

Hybrid Model Visualization in Requirements and Design:
A Preliminary Investigation

 Jeff Magee, Jeff Kramer, Bashar Nuseibeh

Department of Computing, Imperial College, London SW7 2BZ, UK.
{jnm, jk, ban}@doc.ic.ac.uk

David Bush, Julia Sonander

National Air Traffic Services Ltd, 1 Kemble Street, London WC2B 4AP, UK
{David.Bush, Julia.Sonander}@nats.co.uk

Abstract

This paper reports on a preliminary investigation into
applying work on graphic animation of behavioral models
to an air traffic control case study – the National Air
Traffic Services (NATS) Short Term Conflict Alert (STCA)
system that advises controllers of potential conflicts
between aircraft in controlled airspace. Graphic
animation permits a model to be visualized in the context of
a problem domain. The paper describes how, in order to
construct a satisfactory visualization, the finite state
behavioral model of the STCA system is extended with
boolean functions over continuous variables to form a
hybrid model. The rationale for constructing this hybrid
model and its potential use in requirements and design are
discussed.

Keywords

 Labeled Transition System, Hybrid Models, Graphic
Animation, Air Traffic Control

1. Introduction

A model-based approach to software development
involves building analysis models early in the software
lifecycle. These models can be developed shortly after
initial requirements capture and refined in parallel with
further requirements elicitation so that early feedback on
the operation of a proposed system can be sought from
users and so that potential design problems are highlighted
early.

A previous paper[1] proposed graphic animation as a
means to communicate model behavior and the results of
analysis to non-technical stakeholders. The paper
presented a sound semantic basis for associating graphic
animations with behavioral models specified using Labeled
Transition Systems. The paper also described a flexible
toolkit for animating models developed using the Label
Transition System Analyzer (LTSA) [2]. In this paper, we

describe some initial work on applying the ideas and tools
described in [1] to a real case study.

The case study is concerned with a system used in air
traffic control. This National Air Traffic Services (NATS)
Short Term Conflict Alert (STCA) system, warns air traffic
controllers of potential conflicts of the required separation
standards for aircraft in controlled airspace. The system
already exists and has been deployed in UK air traffic
control centers as well as being implemented in other
international ATC centers. An existing system was chosen
so that we could assess the utility of the model and its
associated visualization. In essence, we can evaluate the
model against the existing implementation – the reverse of
the normal use of models. In addition, as we describe in the
following, the system is subject to ongoing development
and a successful model will be of use in evaluating changes
in advance of implementation.

2. Short Term Conflict Alert (STCA)

The STCA system is safety net system. Normal ATC
procedures maintain vertical and lateral separation between
aircraft. STCA attempts to predict potential conflicts should
this separation not be maintained. The objective is to give
the controller sufficient advance warning of a conflict so
that he/she can take remedial action. The challenge for the
STCA designers is achieving this while minimizing false
warnings as controllers would ignore a system that
generated too many false alerts.

The system takes as its input information on the tracks
of aircraft within a particular region. This track information
is provided by the radar data processing units of the air
traffic control center and may be computed from the input
from more than one radar sensor. The track information for
an aircraft consists of its identification code, its position
(X-coordinate, Y-coordinate, altitude) and the rate of
change of its position, i.e. velocity over the ground and
climb/descent rate.

The STCA outputs to an air traffic controller’s console
by highlighting the pair of aircraft for which a conflict alert

has been detected and by displaying a conflict alert
indication. The overall architecture of the STCA system is
depicted in Figure 1.

LINEAR
PREDICTION

FILTER

CURRENT
PROXIMITY

FILTER

MANOEUVRE
HAZARD
FILTER

ALERT
CONFIRMATION

COARSE
FILTER

FINE FILTERS

System
Track
Data

Potential
Conflict
Pairs

Filter
Results

Conflict
Alerts

Figure 1 – STCA Architecture

This architecture is designed to reduce the processing

load of the STCA system. Track data is initially presented
to the coarse filter, which examines each pair of tracks and
applies a set of criteria as to whether the pair has the
potential for future conflict. The filter computes the current
separation in distance and altitude between the aircraft that
form the pair and in addition, using the velocity/climb
information in the track data does a simple linear
extrapolation to see if they will potentially conflict in the
near future. The look ahead time is a parameter of the
system and is typically in the order of two minutes. A pair
that fails the coarse filter is not examined further and thus
incurs no further processing overhead. The STCA system
runs periodically and the full set of tracks is presented to
the coarse filter each cycle. Typically the cycle time is 4 or
5 seconds.

Track pairs that pass the coarse filter are submitted to a
set of fine filters. These determine with more accuracy and
to finer lateral and vertical separation limits, whether the
predicted future positions of the aircraft will
simultaneously violate lateral and vertical separation. The
specific separation distances and heights depend on the
region of airspace that the aircraft currently occupy. The
linear prediction filter assumes that aircraft are proceeding
in straight lines along their current track vectors. The
current proximity filter considers the current separation of
the track pair, but also includes a form of prediction that is
less sensitive to track velocity than the linear prediction
filter. The manoeuvre hazard filter detects potentially
hazardous manoeuvres between a pair of aircraft in close
vertical proximity. The track data contains an indication of
whether the aircraft is turning and in which direction.

A track pair that passes any of the filters is a potential
conflict. However, further filtering is required to avoid
large numbers of transient alerts. This filtering is provided
by the alert confirmation stage that requires that fine filter

“hits” persist over a number of cycles. This number
depends on both the filter that detected the hit and the
region of airspace occupied. It is a system parameter.

This is necessarily a grossly simplified explanation of
what is in reality a complex system. The complexity arises
from the requirement to predict the future position of
aircraft that are controlled directly by a pilot rather than the
air traffic control system. The further the look ahead
period, the greater will be the number of false alerts. The
system attempts to reduce the number of false alerts by
detecting situations that may cause the fine filters to detect
hits but which are in reality safe, for example, if aircraft are
proceeding in level flight on recognised flight levels or if
they are turning away from each other. This sort of
condition is used to inhibit or delay alerts in the Alert
Confirmation stage.

 The parameters and algorithms used in the STCA
system are under continuous review by National Air Traffic
Services Ltd (NATS) to improve the accuracy of the
system. Radar tracks are recorded at each air traffic control
center so that any situations that lead to conflict alerts can
be analyzed to see if the alert signaled a potential danger.
An offline emulator of the STCA system facilitates this
analysis. The emulator program is used to explain the
reason for the alert and its output can be discussed with
controllers to assess the significance of the alert. This
output is currently a static document that plots position and
height against time for each of the pair of aircraft involved
in the alert. The requirement to capture four dimensions on
a two dimensional sheet of paper leads to a document that
is not always easily understood. It is in this context of
analysis that we foresee an immediate use for the STCA
model and its associated dynamic visualization that we
describe in the next section.

3. STCA Model

Our approach to modeling the STCA system is firstly, to
develop a discrete finite state model of the behavior of the
system as a Labeled Transition System and then to augment
this model with graphic animation that captures more of the
continuous behavior of the system. This hybrid model
provides the benefits of both support for behavior analysis
using LTSA and support for visualization using graphic
animation.

3.1 Discrete Model

The discrete model of the system captures its behavior
as a set of processes that communicate through shared
events. The overall behavior can be formed by sequential
and parallel composition of these processes. The difficulty
in constructing this sort of model is choosing an
appropriate level of abstraction. If we make the model too
detailed then state space explosion makes the model
intractable for analysis. If the model is too abstract, then the

model provides only trivial insights into system operation.
Our major insight in constructing this model was to

realize that it is only necessary to consider the behavior of
STCA with respect to a single pair of aircraft tracks. The
system performs an identical function for each pair of
tracks. Consequently, we identify the significant events that
relate to a single pair of aircraft and construct the model
using this alphabet of events. The significant events we
consider include coarse filter pass or fail and fine filter hit
or miss events. We abstract from the continuous variables
concerned with aircraft position, height and velocity, and
model only the events output by the filters as a result of
using these variables as input. The processes involved
follow naturally from the STCA architecture of Figure 1.

Figure 2 lists a fragment of the discrete model that
describes the main processing cycle of STCA. It is
specified in FSP [3], a simple process algebra used as the
input notation for the Labeled Transition System Analyzer.

||FINE_FILTERS = (PROXIMITY
|| LINEAR
|| MANOEUVRE
|| CONFIRM_ALERT
).

/* main processing cycle */

CYCLE = (cycle -> coarse[pass:Bool] ->
if pass then

FINE_FILTERS ; CYCLE_END
else

(alert[False] -> CYCLE_END)
),

CYCLE_END = (end -> CYCLE).

Figure 2 – Fragment of STCA model

In the FSP notation of Figure 2, ‘||’ is parallel

composition, ‘;’ sequential composition and ‘->’ means
action prefix. Action or event identifiers begin with a lower
case letter and processes with an uppercase letter. The
action coarse[pass:Bool] followed by the conditional
represents a choice between the two actions
coarse[True] and coarse[False] in the LTS compiled
from CYCLE as shown in Figure 3.

As mentioned above, we do not model the Coarse Filter
directly since this is an algorithm involving continuous
variables. Instead we abstract from it by leaving the choice
between coarse[True] and coarse[False] to the
environment.

We can use this model that abstracts from the operation
of filters to check for correct operation of the logic of the
system. Model checking can be used to verify absence of
deadlock and that safety properties are preserved – for
example, that an alert is not confirmed if a fine filter has
not previously detected a conflict hit. However, perhaps the
greatest use is in exploring the model interactively to
examine the effect of sequences of filter hits and inhibiting
conditions. The model, which does not capture the
complete discrete behaviour of the system, currently
consists of five pages of FSP and comments. It generates an
LTS with 25776 state and 89,368 transitions.

CYCLE

cycle

end

coarse[False]

coarse[True]

alert[False]

0 1 2 3 4

 Figure 3 – CYCLE Labeled Transition System

3.2 Graphic Animation

In [1], we described a scheme for associating smooth
graphic animation with LTS models. The scheme basically
involves mapping model actions to commands that initiate
animation activities and mapping animation conditions
signaling the end of these activities to guards that enable
model actions. The formal foundation for this scheme is
Timed Automata [4]. Our animation activities reify the
clock variables of Timed Automata. Animations are
constructed from sets of Java Beans (called SceneBeans) as
directed by an XML document. These beans are of two
types: graphic beans that are organized into a scene graph
structure as dictated by the XML document to depict the
visual image of the animation and behavior beans that
produce time varying values. These values are associated
with transformation beans in the scene graph to produce
movement in the animation. It is these behavior beans that
are started by actions in the LTS and enable actions when
they terminate. The relationship between these elements is
summarized in Figure 4. The leaf beans of the scene graph
draw shapes – rectangles, circles, etc – while intermediate
nodes apply transforms such as translation and rotation to
the way shapes are drawn.

Behavior
Bean

Transform
Bean

Shape
Bean

Scenegraph
Root

Shape
Bean

Start
Command

End
Condition

Figure 4 – Graphic Animation elements

The problem posed in applying this animation scheme to

the STCA model is – how do we include information about
aircraft tracks? This information has been abstracted from
the state machine model; however, it is necessary if we
wish to include aircraft movement in the animation and
more importantly, to permit the replay of recorded tracks
leading to STCA conflict alerts in the model. The standard
behavior beans in the animation toolkit are simple time
varying functions that for example generate the value of a
point moving along a straight line as time progresses.

PlanePair

Plane1
(position,
altitude,
heading)

Plane2
(position,
altitude,
heading)

coarse [true, false]
linear[true, false]
proximity[true, false]
manoeuvre[true, false]

cycle_end

Signaled
Conditions

start reset stop
Commands

Animation
Outputs

Figure 5 –STCA animation bean

Our solution is to introduce an STCA behavior bean

PlanePair that takes as a parameter a pair of aircraft tracks.
This bean is depicted schematically in Figure 5. The bean
accepts the standard commands to start, stop and reset the
animation behavior. It produces outputs that can be used to
animate the position, altitude and heading of the graphic
shapes used to represent aircraft in the animation display
(see Figures 6a & 6b). The bean gets its information on the
pair of tracks from the XML document that describes the
animation. A fragment of the XML declaration of a
PlanePair bean is shown below:

<behaviour id="planes" algorithm="planePair>

<param name="pointCount" value="49"/>

<param name="plane_one" index="0" value="100.9 -
135.8 -246.0 216.0 13179.0 -34.2 7602S - 15 0 0"/>
<param name="plane_two" index="0" value="80.7 -
127.9 328.0 -128.0 12000.0 0.0 2262S - 15 0 0"/>

<param name="plane_one" index="1" value="100.6 -
135.5 -249.0 218.0 13095.0 -30.1 7602S - 15 0 0"/>
<param name="plane_two" index="1" value="81.19 -
127.94 357.0 -60.0 12000.0 0.0 2262S L 15 0 0"/>

………

The fragment depicts a PlanePair bean declaration that is
parameterized with a track pair with 49 data points. Each
data point gives the position, altitude, speed and climb rate
for each aircraft in the pair. To ensure smooth animation,
the bean interpolates the values between these data points
as animation time progresses to produce the animation
output. The animation output is scaled to map aircraft
positions and altitudes into pixel positions on the animation
display.

3.3 Combining animation and LTS model

In addition to producing the animation outputs, the
PlanePair bean includes boolean functions which
implement the coarse filter and fine filter algorithms.
These functions are applied to each data point as it is
reached in the animation and the result output as signaled
conditions. These conditions control the corresponding
actions in the LTS model of the STCA. For example, the
coarse[True] and coarse[False] actions of Figure 3
are enabled by the corresponding conditions signaled by the
PlanePair bean. In other words, the animation provides the
environment of the LTS model. The animation when
combined with the LTS model forms a hybrid model of the
STCA system that captures both the discrete and
continuous behavior of the system.

Figures 6a and 6b are screen shots of the STCA
animation display. Figure 6a depicts the situation in which
the coarse filter has passed but no fine filter hits have yet
been detected. Figure 6b depicts the situation in which the
Current Proximity filter (CP) has detected a conflict, the
LTS model has confirmed the conflict and the alert
signaled. The alert (and filter conditions) are displayed by
mapping animation commands that modify the drawing to
actions in the LTS model.

The XML document that describes the particular
animation of Figure 6 consists of 600 lines of which 150
specify track data for the PlanePair bean. The XML
document describing the animation is produced
automatically by a translation program that takes as its
input a NATS track data file. The program computes the
axis labels and the scaling factors that map plane position
and altitude to pixel positions. The PlanePair bean consists
of around 500 lines of Java code although currently only

the coarse and current proximity filter functions are fully
implemented. Note that the XML document is specific to a

particular set of tracks while the PlanePair bean is the same
for all STCA animations.

Figure 6a – STCA Animation

Figure 6b – STCA Animation

4. Related Work

Most behavior modeling and analysis tools provide the
ability to execute the model specification as a way of
simulating the system being modeled. The output of this
simulation is displayed in the context of the specification.
For example in SPIN[5], the simulator highlights
statements in the Promela specification source as execution
proceeds. The Concurrency Factory[6] displays the
execution in the context of process diagrams specified in
GCCS, a graphical notation for Milner’s CCS.
UPPAAL[7], a tool based on timed automata, displays
simulation results by high-lighting transitions and states of
diagrammatic representations of automata produced using
the Autograph tool[8]. Graphical animation in these tools
thus refers to animation of some graphical representation of
the model specification. This is clearly a useful facility in
debugging and understanding models – it is a facility
provided in the LTSA which animates LTS graphs –
however, it does not address the problem of communicating
in a domain specific way with requirements stakeholders
unfamiliar with the modeling formalism.

Some initial work on domain specific visualization is
reported by Heitmeyer[9] in the context of the SCR[10]
simulator. They use the image of real instrument panels to
display the outputs and controls for a simulation of the
function of that control panel specified in SCR. The form
of animation is similar in scope to that provide by
StateMate[11]. StateMate supports animation through a set
of predefined widgets that display buttons, lights, dials and
graphs. Work on graphical animation of Z specifications
using “plug-ins” is referred to in [12]. A graphical
animation of the specification of an air traffic control
system is referred to but not documented.

The visualization approach we use is perhaps closest to
work in the field of program visualization, although the
objective of that work is to visualize program execution
while ours is to target model visualization at a problem
domain. A comprehensive account of the field of Software
Visualization may be found in the eponymous book edited
by Stasko et al[13].

5. Discussion

Alur, Henziger and Ho[14] define a hybrid automaton as
a finite state machine that is equipped with continuous
variables. The discrete actions of a system are modeled by
explicit transitions in the state machine while continuous
activities are modeled by real valued variables whose
values change continuously over time. In these terms, the
model we construct by combining an LTS with an
animation is a hybrid automaton. Alur et al in the same
paper present a model-checking procedure for Linear
Hybrid Automata. In these automata, at each state, the
behavior of all variables is governed by linear constraints

on the first derivatives, e.g. constant differential equations.
Unfortunately, this condition does not hold for aircraft
tracks where the position, velocity, altitude etc may vary
non-linearly as dictated by the pilot of the aircraft. As a
result, we cannot apply the automatic verification
procedure for Linear Hybrid Automata to our hybrid
model. What therefore is the use of the hybrid model if we
cannot model-check? In answering this question, we will
first summarize the benefits of the hybrid model that we
have identified in the STCA case study and then present
our position as to the general use of the hybrid modeling
and visualization techniques that we have described in this
paper.

5.1 STCA Case Study

As outlined in section 3, the STCA model was
constructed in two stages. Firstly, the discrete behavior was
modeled and then the graphic animation added to permit
visualization. As noted, we could apply exhaustive analysis
procedures to the LTS model of the system, and
interactively explore the effect of different sequences of
significant events such as filter hits and misses. This
discrete model when augmented with graphic animation
permitted the replay of real radar tracks. In essence, the
animation provides the environment for the discrete model
and allows the operation of the model to be investigated
using real scenarios. The visualization permits these
scenarios to be discussed with domain experts. We can then
examine the effect of parameter and algorithms changes in
relation to these tracks.

Unsurprisingly (and very reassuringly!), the analysis and
animation has not indicated any problems in the STCA
system since it is a mature system that has been deployed
for a number of years. NATS is (obviously) keen to
maintain this situation as the system is reviewed and
developed. The advantage of our hybrid model in relation
to STCA is the superiority of the visualization over the
output from the current offline STCA emulator and the ease
with which the model can be adapted to test new alert logic
and filtering strategies.

5.2 General application

Our motivation in doing this work is the conjecture that
the hybrid modeling and visualization techniques that we
have applied to STCA are of value early in the
development lifecycle of new systems. Our experience with
STCA has shown that model development is relatively low
cost, requiring a few man-weeks of efforts. The model can
be clearly focused on the critical elements in a system and
used to explore design alternatives and the feasibility of
satisfying requirements. Feedback from the visualizations
can help to further develop and enrich the LTS model, and
vice versa. Since the hybrid model can only exhibit
behaviors already contained in the LTS model (the

animation acts as a constraint), the latter can still be used
for exhaustive analysis and may produce behaviors and
violations not exhibited in the hybrid model. In the STCA
case, we were fortunate in having data from real scenarios.
In a new system this data might have to be constructed.
However, the animation toolkit permits interactive
visualizations and for example, we could use the mouse to
position aircraft in the STCA animation and generate new
scenarios.

The ability to exhaustively analyze systems such as

STCA seems remote. Even given the constraints imposed
by the physics of flight, the set of trajectories that an
aircraft can take in a given region of airspace is very large
indeed. As we noted earlier, we cannot simply characterize
a trajectory symbolically using equations since the aircraft
is controlled by an agent outside the control of the system –
the pilot. In this paper, we have discussed a technique that
shows the potential to help in the development of this class
of system.

References

[1] J. Magee, N. Pryce, D. Giannakopoulou, and J.
Kramer, “Graphical Animation of Behavior Models,”
presented at ICSE, Limerick, June 2000.

[2] J. Magee, J. Kramer, and D. Giannakopoulou,
“Behaviour Analysis of Software Architectures,”
presented at 1st Working IFIP Conference on Software
Architecture (WICSA1), San Antonio, TX, USA, 22-
24 February 1999.

[3] J. Magee and J. Kramer, Concurrency - State Models
& Java Programs. Chichester: John Wiley & Sons,
1999.

[4] R. Alur and D. L. Dill, “A theory of timed automata.,”
Theoretical Computer Science, vol. 126, pp. 183-235,
94.

[5] G. J. Holzmann, “The Model Checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23, pp.
279-295, 97.

[6] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O.
Sokolsky, “The Concurrency Factory: A Development
Environment for Concurrent Systems,” presented at
8th International Conference on Computer-Aided
Verification (CAV'96), New Brunswick, NJ, USA,
July/August 1996.

[7] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a
Nutshell,” Springer International Journal on Software
Tools for Technology Transfer, vol. 1, pp. 134-152, 97.

[8] V. Roy and R. de Simone, “Auto/Autograph,” in
Computer-Aided Verification, R. Kurshan, Ed.: Kluwer
Academic Publishers, 1993.

[9] C. Heitmeyer, C. Kirby, and B. Labaw, “The SCR
method for Formally Specifying, Verifying and
Validating requirements: Tool Support.,” presented at
19th International Conference on Software
Engineering (ICSE'97), Boston, Massachussets, USA,
May 1997.

[10] R. Bharadwaj and C. Heitmeyer, “Verifying SCR
Requirements Specifications Using State Exploration,”
presented at 1st ACM Sigplan Workshop on
Automated Analysis of Software (AAS'97), Paris,
France, January 1997.

[11] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.
Politi, R. Sheman, A. Shtul-Trauring, and M.
Trakhtenbrot, “STATEMATE: A Working
Environment for the Development of Complex
Reactive Systems,” IEEE Transactions on Software
Engineering, vol. 16, pp. 403-414, 90.

[12] Daniel Hazel, Paul Strooper, Owen Traynor,
“Requirements Engineering and Verification using
Specification Animation,”
http://svrc.it.uq.edu.au/pages/Animation.html, 2000.

[13] J. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
Software Visualization. Cambridge, Massachusetts:
MIT Press, 1998.

[14] T. A. H. Rajeev Alur, Pei-Hsin Ho, “Automatic
Symbolic Verification of Embedded Systems,” IEEE
Transactions on Software Engineering, vol. 22, pp.
181-192, 1996.

