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Abstract.  We show how principles of separation of Coordination from Com-
putation can be used to endow the Problem Frames approach to problem analy-
sis with representation schemes.  These representation schemes facilitate the
way evolution of requirements or of the application domain can be reflected in
the decomposition structure, making it easier to change.

1 Introduction

Decomposition as an aid to tackle complexity has been used in software development
for a long time; after all, software engineering is a human activity and problem solv-
ing through "divide-and-conquer" must be as old as humanity.  Many approaches to
decomposition can be found in the literature, some of which have got into day-to-day
practice, from domain modelling down to design.

However, problem domains can change over time: changes in the application do-
main may require software solutions to be changed to maintain customers’ expecta-
tions.  Even when the application domain remains stable, customers come up with
new requirements that often necessitate new solutions to be developed!  This means
that problem analysis and decomposition are essentially part of a continuous process.
Indeed, even if a problem decomposition structure succeeds in breaking down the
complexity of a problem and allows a suitable solution to be developed, such a struc-
ture may not be easy to evolve as the original problem and its requirements change.

Finding a problem decomposition that can evolve easily is often difficult - unfor-
tunately, we do not need to go back very far in history to observe situations of "con-
quest" through "division" that have left in place structures that have evolved in unde-
sirable ways … A good knowledge of the problem domain, of the type of changes that
are likely to occur, and of their frequency, is, again, fundamental for knowing the
costs of evolution.  Therefore, it is important that mechanisms be provided for
changes to be reflected incrementally in the decomposition structure.  This allows
these changes to be tracked down to sub-problems, where they can be localised with-
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out affecting the rest of the structure, or through the addition of sub-problems that
reflect the new properties that need to be brought about and the way they relate to the
existing ones.

In this paper, we report on the work through which we are addressing this problem
by extending and combining the Problem Frames approach to problem analysis and
description [13] with the coordination-based approach to run-time software evolution
[3].  This extension endows Problem Frames with representation structures that allow
for forms of problem decomposition that separate aspects related to the coordination
of the interactions between solution (called the Machine) and problem domain, from
the computational aspects that the machine implements.  This principle of separation
of concerns has been proposed for software design in the form of Coordination Lan-
guages and Models [10].  Our contribution in this paper is the application of this prin-
ciple to problem analysis and requirements specification in order to control the com-
plexity of managing evolution resulting from changes in customers’ requirements or
the application domain.  We achieve this separation by the explicit externalisation of
the coordination aspects, the coordination interfaces, and the explicit representation
of the interactions with coordination rules.

The paper is structured as follows.  Section 2 provides an overview of Problem
Frames and presents the example that we use throughout the paper to illustrate our
approach.  In Section 3, we delimit the scope of our work and introduce the proposed
application of coordination primitives and modelling techniques.  Section 4 shows
how assumptions about the domain can be captured through coordination interfaces.
Section 5 takes these coordination interfaces and discusses the description of the be-
haviour of the Machine through coordination rules.  In Section 6, we summarise the
impact of our approach in the context of related work.  Section 7 concludes the paper
and discusses future work.

2 Problem Frames

The Problem Frames approach to problem analysis and description recognises that
domain problems can usually be categorised as a set of commonly occurring patterns
for which the same type of models can be used.  The approach emphasises the rela-
tionships of systems to the real world domains where they live.  Problem Frames
encapsulate both real world and system objects, and describe the interactions between
them.

A simple problem frame is represented typically by a context diagram (Figure 1)
showing one machine, one domain, and the shared phenomena between them.

Figure 1: A simple problem frame
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The Machine Domain represents the piece of software that the customer requires and
the platform on which it executes in order to bring about some desired effects.  The
Problem Domain is that part of the world in which those effects are perceived by the
customer.  The Requirements are the properties that the customer wants to observe,
through the shared phenomena b, in the Problem Domain as a result of the effects
brought about by the software as it executes and interacts with the domain via the
shared phenomena a.

We illustrate this using a simple example of a sluice gate control introduced by
Jackson [13]:

A rising and falling gate is used in an irrigation system.  A computer sys-
tem is needed to control the gate.  The gate is opened and closed by ro-
tating vertical screws controlled by clockwise and anticlockwise pulses.
There are sensors at the top and bottom of the gate travel indicating when
the gate is fully opened and fully shut.

The sluice gate control we look at is a timed one:

A timed sluice gate is required to be in the fully opened position for ten
minutes in every three hours and otherwise kept closed.

Problem analysis is essentially concerned with the description of the relationships
among the phenomena that are shared between these different domains: a for the
phenomena shared between the Machine and the Problem Domain; b for the phenom-
ena of the Problem Domain that the Customer can observe.

In the example, the Problem Domain is clearly concerned with the gate, its motor,
and the way it can be observed and operated.  The Machine, i.e.  the computer system
that is needed to control the gate, shares with the Problem Domain the two events that
it controls – the commands for opening and closing the gate as made available
through the motor – and the observations of the state of the gate as made available
through the sensors – being fully up or down (altogether denoted a2 in Figure 2).
These two observations are also shared with the customer (denoted b2 in Figure 2).

Because the sluice gate that we will be analysing is a timed one, a timer should
also be made part of the problem domain. The machine observes and resets the timer
(a1 in Figure 2) and the timer can also be observed by the customer (b1 in Figure 2).
The machine observes and controls the sluice gate (a2 in Figure 2) and the sluice gate
can be observed by the customer (b2 in Figure 2).

Timer

G&M

a1

a2

Machine

b1
Sluice

Regime
b2

Figure 2: Problem frame for a timed sluice gate
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The separation that Problem Frames provide between the different domains is par-
ticularly important during evolution.  The relationship between the Machine Domain
and the Problem Domain is one that the software engineering activity targets and
controls.  As software does not degrade in a physical sense, the need for evolving the
machine will result from changes occurring in the Customer's Requirements or the
Problem Domain.  Changes in customer requirements are a fact of life, even an intrin-
sic characteristic of software systems according to Lehman [19].  It is often hard for
the customer to foresee all the consequences that a Machine will have in the Problem
Domain and, therefore, a newly installed machine may lead to new properties of the
Problem Domain that, in turn, may lead to a revised set of customer requirements.  On
the other hand, the Problem Domain can change in ways that are not under the control
of the Machine, which means that the behaviour of the Machine in the new domain no
longer satisfies the customer requirements.  Naturally, these two scenarios are not
mutually exclusive; they just distil two simple situations that lead to the need to
change the Machine.

This paper is concerned with the problem of finding representations of the interac-
tion between the machine and the part of the domain that it observes and controls, in
ways that allow for evolution to be managed or even programmed.  These representa-
tions provide a means of ensuring that the machine can self-adapt to certain classes of
change known to occur in the application domain.  The principle of separating coor-
dination from computation plays a fundamental role here.

3 The Scope for Coordination

Coordination is intrinsic to the way Problem Frames are used to decompose and ana-
lyse problems.  The Machine is a computational device that is superposed on the
domain so that, through the interaction between Machine and Domain, new behaviour
can emerge to satisfy user requirements.  The computations of the Machine are of
interest only to the extent that, when interacting with the domain, they enable the
required properties to emerge.  Hence, the central concern for evolution must be the
explicit representation of the mechanisms that are responsible for the coordination of
the interaction between the Machine and the Domain.

In order to motivate the approach that we propose in this paper, let us refine the
diagram in Figure 1.  The purpose of the diagram was to note the need to distinguish
between three domains and the relationships that concern them.  Software engineering
works on descriptions of the entities, phenomena, and properties that are involved in
these domains and relationships [14].  So, the machine and the relationship a have to
be developed and established based on a model of the relevant part of the domain.

On the other hand, and perhaps not as obvious, the relationship a does not need to
be established on the basis of the concrete software system code (computation) that is
executing, but of a description of its behaviour (specification) as it is executed on the
chosen platform.  The specification is essential because it encapsulates changes that
do not have any bearing on the customer's requirements as formulated.  These are
modifications that software engineers may wish or be required to perform on the
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machine in order to take advantage of new technologies or to respond to IT infra-
structure changes

Figure 3 depicts the wider software development context, in which the dashed line
separates the domains and their descriptions:

Figure 3: Enriched problem frame diagram

By M we mean the description of the behaviour of the execution of the software sys-
tem on a particular platform.  This description is based on the shared phenomena
identified in a and other parameters that relate to nature of the formalism that is being
used for describing the behaviour.  These additional parameters are not features of the
code that lies in the Machine, but mere "prosthesis".

By D we mean the model that abstracts the properties of the Problem Domain that
concern the way the Machine can interact with it, and by A we denote the way de-
scriptions M and D are related.  This is where we separate coordination from compu-
tation: in A/D we wish to place all and only the aspects that concern the way the ma-
chine interacts with the domain.  These include the phenomena through which this
interaction takes place, and the assumptions on which it is based, i.e.  the properties
that are assumed of the domain in the way the computations taking place in the Ma-
chine are programmed.  This explicit externalisation of the coordination aspects,
which we call the coordination interface of the Machine, is the contribution that we
claim and discuss in section 4 of the paper.

The vertical relationships between the description and the domain worlds also play
a central rôle in our approach.  By fM we mean the fit that needs to exist between the
description and the behaviour being described.  This fit can be the object of formal
verification once the description M is translated to an acceptable semantics for the
language/platform in which the Machine is coded.  It is the responsibility of the soft-
ware provider to ensure fM throughout the life of the system.  In contrast, customer
satisfaction is established exclusively on the basis of the triple M/A/D and therefore
fM is not within the scope of the kind of evolution that we are addressing.  Therefore,
we will not discuss fM any further in this paper.

By fD we mean the fit between the model and the Problem Domain.  Depending on
the nature of the domain that the software system is controlling, this fit may or not be

M A

fM fD

D
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of a formal nature.  For instance, the Machine may be controlling another software
system (e.g., monitoring some of its properties), in which case fD can be cast in a
semantic domain common to the two language/platform couples.  Because, again, the
satisfaction of the customer's requirements is established on basis of the triple M/A/D
alone, the customer can only observe the required properties in the Problem Domain
if the fit is correct.

Maintaining the correctness of fD is a hard problem as discussed in [15].  It is not
part of the responsibility of the software engineer; otherwise it would be part of the
Problem Domain.  Rather, it is the responsibility of the problem analyst.  Indeed, one
of the reasons a given system may need to evolve is, precisely, because its boundary
with the Problem Domain may be required to change in order for some parts of the
environment to become under its control.  For instance, new sensors may be intro-
duced that allow the software system to monitor part of the fit and react when devia-
tions occur [14].  What is important is that the control of the correctness of fD is an
activity that may require a change of the original problem and, hence, of the frames
that apply, bringing fD, or part of it, into the realm of the problem domain.  In any
given state of the decomposition, the fD in place is not under the control of the Ma-
chine and, hence, will remain outside the scope of the paper.

In summary, we are concerned with the representation of the triple M/A/D.  It is at
this level that the satisfaction of the customer's requirements can be established.
These requirements should be expressed in a logical formalism (L,

† 

|– ) as a sentence
R.  On the other hand, a mapping R(M/A/D,fD) into L should be provided that is cor-
rect with respect to the semantics of (L,

† 

|– ) and the language in which M is described,
characterising customer satisfaction as:

R(M/A/D,fD), G

† 

|–R

where G represents properties of the domain that can provide an adequate bridge
between the phenomena at a and the phenomena at b.  The truth of G will be inde-
pendent of the problem being analysed and hence used as an evolution invariant.  Any
formalisation of the properties of a physical domain is an approximation to the truth,
and different approximations are appropriate for different problems, of course.  One
may very well need to evolve the triple due to changes in G that arise from the reali-
sation that the approximations being made are not good enough or valid anymore
(e.g., relativistic considerations may become relevant in a domain previously de-
scribed in purely Newtonian mechanics).  We leave a more detailed discussion of
these issues to a future paper.

Our approach to the representation of the coordination aspects involved in Problem
Frames is based on the coordination technologies presented in [3]: a set of principles
and modelling techniques that were first proposed in [2] based on the notion of coor-
dination contract, or contract, for short.  The purpose of coordination contracts is to
make available in modelling languages, like the UML [5], the expressive power of
connectors in the terminology of Software Architecture [23].  The overall goal is to
provide a means for the interaction mechanisms that relate system components to be
externalised from the code that implements these components.  It makes the relation-
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ships explicit in system models so that they can be evolved independently of the com-
putations that the components perform.

Contracts prescribe certain coordination effects (the glue of architectural connec-
tors in the sense of [1]) that can be superposed on a collection of partners (system
components) when the occurrence of one of a set of specified triggers is detected in
the system.  Contracts establish interactions at the instance level when superposed on
a running system.  In the terminology that we used in the previous section, they sit in
the Machine domain as part of the code.  At the level that concerns us in the paper,
the triple M/A/D, the primitive that abstracts the properties of the coordination glue
from the code that implements it in contracts, is called a coordination law as de-
scribed in section 5.

A coordination law corresponds to a connector type as in Architecture Description
Languages.  In business modelling, coordination laws can be used to model the rules
according to which organisations make available to the market the services that their
core entities provide [16,17].  In control systems, they can be used to model the
mechanisms that need to be superposed over the components of the target plant to
monitor their behaviour, adapt them to new modes of operation, or interconnect them
to ensure required emergent behaviour [4].  In the description of a coordination law,
the nature of the components over which the law can be instantiated are identified as
coordination interfaces (the roles of the connector type in the sense of [1]).  Our ap-
proach is to capture each problem frame triple M/A/D as a coordination law for which
M corresponds to the glue, D defines a coordination interface, and A is captured in the
way the interface is used in the law.

4 Domain Assumptions as Coordination Interfaces

We now illustrate our approach by returning to the timed sluice gate example in sec-
tion 2.

Let us deal first with the way the domain model is abstracted as a coordination in-
terface.  The idea is to declare what the Machine is expecting from the problem do-
main in the way it has been designed to control it.  Two primitives are made available
in coordination interfaces for that purpose: services and events.

• Services identify operations that the domain must provide for the Machine to
invoke.  In our example, these correspond to the actions that the motor makes
available to operate the gate – onClockw for starting the motor clockwise,
onAnti for starting it anticlockwise, and off for stopping it.

• Events identify state transitions that the Machine needs to be able to detect in
the problem domain.  These act as triggers for the contract that is being put
in place to react and activate a coordination rule as discussed below.  In our
example, the events correspond to the states that the sensors of the gate make
available – top and bottom – so that the Machine knows when the motor has
to be stopped.
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coordination interface sluice_gate
services onClockw, onAnti, off
events top, bottom
properties (onClockw ⁄ onAnti) … (¬(onClockw ⁄ onAnti) before off)

onClockw … (top unless off)
onAnti … (bottom unless off)

end interface

This example also illustrates that coordination interfaces are not just declarations of
features (signatures).  They specify properties that must be proved upon instantiation,
i.e.  express requirements on the behaviour of the components that can come under
the coordination of the machine.  These properties capture semantic aspects of the
roles that components play in the application domain.  Such properties are defined so
as to state requirements placed by the law on the entities that can be subjected to its
coordination rules, not as a declaration of features or properties that entities offer to
be coordinated.  In our application to Problem Frames, these are assumptions made on
the problem domain that determine the correctness of the fit fD.

Returning to our example, we chose three properties to illustrate the kinds of as-
sumptions that can be made and the implications that they have.

• The first reads: "After an onClockw or an onAnti command is accepted, no
more such commands will be accepted before an off command is accepted".
In physical terms, this means that the domain couple Gate&Motor is being
assumed to prevent these events from occurring.  One may think, for in-
stance, of a motor that provides three buttons, one for each operation, and
that the onClockw and onAnti buttons become locked once pressed and will
only be unlocked after the off button is pressed.

• The second reads: "After the onClockw button is pressed, the event top will
be eventually observed unless the off button is pressed in the meanwhile”.  In
other words, if the motor is started clockwise and left undisturbed for long
enough, the event top will eventually be observed through the sensors.

• The third is similar to the second; it states that if the motor is started anti-
clockwise and left undisturbed for long enough, the event bottom will be
eventually observed through the sensors.

The language that we have used for specifying these properties is that of a temporal
logic, the syntax and semantics of which we shall not discuss in the paper because
they are not relevant for understanding our approach (see [21] for examples of tempo-
ral logics typically used in Computer Science).  In [3], an alternate to temporal logic
that uses pre/post conditions on services is illustrated.

The implications of including properties such as these in a coordination interface
have to be understood in the context of the triple M/A/D.  They are taken in conjunc-
tion with the properties of the Machine to ensure the satisfaction of the requirements.
Hence, they provide the criteria for the fit fD to be judged.  That is to say, these are
properties that need to be checked when the machine is installed in the domain.  They
result from an agreement between the problem analyst and the customer as to the
nature of the problem domain over which the machine is going to operate.
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From the point of view of the software engineer, these are properties that can be
assumed when designing the machine.  Hence, in our example, the software engineer
will not bear any responsibility for the behaviour of the machine if it is interconnected
with a sluice-gate that allows for buttons to be pushed indiscriminately.  A software
engineer who builds a machine that relies on the observation of the top event to
switch off the engine after having set it clockwise, cannot be blamed if the motor
burns down because the sensor that should emit the top event is faulty.

Hence, the more properties are included in a coordination interface, the simpler the
task of programming the computations on the machine will be, which can turn to the
customer's advantage as reduced development costs.  However, this comes at the cost
of controlling that the fit fD is maintained correct which, as already argued, is to be
born by the customer, not the software engineer.  It is the customer's responsibility to
make sure that the sensors are working properly and that only motors that do not
allow for buttons to be pushed indiscriminately are used.  If, for instance, this as-
sumption on motors ceases to be sensible, for instance because motors of that kind are
no longer available, then the problem analyst should be brought in to renegotiate the
original problem frame, which may lead to a new triple M/A/D to be developed.

Because the operation of the sluice gate needs to be timed, we have to account for
a timer as well.  The timer needs to provide a service for being reset and events that
report elapsed time – tick(n:nat).

coordination interface timer
services reset
events tick(n:nat)
properties tick(n) … (¬tick(m) before (tick(n+1) ⁄ reset))

reset … tick(0)
end interface

In this case, the properties are specifying that the ticking should be incremental and
sequential until the timer is reset, starting with 0.  Again, the software engineer will
bear no responsibility for the outcome of a connection of the machine with a timer
that decrements or is not sequential.

This example also illustrates how coordination interfaces can be used for identify-
ing not only the features of the domain through which required forms of coordination
are going to be superposed, but also components that need to be provided in addition
to the Machine.  Such components, like the timer, are not necessarily part of the
original problem domain – the Gate&Motor does not necessarily come with an inte-
grated timer or clock – nor of the solution domain – the timer is not to be realised by
software.  They need to be provided at configuration time, and they may be evolved
independently of the Machine and changes operated in the application domain, pro-
vided that the fit to the coordination interface is maintained.

Coordination interfaces are named for the sake of reusability and simplification of
the binding process that establishes the fit fD.  Their actual names are not important.
Our experience in using these coordination primitives in real projects has shown that
it is useful to externalise coordination interfaces from the laws in the context of which
they are defined, to establish a hierarchy between them that is consistent with the fD
relationship in the sense that a fit to a given interface is also a fit to any ancestor of
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that interface.  In business environments, this is useful because coordination interfaces
fulfil the role of representations of abstract business entities and, hence, the hierarchy
of interfaces will, ultimately, provide a taxonomy of all the business uses that are
made of entities in the application domain.  For control based systems, the hierarchy
of interfaces can be mapped to an existing classification of the component types that
can be found for the target plant, allowing a component to be replaced by a more
specialised one without destroying the fit that binds it to the controller.

5 Describing Machine Behaviour through Coordination Rules

The effects that the software system is required to bring about are described through
the coordination rules of the law that describes the behaviour of the Machine:

coordination law timed_sluice_gate_controller
interfaces sg: sluice_gate; tm:timer
attributes open: bool
rules when sg.top

do sg.off || open:=true || tm.reset
when tm.tick(10) Ÿ open
do sg.onAnti
when sg.bottom
do sg.off || open:=false || tm.reset
when tm.tick(170) Ÿ ¬open
do sg.onClockw

end law

Each coordination rule is of the form:
when trigger
with condition
do set of operations

Under the “when” clause, the trigger to which the contracts that instantiate the law
will react is specified as a Boolean condition defined over the events declared in the
interface and conditions over the internal state of the law.  Under the “with” clause we
specify a guard, a Boolean condition defined over the internal state of the law that, if
false, leads to a rejection of the trigger; this means that the reaction will not be exe-
cuted and, depending on the nature of the trigger, failure will be reported back to the
domain entity for suitable handling.  The reaction to be performed is identified under
the “do” clause as a set of operations, each of which is either a service declared in the
interface or an update on the internal state of the law.  The whole interaction is han-
dled as a single transaction, i.e.  its execution is atomic.  In particular, multiple as-
signments are executed by using the values of the attributes before the occurrence of
the trigger.
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In our example, none of the rules are guarded.  Intuitively, this is because the gate
is not proactive: it does not invoke the controller; it is the controller that reacts to the
observations it makes of the sensors and timer.

The example also shows that it is possible to declare features that are local to the
law itself such as attributes that facilitate the definition of the scheduling of the differ-
ent rules.  As already mentioned, these are just a prosthesis that relates to the nature of
the formalism that is being used for describing the behaviour of the Machine; they are
not features that are required of the code that lies in the Machine and, therefore, can
be ignored by the fit fM.  In fact, we are also working on more abstract notions of
machine that are more descriptive, less prescriptive, but this is not an essential aspect
for understanding the approach that we are proposing.  The value of the Boolean
attribute open must not, of course, be confused with the Boolean value “Sluice Gate is
fully open”.  The former is a tiny model domain constructed to act as a model or sur-
rogate for the latter.

When more than one trigger is true, the guards ("with"-conditions) of the corre-
sponding rules are evaluated and the trigger fails if any of them is false.  If all the
guards are true, the union of all reactions is performed, again as an atomic action.
Notice that, in case of conflicting assignments being brought into the same synchroni-
sation set, the reaction fails.

Finally, we must point out that nothing in the description of the law is intrinsic to
the sluice-gate.  Although we named services and events in a way that relates them
directly to the problem domain, these names do not provide any binding to the entities
of the domain that the Machine is intended to control: the connection to the problem
domain always needs to be made explicit through the fit fD.  This is strictly enforced
by the semantics of the coordination approach [9], which is justified by the principle
that all interactions should be made explicit.  The fits are applied at configuration-
time in what in [3] are called coordination contexts, as part of a process that manages
the evolution of the global system.  Our discussion of coordination laws addresses
analysis-time, i.e.  it concerns the modelling and analysis of machines for given
problem frames but not the actual deployment of instances of such machines to con-
trol given domain entities.

This principle of explicit representation of interactions supports our use of coordi-
nation laws as generic descriptions of solutions that can be used for different problem
frames.  For instance, the coordination law above describes a simple two-cycle timer,
which can be captured by a more neutral choice of names such as:

coordination interface two_action&sensor
services up, down, off
events top, bottom
properties (up ⁄ down) … (¬(up ⁄ down) before off)

up … (top unless off)
down … (bottom unless off)

end interface

coordination law two_cycle_controller
interfaces mc: two_action&sensor; tm: timer;
parameters one,two:nat



– 12 –

attributes open: bool
rules when mc.top

do mc.off || open:=true || tm.reset;
when tm.tick(one) Ÿ open
do mc.down;
when mc.bottom
do mc.off || open:=false || tm.reset
when tm.tick(two) Ÿ ¬open
do mc.up

end law

Its application to the sluice-gate problem consists of the instantiation of the parame-
ters one and two with values 10 and 170, respectively, the fit fG&M, which should
map up to onClockw, down to onAnti, and off to off, and a fit fT to a physical timer.

fG&M

two_action
&sensor

two_cycle_
controller
(10,170)

Gate&Motor

fT

timer

Figure 4: Generic coordination law and its application to the sluice gate

This example was chosen to illustrate another feature of coordination laws.  Besides
the declaration of attributes for structuring an (abstract) internal state, parameters can
also be defined that are controlled by the environment.  These are just examples of
services that the law can declare as part of its public interface: besides parameters that
can be set, we may include operations that act on the internal state and some of the
services that it gets from the components through the fits.

We should also stress the fact that a fit fM needs to be established for each target
platform.  Each time a technological change is introduced, it makes it necessary for
the Machine to be redeployed.  The binding mechanism is also likely to have to
change accordingly and, hence, the fit needs to be re-established.

6 Related Work

In the previous sections, we have discussed primitives for representing explicitly, in
Problem Frames, the coordination aspects that concern the interaction  between the
Machine and the Problem Domain.  The Machine can be evolved without compro-
mising satisfaction of user requirements.  Also, changes in the application domain can
be detected at the levels of the interface that connects the Machine with the domain
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and not at the level of the computations that implement the services offered by the
Machine.  As far as we know, this is one of the first attempts at bringing together
problem decomposition approaches to requirements specification and principles of
separation of concerns that have been typically used for software design; this is an
effort that, in our opinion, will allow us to contribute towards taming the complexity
of evolving software applications according to the changes that occur in the problems
that they are meant to solve.

Indeed, on the one hand, there are only a few other general approaches to decom-
posing problems rather than solutions.  Notable exceptions are the goal-based ap-
proaches of KAOS [18] and the NFR framework [7].  However these two approaches
are not immediately suited to the separation of concerns that our coordination ap-
proach promotes, as they do not concentrate on domain properties in the same per-
vading manner as Problem Frames.

On the other hand, composition of software artefacts on the basis of separation of
concerns has been addressed by a range of aspect-oriented techniques [8].  However
with the notable exception of  [11] and  [24], aspect-based approaches, whilst good at
addressing design and implementation issues, are weak with regards to requirements,
and in particular their decomposition.  The approaches of [11] and [24] are mainly
concerned with reconciling conflicts between a range of non-functional requirements
and do not fully address decomposition of functional requirements.  Furthermore,
aspect-oriented techniques are too tightly coupled with object-oriented and compo-
nent-based technologies to sustain the degree of generality of approaches to problem
decomposition of  Problem Frames.

There is also little work relating requirements and architecture, exceptions include
[5,6].  However, those works do not fully address problem decomposition.  Ultimately
we see our approach encompassing an iterative approach to requirements and archi-
tecture [22].  In this respect, our previous work on mapping solution space artifacts to
the problem space complements the approach of this paper [12].

7 Conclusions and Further Work

We have shown the application of separation of concerns to problem analysis and
requirements specification.  Our contribution has been to add representation structures
to Problem Frames in order to control the complexity of managing evolution.

The coordination primitives that we described fit well into the Problem Frames ap-
proach to decomposition, which itself is substantially different from what is normally
found in traditional Software Engineering.  Traditional decomposition assumes a pre-
established structure or architecture into which the parts identified in the decomposi-
tion are fitted as they are successively identified.  This means that each part needs to
conform to the modes of interaction that this structure subsumes, say remote proce-
dural calls of given services, or reading and writing of sequential data streams, which
do not necessarily reflect requirements that derive from the problem domain and,
therefore, introduce unnecessary bias.  Our modelling primitives provide precise,
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means for the coordination of interactions to be separated from the way they get en-
coded in the computations by the Machine.

Although the paper focused on the relationship between the Problem Domain and
the Machine, there are other levels at which coordination can be exploited to take
advantage of the way requirements are captured and evolved with Problem Frames.
One of the advantages is that different requirements, leading to different Problem
Frames, can be represented through different coordination laws.  Thus, a typical and-
composition of requirements corresponds to a typical parallel composition of the
machines that enforce them in ways that do not have to be pre-determined by earlier
design decisions.

In Problem Frames, decomposition is carried out by making few or no explicit as-
sumptions about the mechanisms by which each machine may interact with others.
Because the coordination approach is based on the externalisation of interactions and
the dynamic superposition of the connectors that coordinate them, each machine can
be described and developed by assuming no more than that is a solution to a sub-
problem.  Composition concerns can be addressed at configuration time, i.e.  when the
different machines need to be brought together as a global solution to the top-level
problem.

Deferring composition concerns until the different sub-problems have been well
identified and understood is a key feature of Problem Frames.  In our opinion, this is
well justified given that we consider that composition is not a static, compile-time
problem of linkage, but a dynamic process that needs to be subjected to its own rules.
The coordination approach goes somewhat further by advocating an explicit separa-
tion between the two concerns and providing specific primitives to model configura-
tion and evolution.  Indeed, there is further added value of the application of coordi-
nation techniques to problem decomposition: dynamic assembly and integration of
requirements can benefit from existing reconfiguration techniques [20].

The work described in this paper has opened up a variety of opportunities for fur-
ther work.  We are currently building on previous work on composition [25,26] to
provide better control on the complexity of software evolution.  On the other hand,
the mathematical foundations of the coordination-based approach to architectures are
pretty well established by now (see [9] for a summary). They make it possible to
provide a uniform semantics for the notation that was presented for interfaces and
laws. They also provide reasoning mechanisms that support the derivation of emer-
gent properties arising from composition and correctness checking of realisations.
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