicted schematically in Figure 5. The bean 
accepts the standard commands to start, stop and reset the 
animation behavior. It produces outputs that can be used to 
animate the position, altitude and heading of the graphic 
shapes used to represent aircraft in the animation display 
(see Figures 6a & 6b).  The bean gets its information on the 
pair of tracks from the XML document that describes the 
animation. A fragment of the XML declaration of a 
PlanePair bean is shown below: 

 

<behaviour id="planes" algorithm="planePair>

<param name="pointCount" value="49"/>

<param name="plane_one" index="0" value="100.9 -
135.8 -246.0 216.0 13179.0 -34.2 7602S - 15 0 0"/>
<param name="plane_two" index="0" value="80.7 -
127.9 328.0 -128.0 12000.0 0.0 2262S - 15 0 0"/>

<param name="plane_one" index="1" value="100.6 -
135.5 -249.0 218.0 13095.0 -30.1 7602S - 15 0 0"/>
<param name="plane_two" index="1" value="81.19 -
127.94 357.0 -60.0 12000.0 0.0 2262S L 15 0 0"/>

………

The fragment depicts a PlanePair bean declaration that is 
parameterized with a track pair with 49 data points. Each 
data point gives the position, altitude, speed and climb rate 
for each aircraft in the pair. To ensure smooth animation, 
the bean interpolates the values between these data points 
as animation time progresses to produce the animation 
output. The animation output is scaled to map aircraft 
positions and altitudes into pixel positions on the animation 
display. 

3.3 Combining animation and LTS model 

In addition to producing the animation outputs, the 
PlanePair bean includes boolean functions which 
implement the coarse filter and fine filter algorithms.  
These functions are applied to each data point as it is 
reached in the animation and the result output as signaled 
conditions. These conditions control the corresponding 
actions in the LTS model of the STCA. For example, the 
coarse[True] and coarse[False] actions of Figure 3 
are enabled by the corresponding conditions signaled by the 
PlanePair bean. In other words, the animation provides the 
environment of the LTS model. The animation when 
combined with the LTS model forms a hybrid model of the 
STCA system that captures both the discrete and 
continuous behavior of the system. 

Figures 6a and 6b are screen shots of the STCA 
animation display. Figure 6a depicts the situation in which 
the coarse filter has passed but no fine filter hits have yet 
been detected. Figure 6b depicts the situation in which the 
Current Proximity filter (CP) has detected a conflict, the 
LTS model has confirmed the conflict and the alert 
signaled. The alert (and filter conditions) are displayed by 
mapping animation commands that modify the drawing to 
actions in the LTS model.  

The XML document that describes the particular 
animation of Figure 6 consists of 600 lines of which 150 
specify track data for the PlanePair bean. The XML 
document describing the animation is produced 
automatically by a translation program that takes as its 
input a NATS track data file. The program computes the 
axis labels and the scaling factors that map plane position 
and altitude to pixel positions. The PlanePair bean consists 
of around 500 lines of Java code although currently only 



 

the coarse and current proximity filter functions are fully 
implemented.  Note that the XML document is specific to a 

particular set of tracks while the PlanePair bean is the same 
for all STCA animations. 

 

 
 

Figure 6a – STCA Animation 
 

 
 

Figure 6b – STCA Animation 



 

4. Related Work 

Most behavior modeling and analysis tools provide the 
ability to execute the model specification as a way of 
simulating the system being modeled. The output of this 
simulation is displayed in the context of the specification. 
For example in SPIN[5], the simulator highlights 
statements in the Promela specification source as execution 
proceeds. The Concurrency Factory[6] displays the 
execution in the context of process diagrams specified in 
GCCS, a graphical notation for Milner’s CCS. 
UPPAAL[7], a tool based on timed automata, displays 
simulation results by high-lighting transitions and states of 
diagrammatic representations of automata produced using 
the Autograph tool[8]. Graphical animation in these tools 
thus refers to animation of some graphical representation of 
the model specification. This is clearly a useful facility in 
debugging and understanding models – it is a facility 
provided in the LTSA which animates LTS graphs – 
however, it does not address the problem of communicating 
in a domain specific way with requirements stakeholders 
unfamiliar with the modeling formalism. 

Some initial work on domain specific visualization is 
reported by Heitmeyer[9] in the context of the SCR[10] 
simulator. They use the image of real instrument panels to 
display the outputs and controls for a simulation of the 
function of that control panel specified in SCR. The form 
of animation is similar in scope to that provide by 
StateMate[11]. StateMate supports animation through a set 
of predefined widgets that display buttons, lights, dials and 
graphs. Work on graphical animation of Z specifications 
using “plug-ins” is referred to in [12]. A graphical 
animation of the specification of an air traffic control 
system is referred to but not documented. 

The visualization approach we use is perhaps closest to 
work in the field of program visualization, although the 
objective of that work is to visualize program execution 
while ours is to target model visualization at a problem 
domain. A comprehensive account of the field of Software 
Visualization may be found in the eponymous book edited 
by Stasko et al[13].  

5. Discussion 

Alur, Henziger and Ho[14] define a hybrid automaton as 
a finite state machine that is equipped with continuous 
variables. The discrete actions of a system are modeled by 
explicit transitions in the state machine while continuous 
activities are modeled by real valued variables whose 
values change continuously over time. In these terms, the 
model we construct by combining an LTS with an 
animation is a hybrid automaton. Alur et al in the same 
paper present a model-checking procedure for Linear 
Hybrid Automata.  In these automata, at each state, the 
behavior of all variables is governed by linear constraints 

on the first derivatives, e.g. constant differential equations. 
Unfortunately, this condition does not hold for aircraft 
tracks where the position, velocity, altitude etc may vary 
non-linearly as dictated by the pilot of the aircraft. As a 
result, we cannot apply the automatic verification 
procedure for Linear Hybrid Automata to our hybrid 
model. What therefore is the use of the hybrid model if we 
cannot model-check? In answering this question, we will 
first summarize the benefits of the hybrid model that we 
have identified in the STCA case study and then present 
our position as to the general use of the hybrid modeling 
and visualization techniques that we have described in this 
paper. 

5.1 STCA Case Study 

As outlined in section 3, the STCA model was 
constructed in two stages. Firstly, the discrete behavior was 
modeled and then the graphic animation added to permit 
visualization. As noted, we could apply exhaustive analysis 
procedures to the LTS model of the system, and 
interactively explore the effect of different sequences of 
significant events such as filter hits and misses. This 
discrete model when augmented with graphic animation 
permitted the replay of real radar tracks. In essence, the 
animation provides the environment for the discrete model 
and allows the operation of the model to be investigated 
using real scenarios. The visualization permits these 
scenarios to be discussed with domain experts. We can then 
examine the effect of parameter and algorithms changes in 
relation to these tracks.  

Unsurprisingly (and very reassuringly!), the analysis and 
animation has not indicated any problems in the STCA 
system since it is a mature system that has been deployed 
for a number of years. NATS is (obviously) keen to 
maintain this situation as the system is reviewed and 
developed. The advantage of our hybrid model in relation 
to STCA is the superiority of the visualization over the 
output from the current offline STCA emulator and the ease 
with which the model can be adapted to test new alert logic 
and filtering strategies. 

5.2 General application 

Our motivation in doing this work is the conjecture that 
the hybrid modeling and visualization techniques that we 
have applied to STCA are of value early in the 
development lifecycle of new systems. Our experience with 
STCA has shown that model development is relatively low 
cost, requiring a few man-weeks of efforts. The model can 
be clearly focused on the critical elements in a system and 
used to explore design alternatives and the feasibility of 
satisfying requirements. Feedback from the visualizations 
can help to further develop and enrich the LTS model, and 
vice versa. Since the hybrid model can only exhibit 
behaviors already contained in the LTS model (the 



 

animation acts as a constraint), the latter can still be used 
for exhaustive analysis and may produce behaviors and 
violations not exhibited in the hybrid model. In the STCA 
case, we were fortunate in having data from real scenarios. 
In a new system this data might have to be constructed. 
However, the animation toolkit permits interactive 
visualizations and for example, we could use the mouse to 
position aircraft in the STCA animation and generate new 
scenarios. 

 
 
The ability to exhaustively analyze systems such as 

STCA seems remote. Even given the constraints imposed 
by the physics of flight, the set of trajectories that an 
aircraft can take in a given region of airspace is very large 
indeed.  As we noted earlier, we cannot simply characterize 
a trajectory symbolically using equations since the aircraft 
is controlled by an agent outside the control of the system – 
the pilot. In this paper, we have discussed a technique that 
shows the potential to help in the development of this class 
of system. 
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