An Analysis-Revision Cycle to Evolve Requirements Specifications

A. S. d’Avila Garcez*, A. Russo*, B. Nuseibeh? and J. Kramer*

*Department of Computing, Imperial College
180 Queen’s Gate, London, SW7 2BZ, UK
{aag,ar3,jk} @doc.ic.ac.uk

Abstract

We argue that the evolution of requirements spec-
ifications can be supported by a cycle composed of
two phases: analysis and revision. In this paper,
we investigate an instance of such a cycle, which
combines two techniques of logical abduction and
inductive learning to analyze and revise specifica-
tions respectively.

1 Introduction

This work aims to facilitate the evolution of re-
quirements specifications of state transition sys-
tems, by providing the requirements engineer with
tools to support the change management process.
In particular, “models for reasoning about cur-
rent alternatives and future plausible changes have
received relatively little attention to date, even
though such reasoning should be at the heart of
requirements engineering”[12]. We argue that
the development of requirements specifications can
be supported by a cycle composed of two phases:
analysis and revision, as Figure 1 illustrates. The
analysis phase is responsible for checking whether
a number of desirable properties of a system is sat-
isfied by its partial specification. It also provides
appropriate diagnostic information when a certain
property is violated by the specification. The re-
vision phase should change the given specification
(Spec) into a new (partial) specification (Spec’) -
by making use of the diagnostic information ob-
tained from the analysis phase - in such a way

®This work was supported by EPSRC grant GR/M38582
(VOICI project). We are grateful to the RE Group at Imper-
ial College for useful discussions and the anonymous referees
for their comments.

iCompu‘cing Department, The Open University
Walton Hall, Milton Keynes, MK7 6AA, UK
B.A.Nuseibeh@open.ac.uk

that Spec’ no longer violates the system’s property
in question. Throughout, we regard requirements
specifications (Spec) as composed of a system’s de-
scription D and domain properties Py, P, ..., F,. In
particular, we consider descriptions of determinis-
tic systems.

Spec
Diagnosis

Analysis Revision

Spec

Spec’

Figure 1: The cycle of requirements specification
evolution

Within this framework, we have used abductive
reasoning [6] during analysis to discover whether
a description D satisfies a property P; (D F F;)
and, if not, generate appropriate diagnostic infor-
mation, and inductive learning [9] during revision
to change the description D into a new descrip-
tion D', whenever D violates P,. To bridge the
gap between analysis and revision, we have used
the diagnostic information (A), obtained from our
abductive procedure, to derive a number of train-
ing examples (A') for inductive learning. Although
other kinds of reasoning could be used for analysis
and revision (e.g., model checking and belief revi-
sion), we have found that the gap between analysis
and revision could be easily bridged by abduction
and induction, following the ideas put forward in
[4], as shown in the sequel.

The paper is organized as follows. Section 2 de-
scribes the abductive reasoning technique used for
analysis. Section 3 shows how one might generate
examples of system behaviors for inductive learn-
ing from the counter-examples obtained from ab-
duction. Section 4 describes the inductive learning
technique used for revision. Section 5 concludes
and discusses directions for future work.

2 Abducing Counter-examples

The tasks of validating system descriptions with
respect to system properties and generating appro-
priate diagnostic information whenever a property
is violated are performed here using an abductive
reasoning approach [10] that combines both tasks
into a single automated decision procedure. The
problem of finding whether D F F; is translated
into the equivalent problem of showing that it is
not possible to find a set (A) of state transitions
that is consistent with DD and that, together with
D, proves the negation of F;. In logic terms, our
abductive procedure shows that D + F; by fail-
ing to find a set A of abducibles, which is consis-
tent with D, such that DU A+ —F,. The equiva-
lence of these two tasks is proved in [11]. If, on the
other hand, the abductive procedure finds such a A
(wrong state transitions) then A acts as a counter-
example to the validity of F;.

To illustrate, we provide a simple example. Con-
sider an electric circuit consisting of a single light
bulb and two switches (A and B), all connected
in series. The system’s description contains rules
such as: if it is not the case that switch A is on at
a current state, flicking switch A causes the light
to come on at the next state, provided that the
light is not already on. In this paper, we represent
such information using logic programming [8] and
the “prime” notation often used in formal specifi-
cations. Unprimed conditions ¢ are used to denote
that ¢ is true at the current state, and primed con-
ditions ¢’ to denote that ¢ is true at the next state.
As a result, assume that a (possibly incorrect) de-
scription D of our electric circuit includes the fol-
lowing rules: r| = —SwitchA_On A =Light On A
Flick A — Light On/, = —SwitchB_On A
—|L1ght On A Flick B — Light On', r3 =
—SwitchA On A ick A — SwitchA On and

r4 = -SwitchB_On A Flick B — SwitchB_On/.!
A system property that we would like the above de-
scription D to satisfy could be: P = Light On —
SwitchA On A SwitchB _On.

The abductive procedure starts by negating
the property P to get =P = (—=SwitchA On Vv
=SwitchB_On) A Light On), which yields two
parts: =Py = (=SwitchA On A Light On) and
-, = (=SwitchB_On A Light On). Taking
—P;, the abductive procedure then tries to find
a A such that D U A F —=P;. Consider the first
condition (—=SwitchA On) of —P;. A possible
explanation for not having Switch A On at the
next state is simply not to have Switch A On
at the current state and not to flick Switch A,
i.e., a no change situation. Consider the second
condition (TLight On) of —P;. The fact that
the light should be On at the next state could
be explained by the following: either Switch A
and the light are not On, when A is flicked (see
rule r1), or Switch B and the light are not On,
when B is flicked (rule ry). The first case is
inconsistent with the no change situation that
explains —SwitchA On, since it would require
A to be flicked. The second case, however, is
a plausible explanation for —P;. As a result,
A = {=SwitchA_-On, ~SwitchB_On, —Light_On,
Flick_B, —SwitchA_On/, SwitchB_On/,
Light-On'} is such that DU A F —P;. This
proves that property P could be violated by the
description D. The repetition of this process for
- would complete the abductive procedure,
possibly producing other explanations for the
violation of P.

3 Generating Training Examples

A crucial aspect of the analysis-revision cycle is
how to use the diagnostic information provided (A)
to generate system behaviors (A’) that should, in-
stead, be covered by the system description (i.e.,
training examples). Since A is a counter-example,
it informs us that some state transitions are not
correct. Considering that an state transition is de-
fined by a current state, an event and a new state,

'Rules r1, ..., 74 could be derived, say, from a state transi-
tion diagram. Flick A and Flick_ B are two possible events
of the system (see [11] for an Event Calculus representation).

A’ should include information about alternative
transitions, in which one or more of these three
components has been changed. Therefore, we need
to decide (a) which changes to consider, and (b)
which of the alternative values of such changes to
consider. We address item a by only considering
changes in the new state of a diagnosed wrong sys-
tem transition. We address item b by selecting the
first new state that makes A’ consistent with P;.

In what follows, we use the term entry config-
uration of a system behavior to refer to a cur-
rent state of the system and an event with asso-
ciated event conditions (if any), and exit config-
uration to refer to the new state of the system
whenever the entry configuration is true. The di-
agnostic information A generated by our abduc-
tive procedure informs us that a given entry con-
figuration (c1) should not produce a given exit
configuration (cg). Taking the electric circuit ex-
ample, A informs us that the entry configuration
c1 = (=SwitchA_On, =SwitchB_On, —Light_On,
Flick_B) should not produce the exit configuration
cy = (mSwitchA_On/, SwitchB_On/, Light_On').
A way of solving this problem is to make sure that
c1 produces an exit configuration cg, different from
¢o (assuming that the system’s description must be
deterministic). The pair {c1,c3} would be one of
our training examples.

In general, A = {i1,....4;,01,...,05}, where
(i1,...,2;) is an entry configuration, and (o1, ..., o)
is an exit configuration. We want to find a training
example A’ such that there exists a o;1<;<p) ¢ &'
and A’ U P; is consistent. There are at least 2% — 1
training examples to be checked for consistency.
In this paper, we restrict the generation of training
examples to the cases where there exists a single
ora<i<ry £ A"

Returning to the electric circuit example,
recall that A = {c1,c}. If we start by changing
—SwitchA_-On' to SwitchA-On' in cy, we may
derive an inconsistency from the observation
that switch A has changed its position without
having been flicked (see c1). Similarly, if we try
to change SwitchB_On’ to =SwitchB_On' In ¢y,
we may derive an inconsistency from the observa-
tion that switch B has not changed its position,
despite having been flicked (again, see ¢1). The

remaining option would be to change Light_On’ to
= Light-On/ in ¢y, obtaining ¢z = (=SwitchA_-On/,
SwitchB_On/, —Light_.On') and, therefore,
A" = {=SwitchA_-On, =SwitchB-On, —Light_-On,
Flick_B, —SwitchA_On/, SwitchB_On/,
—Light-On'}, composed of ¢ and c;.

4 Inducing New Specifications

We are now in a position to obtain a new sys-
tem’s description D), given A’, by either defining
new rules or appropriately revising existing ones in
D. Recall that our ultimate goal is to find a I’
such that D’ P;, in which case the set of train-
ing examples would be empty (indicating that the
analysis-revision cycle could terminate).

In this paper, we have used the Connectionist
Inductive Learning and Logic Programming System
(C-IL*P) [3, 2] to induce a revised description D’
from examples A’ and background knowledge D.
C-IL?P is a hybrid machine learning system that
uses Backpropagation [5], the neural learning algo-
rithm most successfully applied in industry, as the
underlying learning technique. In what follows, we
briefly describe the C-IL? P system and present the
results of applying it in the above electric circuit
example.

C-IL°P is composed of three main modules:
knowledge insertion, revision and extraction, as
depicted in Figure 2. The first module consists
of a Translation Algorithm that takes background
knowledge, described as a logic program, and gen-
erates the initial architecture and set of weights of
a single-hidden layer, feedforward neural network
(Figure 2(1)). That neural network computes the
stable model semantics of the program inserted in
it, thus guaranteeing the correctness of the trans-
lation (the proof is given in [3]). The second mod-
ule revises the background knowledge by training
the neural network with examples (Figure 2(2)) us-
ing standard Backpropagation with momentum. It
does so by presenting the network with input and
output sequences so that it can adapt (change its
weights) to new situations, but taking into consid-
eration the background knowledge that defined its
initial set of weights. The third module consists of
an Extraction Algorithm that takes the trained net-
work and generates symbolic knowledge, described

in the form of a revised logic program (Figure 2(3)).
The set of extracted rules are generally more com-
prehensible than the trained network, facilitating
the analysis of the knowledge refinement process
by a domain expert (the proof of soundness of C-
IL? P’s tule extraction algorithm is given in [2]).

Figure 2: The Connectionist Inductive Learning
and Logic Programming System

Rule extraction from trained networks is an ex-
tensive topic in its own right (see [1] for a com-
prehensive survey). Intuitively, the extraction task
is to find the relations between input and output
concepts in a trained network, in the sense that cer-
tain inputs cause a particular output. Neglecting
many interesting details, C-IL?P performs rule ex-
traction by simply presenting the trained network
N with different input sequences, and generating
rules according to the output sequence obtained.
The core of C-IL?P’s rule extraction algorithm is
concerned with the selection of good candidate in-
put sequences to be presented to A, so that it can
be described by a correct and compact set of rules
[2].

To illustrate a run of our revision phase using C-
IL? P, we consider again the electric circuit exam-
ple. Module 1 of C-IL?P is responsible for trans-
lating rules r; — r4 of the (partial) description D
into the initial architecture of a neural network A,
It does so by mapping each rule (r;) from the input
layer to the output layer of N, through a hidden
neuron ;. For example, rule r; above is mapped
into A by simply: (a) connecting input neurons
representing the concepts SwitchA On, Light On
and Flick A to a hidden neuron Nj, (b) connecting
hidden neuron N7 to an output neuron representing
the concept Light On’, and (c) setting the weights
of these connections in such a way that the output
neuron representing the concept Light On’ is ac-
tivated (or ¢rue) if the input neurons representing

SwitchA On, Light On and Flick A are, respec-
tively, deactivated (or false), deactivated (false)
and activated (true), thus reflecting the informa-
tion provided by rule ry.

Figure 3 shows the neural network obtained from
rules 71 — 4. Note that output neuron Light'
must also be activated, now through hidden neuron
Ny, if input neurons B_On and Light are deacti-
vated and input neuron FlickB is activated (cor-
responding to rule ro above). In this initial net-
work, positive weights (indicated in Figure 3 by
solid lines) are used to represent positive literals
(such as Flick A in r1) and negative weights (in-
dicated in Figure 3 by dotted lines) are used to
represent negative literals (such as —=SwitchA _On
and —Light Oninry). As aresult, output neurons
perform an or of the concepts represented in the
hidden neurons that are connected to them, and
hidden neurons perform an and of the concepts rep-
resented in the input neurons that are connected to
them.

Output Sequence

Input Sequenc

Figure 3: The neural network A obtained from the
system’s description D

Recall from Section 3 that one of our training
examples is A’ = {=SwitchA-On, =SwitchB_-On,
—Light_On, Flick B, —SwitchA_-On/,
SwitchB_-On/, —Light_On'}. As a result,
module 2 of C-IL’P was used for training
the initial network A with input sequence
i; = {-1,—-1,—1,—1,1} and output sequence

0o; = {—1,—1,1}, where 1 indicates true and —1
indicates false. Finally, module 3 of C-IL*P
was applied to extract the new knowledge from
the network. The extraction algorithm derived a
new rule 7, = {SwitchA On A —=SwitchB_On A
—Light On A Flick B — Light On'}, as well as
rules rq, 73 and 4. In other words, the learning
process has specialized rule ry into rule %, without
having changed the remaining rules. Clearly,
rule ro was under-specifying the system, and the
suggestion of C-IL?P to the requirements engineer,
as a result of learning A’, was to add to 79 the
condition that switch A also needs to be on for
the light to come on once switch B is flicked to on.

The revision of D into D' = D —rg + 1} guaran-
tees that A is no longer an explanation for the vio-
lation of the domain property P. It does not guar-
antee that P will not be violated by the new de-
scription I)'. This is why we regard the process of
revising specifications as cyclic, in which the spec-
ification is being refined during each cycle, until
the domain properties of the system are provably
satisfied, in which case our analysis phase will not
produce any new counter-example.

5 Conclusion and Future Work

In this paper, we have seen that the process of sys-
tematically changing requirements specifications
can be supported by a cycle composed of an analy-
sis phase and a revision phase, in which abductive
and inductive reasoning are applied respectively.
We have applied the Analysis-Revision Cycle in the
Automobile Cruise Control case study.[7] The re-
sults (available upon request) provided some early
validation of the cycle’s capabilities.

Although the generation of training examples is
guided by A, the definition of A’ has been left quite
open in Section 3. However, the effectiveness of our
analysis-revision cycle depends on the generation
of good training examples, in that the better the
choice, the faster the convergence of the system to
a specification that does not violate any desirable
property. This may be domain dependent and, in-
deed, require the help of an expert. Still, we could
apply heuristics to decide between mutually exclu-
sive training examples. Therefore, a first extension
of our approach would be to include heuristics to

help in the choice of potential training examples.
Although the combination of inductive and an-
alytical learning, via the use of a hybrid machine
learning technique, seems to be a good choice for
requirements specifications evolution, a second ex-
tension of the work would be to investigate the
use of other techniques of machine learning. These
include Inductive Logic Programming, Knowledge-
based Neural Networks, Fxplanation-based Learn-
ing and their hybrids.[9] Finally, note that the ab-
ductive derivation of A assumes that the system’s
property (FB;) is correctly defined. However, if A
is not validated by the stakeholders as a counter-
example to P;, this could indicate that F; itself is
wrong and, therefore, that the cycle of analysis and
revision needs to be re-started with a new system

property.

References

[1] R. Andrews, J. Diederich, and A. B. Tickle. A survey and
critique of techniques for extracting rules from trained neural
networks. Knowledge-based Systems, 8(6):373-389, 1995.

[2] A.S.d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic
knowledge extraction from trained neural networks: A sound
approach. Artificial Intelligence, 125:155-207, 2001.

[3] A.S. d’Avila Garcez and G. Zaverucha.
inductive learning and logic programming system. Applied
Intelligence Journal, 11(1):59-77, 1999.

The connectionist

[4] P. A.Flach and A. C. Kakas. On the relation between abduc-
tion and inductive learning. In D. M. Gabbay and R. Kruse,
eds, Handbook of Defeasible Reasoning, Vol. J, 1-33. 2000.

[6] S. Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall, 2nd edition edition, 1999.

[6] A.C.Kakas, R. A. Kowalski, and F. Toni. The role of abduc-
tion in logic programming. Handbook of Logic in Artificial
Intelligence and Logic Programming, vol. 5, 235-324, 1994.

[7] J. Kirby. Example NRL/SCR software requirements for an
automobile cruise control and monitoring system. Technical
Report TR-87-07, Wang Institute of Graduate studies, 1987.

[8] J. W. Lloyd. Foundations of Logic Programming. Springer-
Verlag, 1987.

[9] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[10] A. Russo, R. Miller, B. Nuseibeh, and J. Kramer. An ab-
ductive approach for handling inconsistencies in SCR speci-
fications. In Proc. 8rd ICSE WISE, Limerick, 2000.

[11] A.Russo, R. Miller, B. Nuseibeh, and J. Kramer. An abduc-
tive approach for analysing event-based requirements speci-
fications. Technical Report TR2001/7, Department of Com-
puting, Imperial College, 2001.

[12] A. van Lamsweerde. Requirements engineering in the year
00: A research perspective. In ICSE 2000, Limerick, 2000.

