
ViewPoints: meaningful relationships are difficult!

Bashar Nuseibeh Jeff Kramer Anthony Finkelstein
Department of Computing Department of Computing Department of Computer Science

The Open University Imperial College University College London
Walton Hall 180 Queen’s Gate Gower Street

Milton Keynes MK7 6AA, UK London SW7 2BZ, UK London WC1E 6BT, UK
B.A.Nuseibeh@open.ac.uk j.kramer@imperial.ac.uk a.finkelstein@cs.ucl.ac.uk

Abstract
The development of complex systems invariably involves
many stakeholders who have different perspectives on the
problem they are addressing, the system being developed,
and the process by which it is being developed. The
ViewPoints framework was devised to provide an
organisational framework in which these different
perspectives, and their relationships, could be explicitly
represented and analysed. The framework acknowledges
the inevitability of multiple inconsistent views, promotes
separation of concerns, and encourages decentralised
specification while providing support for integration
through relationships and composition. In this paper, we
reflect on the ViewPoints framework, current work, and
future research directions.

1 Multi-Perspective Software Development
Any sizeable software development effort will involve a
variety of stakeholders with different aspects of concern –
or perspectives – that overlap, complement, or contradict
each other. These stakeholders express their concerns using
a variety of representations, and follow different processes
to deploy those representations. This makes determining
the relationships between different perspectives particularly
difficult, yet crucial for checking consistency and managing
inconsistency between those perspectives.

Such multi-perspective software development has
motivated our research for over a decade. It embodies a
number of characteristics that continue to lie at the heart of
organising the software development activity. These
characteristics include the need for separation of concerns
during software development, the inevitability of having
multiple inconsistent views of processes and products of
software development, and the need to reason analytically
over multiple views in order to understand the properties
and consequences of a multi-perspective specification.

Much of this research has focused on requirements
engineering (RE) activities within the software engineering
life cycle. RE is prototypical of multi-perspective software
development. Multiple stakeholders hold different views of
the problems to be addressed, which in turn determine the
different requirements of the system to be developed. These
requirements are often inconsistent, but acceptably so,

during some part of the RE process when requirements are
still being elicited, negotiated, and prioritised.

This paper reflects briefly on the ViewPoints framework
[10, 33], which we developed to organise and manage
multi-perspective software development. The paper reviews
the basic components of the framework, their raison d’être,
and the way in which we have deployed them over the last
ten years. The paper describes the use of explicit
relationships between ViewPoints to manage multi-
perspective software development, and reports on our most
recent incarnation of the ViewPoints framework in the form
of the xlinkit toolkit. The paper then speculates about the
need for more meaningful relationships between multiple
ViewPoints in order to reason more effectively about
structured collections, or configurations, of such
ViewPoints.

2 The ViewPoints Framework
The ViewPoints framework provided an infrastructure for
capturing and organising software development knowledge.
Our notion of a ViewPoint was of an object encapsulating
cross-cutting and partial knowledge about notation,
process, and domain of discourse, from the perspective of a
particular stakeholder, or group of stakeholders, in the
development process.

A system description – a specification – thus comprises a
structured collection of loosely coupled, locally managed,
distributable ViewPoints, with explicit relationships
between them to represent their overlaps. These overlaps
are the focal point for consistency checking between
ViewPoints, and subsequent inconsistency management,
should ViewPoint relationships be found not to hold.

2.1 Key principles
ViewPoints re-iterate a number of key, well-documented
principles of software engineering, and surface a number of
new ones.

Fundamentally, ViewPoints organise software development
knowledge based on separation of concerns. A ViewPoint,
expresses the concerns of a particular stakeholder, such as a
development participant or a representative of an area of
concern captured by that ViewPoint. Thus, a ViewPoint
may represent an area of concern within a project, a
product, or a process, or may simply present a particular

mailto:B.A.Nuseibeh@open.ac.uk
mailto:j.kramer@imperial.ac.uk
mailto:a.finkelstein@cs.ucl.ac.uk

perspective expressed in a particular notation. The choice
of dimensions of concern along which to create ViewPoints
may be the result of experience, the nature of the problem
at hand, or simply organisational exigencies.

The next, but related, key principle is that of heterogeneity
of representations. ViewPoints deliberately allow different
perspectives to be represented using different notations,
based on the observation that stakeholders will present their
perspectives using different notations, depending on their
preferences, needs, or circumstances. Of course, relating
different perspectives will inevitably require some
expression of the relationships between the different
notations, and ViewPoints provide a framework for
precisely such an expression.

Using the ViewPoints framework leads directly to the
notion of distributable ViewPoints – that is, ViewPoints
that can be distributed physically or logically. The key
principle upon which this relies is decentralisation – the
idea that the knowledge encapsulated within each
ViewPoint is elicited locally, developed locally, and
managed locally. Such decentralisation explicitly moves
away from any notion of a monolithic system specification
that can be checked or managed globally, towards
collections of loosely coupled partial descriptions.

The consequence of heterogeneity, decentralisation, and
partiality is that relationships between ViewPoints are
crucial for achieving integration in its many forms. In the
ViewPoints framework, integration is often
methodological; that is, it is about meaningful linking of
processes and notations in order to achieve coordination
and composition, respectively [32]. Thus, methods may be
engineered by relating different notations and prescribing
when and how they are used. Also, methods may be
deployed, leading to many ViewPoints linked by
instantiations of relationships defined during method
engineering.

Another consequence of a specification comprised of many
different ViewPoints is the inevitable inconsistencies that
arise between those ViewPoints. The approach adopted by
the ViewPoints framework is one of living with
inconsistency, in order to capture the diverse perspectives
of stakeholders. Consistency is defined by inter-ViewPoint
rules that express the (static semantic) relationships
between ViewPoints [6, 34]. Inconsistency management is
then the process of handling the potential plethora of rules
and dealing with the ViewPoints when the desired
relationships between them do not hold [7, 12, 35, 37].

2.2 Why ViewPoints are still relevant
The principles upon which ViewPoints are based continue
to be relevant in the context of software development
today. The aspect-oriented software development (AOSD)
community has focused in recent years on precisely the
kind of “cross-cutting” concerns investigated within the
ViewPoints framework. This community has focused

mostly on concerns in programming code, however, there is
now increasing recognition that these concerns may also
manifest themselves in requirements and designs, and so
consideration of ‘early aspects’ may be necessary [4, 40].

The ViewPoints framework also provided an opportunity
for method engineering – the customisation of methods by
mixing notations [36], processes and guidelines for their
deployment. During such method engineering, different
types (“templates”) of ViewPoints can be assembled
together, and related, leading to multiple, heterogeneous
ViewPoints when the methods are deployed (or in
ViewPoints’ terminology, when ViewPoint templates are
instantiated). While method engineering as a research
discipline, has not prospered it is in fact widely practiced.
The Unified Modelling Language (UML) with its multiple,
heterogeneous modelling notations, user-defined profiles,
extension mechanisms, and variety of processes in which it
is used, may be seen as an example of the move towards
choosing the most appropriate method for the problem in
hand [1]. Expressing and checking the relationships
between the various models remains a challenge.

Decentralisation was at the heart of the ViewPoints
framework. Many of the issues identified are of direct
relevance for the provision of tool support to distributed
software engineering teams working cooperatively and
asynchronously [21, 30]. The consequences of supporting
multiple views, namely, the need to live with and manage
inconsistency between those views are of particular interest
[3, 9, 15, 16].

2.3 A critical analysis
The software engineering community in general, and the
RE community in particular, appear to have accepted the
need to articulate and manage multiple views in the
software development process. There are a variety of
concerns along which these views may be separated,
including aspects, actors, representation schemes, or
processes. Dividing large monolithic specifications into
many smaller partial specifications is one way of managing
such specifications.

The ViewPoints framework articulated a research agenda in
which the above ideas featured. It also, through cases
studies and demonstrator tool support, presented a vision of
multi-perspective software development in which methods
can be engineered, many partial, inconsistent specifications
created, and consistency relationships between them
checked. The research agenda changed over time and
assiduous reading of our papers will reveal different and,
ironically, not wholly consistent variants of the framework.

What our early demonstrators did not achieve were truly
heterogeneous representations. It is also fair to accuse our
early work of providing a reference model without a
plausible distributed implementation to support it.

Distribution has been largely addressed in our more recent

work on xlinkit, a toolkit for checking documents
distributed on the web, described in the next section.
Heterogeneity has posed somewhat more problems. The
ViewPoints framework made great polemical play of
heterogeneity. The coordinated use of multiple modelling
notations is now common and widely accepted as the right
approach to specification. It is not at all clear that our
advocacy of heterogeneity in representing mappings
between modelling representations and consistency
relationships between models using multiple these
notations was the right approach. Certainly, our later work
[6, 12, 18, 27] has adopted a single meta-language for
expressing the relationships between multiple views (as
UML does in its adoption of a single meta-model and
framework of constraints).

The single language is crucial for performing meaningful
analytical reasoning. In much of our work we have adopted
predicate logic as an underlying representation upon which
to perform reasoning [12]. In some instances we found it
necessary to adapt classical logic in order to perform
reasoning in the presence of inconsistency [18]. In other
cases, we used particular forms of classical logic in order to
reason about the changing specifications [14, 41]. Most
recently, in the context of xlinkit, we have based our
techniques for repairing inconsistencies between
specifications on first order predicate logic with some
significant practical success [29].

3 xlinkit

xlinkit is a direct successor to much of the work on
ViewPoints. It provides a partial realisation and a
demonstration that many of the core ideas of the framework
were sound. It has also, as implementations are wont to do,
surfaced a wide range of new issues, to which we had paid
scant attention in our earlier work.

xlinkit, a lightweight application service that provides rule-
based link generation and checks the consistency of
distributed web content. A full description can be found in
[27, 28, 29] and online demonstrations, tutorials and other
materials can be found at http://www.xlinkit.com.

The operation of xlinkit is quite simple. It is given a set of
distributed XML resources and a set of potentially
distributed rules that relate the content of those resources.
The rules express consistency constraints across the
resource types. xlinkit returns a set of XLinks, in the form
of a linkbase, that support navigation between elements of
the XML resources. Here XML is used as the common
interchange language to overcome heterogeneity.

The xlinkit rule language is first-order logic (the concrete
syntax being XML). The xlinkit 'check engine' provides a
novel linking semantics to this language that returns
hyperlinks between inconsistent elements instead of
boolean values.

The hyperlinks provide very precise diagnostics that we

believe are essential for inconsistency management. xlinkit
has a reporting framework 'Pulitzer' that uses these
diagnostics to provide informative reporting to resource,
aka viewpoint, owners.

Recent work, reported at this conference, has concentrated
on 'repair'. Using the rules, by static analysis, we can
identify a set of repairs that can be used to restore
consistency. These repairs, or at any rate a sensible subset
of them, as determined by an appropriate authority, can be
used in conjunction with our diagnostic reporting to support
inconsistency management.

xlinkit leverages standard Internet technologies. It supports
wide-scale document distribution and can support multiple
deployment models. It has a strong formal foundation. We
have completed a number of large-scale evaluations,
including a study that checks UML models, Java code, EJB
deployment information and UML profile information.
This and similar studies give us confidence in xlinkit and
demonstrate that we have gone some way towards making
ViewPoints a reality. xlinkit is now being commercialised
by Systemwire, a research spinout company.

Experience with xlinkit has brought home to us the
challenges of scalability, in terms of the size of documents,
the number of rules and the complexity of those rules. We
have implemented an incremental checker, a distributed
checker, smart caching using an XML repository and an
ultra-high performance replicated checker. We have also
devoted a large amount of effort to optimisation with a
view to ensuring that checking and rechecking can be done
on large document collections as and when necessary.
Ensuring usability, good interfaces and meaningful error
messages has also occupied much time. These are not
peripheral issues, they have been essential in order to be
able to complete the case studies, and attract the external
users, that validate our work.

There is a substantial future research agenda for xlinkit.
One of the key items on this agenda is the relationship
between checking and workflow. The ViewPoints
framework envisaged that checks would be triggered by the
enaction of a process model. This process model would
identify which checks should be applied when and the
results of the checks could then be used to drive the
process. This idea was first mooted in our work on Tool
Assisted Requirements Analysis [TARA paper] and further
explored in the context of Viewpoints in [21]. Our work on
standards compliance is in much the same vein [8]. Cass &
Osterweil [2] have been looking at doing process-centred
checking in the context of xlinkit using Little-JIL as the
process language. We are keen to do something similar,
probably using a simple reactive approach that takes
advantage of distributed event monitoring.

4 Final Viewpoints: current and future challenges
We have occupied ourselves with providing a framework
for separation of concerns and have made some moderately
successful attacks on the associated problems of integrity
that result from this. We recognise however that this is only
part of the story, “having divided to conquer, we must
reunite to rule” [19]. Software development requires us to
be able to perform rich reasoning and analysis across the
multiple views.

While tools such as xlinkit help to establish links and check
rules, it is still a far cry from the reasoning and analysis that
we envisage should be supported. How can we make
further progress in this regard?

An example of where this challenge is evident is in the
relationship between requirements and software
architectures, a hot topic in current software engineering
research. In the ‘twin peaks’ model [17, 39] we outlined
our view of the co-development of requirements and
architectures. Obviously, we wish to separate the
expression of requirements and the representation of the
software architecture. On the other hand we know that
many so-called non-functional requirements drive the
identification of an appropriate architecture and, vice-versa,
that architectural analysis informs requirements. Handling
these relationships requires more than consistency
checking, important though that is. We must be able to
reason about properties of the systems that we expect to
build based on an integration or composition of different
ViewPoint specifications. We should also be able to
identify incompleteness and to perform trade-off analysis
between alternative development decisions.

Given our experience and interest in software architectures,
we have also investigated support for reasoning across
views by exploiting the common, underlying structure of
the proposed software architecture. In particular, the
architecture is used as the skeletal framework upon which
to hang the aspects of interest [20, 24]. In contrast to the
concept of a single source of information which supports
multiple views, this approach provides for the elaboration
of the common underlying structure or architecture with
behaviour, performance, implementation, or other
information. So far this work has been loosely based on the
Darwin software architecture language [22] and the LTSA
(Labelled Transition Systems Analyser) [23] for behaviour
analysis and animation [25], and is being extended to
include synthesis from scenarios [44] and performance
analysis. However, here too the relationships are limited to
the granularity supported by the components and
interactions inherent in the architecture rather than to any
deeper notions which may be at a finer granularity or
orthogonal to the architecture.

It is clear that we still lack the means to express more
diverse relationships in order to reason more effectively
about structured collections, or configurations, of

ViewPoints. A classic example is the kind of reasoning that
is needed to trade-off usability against security. The
relationships between two such system requirements are
complicated by the variability or lack of precision in their
expression. Thus, in order to express relationships between
them, individual security and usability ViewPoints need to
be better understood and articulated.

Finally, returning to our example of relating requirements
and architectures, we are currently exploring ways of
describing the multifaceted relationships that inevitably
arise between problem and solution structures in software
development. We are using Jackson’s Problem Frames to
map out shared phenomena between requirements, problem
domains, and the (software) machine to be developed [17].
Thus, our problem frames not only bridge the gaps between
problems and solutions, they are also an explicit
representation of some quite complex relationships between
different descriptions in the software development space.
We have started to explore this kind of approach to better
specify and analyse security requirements and to relate
them to security threats [5]. The ViewPoints framework
provides a generic means of expressing the relationships
between descriptions in this context. However, our
experience to date indicates that identifying, expressing,
and reasoning about more meaningful relationships is hard!

Acknowledgements
The ViewPoints framework was inspired by the CORE
method [26] and developed in collaboration with a number
of colleagues and students over many years. Instrumental
in the early conceptual work, particularly during his
sabbatical at Imperial College in 1989, was Michael
Goedicke [10]. Steve Easterbrook has also been, and
continues to be, a key developer of the framework since
completing his PhD at Imperial College in 1991 [6, 7, 37,
38]. George Spanoudakis contributed to the understanding
of overlaps between ViewPoints [43] and Tony Hunter to
the development of techniques for reasoning in the
presence of inconsistency [12, 18]. Alessandra Russo
performed some of the first major case studies applying
ViewPoints to NASA requirements specifications [41], and
has subsequently contributed significantly to the
development of tools and techniques for reasoning about
evolving ViewPoint specifications [14, 42]. Wolfgang
Emmerich and Christian Nentwich have been partners in
the development of xlinkit [27, 28, 29]. Early work on the
bridge to ViewPoints was performed by Ernst Ellmer and
Andrea Zisman.

We would like to acknowledge the financial support
provided by the UK SERC and then EPSRC for over a
decade through a series of projects (SEED, VOILA, MISE
and VOICI). The work has also benefited from financial
support of the European Union in the context of projects
such as ESF, PROMOTER I/II and REX.

A number of related workshops [3, 9, 45] and journal
special issues [13, 15, 16] contributed to the building of an
active community in viewpoints and inconsistency
management research.

This paper is a retrospective on the ICSE-15 (1993) [31]
paper, which received the ICSE “Most Influential Paper”
Award at ICSE-2003. The original paper was subsequently
revised and expanded to appear in [34].

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Finkelstein and J. Kramer, “TARA: Tool Assisted
Requirements Analysis”, in Conceptual Modelling,
Databases & CASE: an integrated view of information
systems development, Loucopoulos, P. & Zicari, R.
eds., 413-432, John Wiley, 1991.
A. Finkelstein, D. Gabbay, A. Hunter, J. Kramer and
B. Nuseibeh, “Inconsistency Handling in Multi-
Perspective Specifications”, Transactions on Software
Engineering, 20(8): 569-578, IEEE CS Press, August
1994.
A. Finkelstein and I. Sommerville, “The Viewpoints
FAQ”, Software Engineering Journal, (Special issue
on viewpoints), 11(1):2-4, IEE/BCS, 1996.

D. Avison and G Fitzgerald, “Where Now for
Development Methodologies”, Communications of the
ACM, 46(1):79 -82, January 2003.

A. Garcez. A. Russo, B. Nuseibeh, and J. Kramer,
“Combining Abductive Reasoning and Inductive
Learning to Evolve Requirements Specifications”, (to
appear in) IEE Proceedings: Software, 2003.

A. G. Cass and L. J. Osterweil, “Requirements-based
design guidance: A process-centered consistency
management approach”, Technical Report 2002-024,
University of Massachusetts, Department of Computer
Science, March 2002. C. Ghezzi and B. Nuseibeh, eds, Special issue on

Managing Inconsistency in Software Development,
IEEE Transactions on Software Engineering, ,
24(11):908-1001, November 1998.

M. Chechik and S. Easterbrook, eds., ICSE-01
Workshop on Living with Inconsistency, Toronto,
Canada, May 2001.

C. Ghezzi and B. Nuseibeh, eds, Special issue on
Managing Inconsistency in Software Development,
IEEE Transactions on Software Engineering,
25(6):782-869, November/December 1999.

S. Clarke, W. Harrison, H. Ossher, and P. Tarr,
“Subject-Oriented Design: Towards Improved
Alignment of Requirements, Design and Code”,
Proceedings of OOPSLA-99, November 1999.

J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L.
Rapanotti, “Relating Software Requirements and
Architectures using Problem Frames”, Proceedings of
IEEE International Requirements Engineering
Conference (RE'02), Essen, Germany, 9-13 September
2002.

R. Crook, D. Ince, L. Lin, and B. Nuseibeh, “Security
Requirements Engineering: When Anti-requirements
Hit the Fan”, Proceedings of IEEE International
Requirements Engineering Conference (RE'02), Essen,
Germany, 9-13 September 2002.
S. Easterbrook, A. Finkelstein, J. Kramer and B.
Nuseibeh, “Coordinating Distributed ViewPoints: The
Anatomy of a Consistency Check”, International
Journal on Concurrent Engineering: Research &
Applications, Special issue on conflict management,
2(3): 209-222, CERA Institute/Technomic Publishing
Co. Inc, USA, 1994.

A. Hunter and B. Nuseibeh, “Managing Inconsistent
Specifications: Reasoning, Analysis and Action”,
Transactions on Software Engineering and
Methodology, ACM Press, October 1998.
M. Jackson, “Some Complexities in Computer-Based
Systems and Their Implications for System
Development”, Proceedings of International
Conference on Computer Systems and Software
Engineering (CompEuro ‘90), Tel-Aviv, 8-10th May
1990, 344-351, IEEE CS Press.

S. Easterbrook and B. Nuseibeh, “Using ViewPoints
for Inconsistency Management”, Software Engineering
Journal, 11(1): 31-43, BCS/IEE Press, January 1996.
W. Emmerich, A. Finkelstein, C. Montangero, S.
Antonelli, S. Armitage, and R. Stevens, “Managing
Standards Compliance” IEEE Transactions on
Software Engineering, 25(6):836-851, Nov/Dec. 1999.

J. Kramer and J. Magee, “Exposing the Skeleton in the
Coordination Closet”, Proceedings of Coordination
Languages and Models, 2nd International Conference
(COORDINATION ’97), Berlin, 1997, 18-31.

M. Feather, S. Fickas, and J. Kramer, eds., ICSE-97
Workshop on Living with Inconsistency, Boston, USA,
May 1997.

U. Leonhardt, A. Finkelstein, J. Kramer and B.
Nuseibeh, “Decentralised Process Enactment in a
Multi-Perspective Development Environment”,
Proceedings of 17th International Conference on
Software Engineering (ICSE-17), Seattle, Washington,
USA, 24-28th April 1995, IEEE CS Press.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein
and M. Goedicke, “Viewpoints: A Framework for
Multiple Perspectives in System Development,”
International Journal of Software Engineering and
Knowledge Engineering, Special issue on ‘Trends and
Future Research Directions in SEE’, World Scientific
Publishing Company Ltd., 2(1): 31-57, March 1992.

http://mcs.open.ac.uk/ban25/papers/re02.crook.pdf
http://mcs.open.ac.uk/ban25/papers/re02.crook.pdf
http://mcs.open.ac.uk/ban25/papers/re02.crook.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/cera94.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/cera94.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/sej95.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/sej95.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/ijseke92.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/ijseke92.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tse94.esec.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tse94.esec.pdf
http://mcs.open.ac.uk/ban25/papers/sej2003.pdf
http://mcs.open.ac.uk/ban25/papers/sej2003.pdf
http://mcs.open.ac.uk/ban25/papers/re02.hall.pdf
http://mcs.open.ac.uk/ban25/papers/re02.hall.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tosem98.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tosem98.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/icse17.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/icse17.pdf

22. J. Magee, N. Dulay, S. Eisenbach, and J Kramer,
“Specifying Distributed Software Architectures”,
Proceedings of 5th European Software Engineering
Conference (ESEC‘95), 137-153, Sitges, September
1995, LNCS 989, Springer-Verlag, 1995.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

B. Nuseibeh, “A Multi-Perspective framework for
Method Integration”, PhD Thesis, Department of
Computing, Imperial College, London, October 1994.
B. Nuseibeh, J. Kramer and A. Finkelstein, “A
Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification”,
Transactions on Software Engineering, 20(10): 760-
773, IEEE CS Press, October 1994.

J. Magee, and J. Kramer, Concurrency: State Models
& Java Programs, John Wiley & Sons, March 1999,
355 pages.
J. Magee, J. Kramer, and D. Giannakopoulou
“Behaviour Analysis of Software Architectures", First
Working IFIP Conference on Software Architecture
(WICSA1), San Antonio, Texas, 22-24 February 1999,
ed. Patrick Donohoe, (Kluwer Academic Pub.), 1999,
35-50.

B. Nuseibeh, “To Be And Not To Be: On Managing
Inconsistency in Software Development”, Proceedings
of 8th International Workshop on Software
Specification and Design (IWSSD-8), 164-169, Schloss
Velen, Germany, 22-23 March 1996, IEEE CS Press.
B. Nuseibeh, A. Finkelstein and J. Kramer, “Method
Engineering for Multi-Perspective Software
Development”, Information and Software Technology
Journal, 38(4): 267-274, Elsevier Science B.V., April
1996.

J. Magee, N. Pryce, D. Giannakopoulou, and J.
Kramer, “Graphical Animation of Behaviour Models”,
Proceedings of 22nd IEEE/ACM Int. Conf. on Software
Engineering (ICSE-2000), Limerick, Ireland, June
2000, 499-508. B. Nuseibeh, S. Easterbrook and A. Russo, Leveraging

Inconsistency in Software Development, IEEE
Computer, 33(4):24-29, April 2000.

G. Mullery, “CORE - a method for controlled
requirements expression”, Proceedings of 4th
International Conference on Software Engineering
(ICSE-4), 126-135, IEEE CS Press, 1979.

B. Nuseibeh, S. Easterbrook and A. Russo, Making
Inconsistency Respectable in Software Development,
Journal of Systems and Software, 58(2):171-180,
September 2001, Elsevier Science Publishers.

C. Nentwich, W. Emmerich, and A. Finkelstein,
“Static Consistency Checking for Distributed
Specifications, Proceedings of the 16th International
Conference on Automated Software Engineering (ASE-
01), 115-124, Coronado Island, CA, IEEE Computer
Society Press, November 2001.

B. Nuseibeh, “Weaving Together Requirements and
Architecture”, IEEE Computer, 34(3):115-117, March
2001.
A. Rashid, A. Moreira, J. Araujo, “Modularisation and
Composition of Aspectual Requirements”,
Proceedings of 2nd International Conference on
Aspect-Oriented Software Development, 17-21st
March 2003, Boston, US.

C. Nentwich, L. Capra, W. Emmerich, and A.
Finkelstein, “xlinkit: a Consistency Checking and
Smart Link Generation Service”, ACM Transactions
on Internet Technology, 2(2): 151-185, May 2002.
C. Nentwich, W. Emmerich, and A. Finkelstein,
“Consistency Management with Repair Actions”,
Proceedings of the 25th International Conference on
Software Engineering (ICSE-03), Portland, Oregon,
IEEE CS Press, May 2003.

A. Russo, B. Nuseibeh, and J. Kramer, “Restructuring
Requirements Specifications”, IEE Proceedings:
Software, 146(1): 44-53, February 1999.
A. Russo, R. Miller, B. Nuseibeh, and J. Kramer, “An
Abductive Approach for Analysing Event-Based
Requirements Specifications”, Proceedings of 18th
International Conference on Logic Programming
(ICLP-02), Copenhagen, Denmark, 29 July-1 August
2002.

B. Nuseibeh and A. Finkelstein, “ViewPoints: A
Vehicle for Method and Tool Integration”,
Proceedings of the 5th International Workshop on
Computer-Aided Software Engineering (CASE '92),
50-60, Montreal, Canada, 6-10th July 1992, IEEE CS
Press.

G. Spanoudakis, A. Finkelstein, and D. Till, “Overlaps
in Requirements Engineering”, Automated Software
Engineering, 6(2):171-198, April 1999. B. Nuseibeh, J. Kramer and A. Finkelstein,

“Expressing the Relationships Between Multiple
Views in Requirements Specification”, Proceedings of
the 15th International Conference on Software
Engineering (ICSE-15), 187-196, Baltimore,
Maryland, USA, 17-21st May 1993, IEEE CS Press.

S. Uchitel, J. Kramer, and J. Magee, “Synthesis of
Behaviour Models from Scenarios”, IEEE
Transactions on Software Engineering, to appear 2003.
L. Vidal, A. Wolf, A. Finkelstein, G. Spanoudakis,
Joint proceedings of the second international software
architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software
development (Viewpoints '96), San Francisco, USA,
ACM SIGSOFT '96, 1996, ISBN:0-89791-867-3.

B. Nuseibeh, A. Finkelstein and J. Kramer, “Fine-
Grain Process Modelling”, Proceedings of the 7th
International Workshop on Software Specification and
Design (IWSSD-7), 42-46, Redondo Beach, California,
USA, 6-7th December 1993, IEEE CS Press.

http://www-dse.doc.ic.ac.uk/%7Eban/pubs/case92.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/case92.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/iwssd7.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/iwssd7.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tse94.icse.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tse94.icse.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/tse94.icse.pdf
ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/ist96.ps.gz
ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/ist96.ps.gz
ftp://dse.doc.ic.ac.uk/dse-papers/viewpoints/ist96.ps.gz
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/ieee.computer2000.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/ieee.computer2000.pdf
http://mcs.open.ac.uk/ban25/papers/jss2001.pdf
http://mcs.open.ac.uk/ban25/papers/jss2001.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/computer2001.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/computer2001.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/sej98.pdf
http://www-dse.doc.ic.ac.uk/%7Eban/pubs/sej98.pdf
http://mcs.open.ac.uk/ban25/papers/iclp2002.pdf
http://mcs.open.ac.uk/ban25/papers/iclp2002.pdf
http://mcs.open.ac.uk/ban25/papers/iclp2002.pdf

	Multi-Perspective Software Development
	The ViewPoints Framework
	2.1Key principles
	2.2Why ViewPoints are still relevant
	2.3A critical analysis

	xlinkit
	Final Viewpoints: current and future challenges
	Acknowledgements
	The ViewPoints framework was inspired by the CORE method [26] and developed in collaboration with a number of colleagues and students over many years. Instrumental in the early conceptual work, particularly during his sabbatical at Imperial College in 19
	References

