
Deriving Security Requirements from
 Crosscutting Threat Descriptions

Charles B. Haley, Robin C. Laney, Bashar Nuseibeh
Security Requirements Group

Department of Computing
The Open University

Milton Keynes MK7 6AA UK

{C.B.Haley, R.C.Laney, B.A.Nuseibeh}@open.ac.uk

ABSTRACT
It is generally accepted that early determination of the stakeholder
requirements assists in the development of systems that better
meet the needs of those stakeholders. General security
requirements frustrate this goal because it is difficult to determine
how they affect the functional requirements of the system.

This paper illustrates how representing threats as crosscutting
concerns aids in determining the effect of security requirements
on the functional requirements. Assets (objects that have value in
a system) are first enumerated, and then threats on these assets are
listed. The points where assets and functional requirements join
are examined to expose vulnerabilities to the threats. Security
requirements, represented as constraints, are added to the
functional requirements to reduce the scope of the vulnerabilities.
These requirements are used during the analysis and specification
process, thereby incorporating security concerns into the
functional requirements of the system.

General Terms
Management, Design, Reliability, Security.

Keywords
Security requirements, threats, assets, problem frames

1. INTRODUCTION
The security needs of a given system are often not determined
until well into the implementation, resulting in late and expensive
attempts to shoehorn security into the work in progress.
Unfortunately, expressing specific security requirements is
difficult. They tend to be stated as crosscutting concerns that
impact many functional requirements. Moreover, security
requirements are often stated in terms of how to achieve security
(e.g. the system shall use cryptography) and not in terms of the
problem to be solved, leaving it unclear how the security
requirements affect the functional requirements.

Security requirements are concerned with how assets are to be
protected from harm [23]. An asset is something in the context of

the system, tangible or not, that is to be protected [13]. A threat is
the potential for abuse of an asset that will cause harm in the
context of the problem. A vulnerability is a weakness in the
system that an attack exploits. Security requirements are
constraints on functional requirements intended to reduce the
scope of vulnerabilities. Thus, security requirements stipulate the
elimination of vulnerabilities that an attacker can exploit to carry
out threats on assets, thereby causing harm.

Aspect-oriented software development would seem to provide
excellent tools for analyzing security requirements. Security
requirements and functional requirements clearly crosscut each
other. The concerns of the two sets of requirements are quite
different, but can (and must) be composed together. However,
aspect-oriented research has focused primarily on how concerns
crosscut during a system’s design and implementation phases.
Some researchers are working near the requirements/design
border (e.g. [3, 8, 25, 27]), but with the exception of [27], their
arguments tend to be couched in implementation terms. The result
is concepts and vocabulary based on implementation artifacts.
Join points are “hooks where enhancements may be added” to an
implementation [5]. Pointcuts are collections of join points [15].
Advice is a “method-like construct that can be attached to
pointcuts” [19]. It is difficult to use this vocabulary when talking
about early-phase artifacts. We need to remap the vocabulary.

To achieve this remapping, we must first determine what
crosscuts what, then tease out the implications of this crosscutting.
For our purposes, functional requirements form one set of
concerns. Amongst other things, functional requirements describe
how objects are transformed by the system. Another set of
concerns are threat descriptions, which describe relationships
between objects and threats. Join points are located where objects
are shared by both threat descriptions and functional
requirements; these objects are assets because they need to be
protected. Vulnerabilities are found at join points by composing
threats with functional requirements. The resulting advice is a set
of security requirements that reduce the size of the vulnerability,
protecting the assets.

This paper presents an approach to deriving security requirements
using aspect-oriented software development crosscutting concepts
and problem frames [14]. Threat descriptions are composed with a
problem frames representation of functional requirements, giving
vulnerabilities. Vulnerabilities are ameliorated by security
requirements. Security requirements are expressed as constraints
on the functional requirements, making them a more natural part
of the specification process, comparable with other constraints
such as safety and cost [23]. Alternatively, they can be expressed

as trust assumptions [9], which indicate that the security
requirement is assumed to be satisfied in another context.

The remainder of this paper is structured as follows. Section 2
provides some background information on problem frames and
trust assumptions. Section 3 presents our approach to deriving
security requirements, using a running example. Section 4
presents related work, and section 5 describes conclusions and
future work.

One note: our focus is on requirements. As such, we have put
aside what today is probably the largest source of security
problems: those that arise because of a ‘faulty’ implementation
[26, 30]. Examples include the infamous buffer overflow;
incorrect and incomplete input validation, especially in HTML
forms; and faulty error handling.

2. BACKGROUND INFORMATION
We use problem frames [14] as a tool to organize information to
facilitate derivation of security requirements. This section presents
some background information on problem frames, along with a
discussion of requirements and specifications in a problem frames
context.

When delving into security issues, analysts must ‘look outside the
box’. In the problem frames context, this means that given
properties must not be overly trusted, and that the analyst must be
willing to include architectural considerations in their reflections.
This challenge is further discussed below.

This section concludes with a short discussion of trust
assumptions, which we use to narrow the context within which
threat analysis is performed. There is a brief discussion about
what they are, why they are useful, and where they come from.

2.1 Problem Frames
Problem frames [14] are a tool used during problem analysis.
Problem frames give the shape of a solution for various problem
classes. When using problem frames, the analyst decomposes
larger problems into a collection of smaller ones, where each
subproblem fits one of the basic problem frames. These
subproblems are later recomposed, providing the solution for the
original problem.

In a problem frames context, a requirements engineer describes
problems by describing the interaction of domains that exist in the
world. The problem frames notation captures domains in a
problem along with the interconnections between them. For
example, assume that the requirements elicitation process for a
box that protects documents from fire produces the requirement
open the fireproof box when a door-open button is pushed. Figure
1 illustrates one set of domains that could satisfy the requirement;
a basic automatic door system with three domains, two of which
are given and one of which is designed. One given domain is the
box’s door mechanism domain, capable of opening and shutting
the box’s door. The second given domain is the one requesting
that the door be opened; this domain includes both the ‘button’ to
be pushed and the human pushing the button. The designed
domain is the machine, the domain that will bridge the gap
between the other two domains in order to fulfill the requirement
that the door open when the button is pushed. The oval presents
the requirement that the machine is to satisfy.

Every domain has interfaces, which are defined by the phenomena
visible to other domains. Phenomena (e.g. events and signals) are

visible; they can be observed. The notation shows the phenomena
shared between two domains on the line between the domains,
along with indicating which domain controls the phenomena. In
Figure 1, the Person + Button domain above produces the event
phenomena ButtonDown and ButtonUp, as indicated in the
diagram. Alternatively, the designer could have chosen to produce
a single event: OpenDoor. The Control Machine produces the
Boolean phenomena MotorOpen and MotorClose (turn on and off
the motor) on the interface between the machine and the Door
Mechanism. The Door Mechanism produces the Boolean
phenomena DoorIsOpen and DoorIsClosed.

Requirements are optative, describing desired behavior instead of
existing behavior [14]. Descriptions of the desired behavior of
individual parts of the system (the designed domains) are also
optative. Descriptions of the actual behavior of given domains
(their phenomena: inputs, outputs, and states visible at their
interfaces) are indicative; they describe an “objective truth” about
the behavior of the domain.

2.1.1 Requirements and Specifications
According to Zave and Jackson [33], a requirement is an optative
description of what the system is to do. Requirements describe a
desired effect, or a goal. Jackson [14] describes a requirement as
“the effects in the problem domain that […] the machine is to
guarantee.” Van Lamsweerde’s [16] approach is similar, defining
a goal as “an objective the system under consideration should
achieve” and then saying that a requirement is a goal that can be
achieved by an agent in the software-to-be [18]. The i* framework
uses a comparable definition; goals model the intentions of
stakeholders [2].

Again referring to Zave & Jackson, specifications are about
phenomena. The specification of an individual domain is a
description of the behavior of the domain in terms of its
phenomena, indicative and optative, visible at its interface. The
specification of a system is the collection of domain specifications
that together permit the fulfillment of the requirement(s).

The distinction between requirement and specification is an
important one, especially when working with security
requirements. A security requirement does not describe how
security is to be implemented, but instead describes what is
desired. It is the specification that describes how, in terms of its
externally visible phenomena, the requirement is fulfilled. For
example, the information on the network will be encrypted with
Blowfish is not a security requirement, but is instead a
specification. The underlying requirement would be something
resembling information shared at the interface of the domains in
this problem is not to be generally understandable.

Control
Machine

Figure 1 – A basic Problem Frames diagram

Door
Mechanism

Person +
Button

Open box
when button

pushed

PB!ButtonDown
PB!ButtonUp

CM!MotorOpen
CM!MotorClose
DM!DoorIsOpen
DM!DoorIsClosed

2.1.2 Indicative vs. Optative
Indicative domain properties are normally expected to be constant,
e.g. the same stimulus in the same context produces the same
response. This is what Jackson meant by “objective truth” [14].
Unfortunately, when reasoning about security we should put aside
this nice concept and assume that all domain properties are
optative. Consider the pushbutton in the domain shown in Figure
1; when the button is pushed, the circuit connected to the button is
closed. This would seem to be an indicative property. Now put
some confidential information in the box, and then consider the
same button from the point of view of an attacker. The attacker
might cut the wire, connect an alternate or second button to the
wire, or put a circuit in the middle that analyzes the context of the
button push and either passes it on or doesn’t. The property can no
longer be considered objectively true. It has become optative;
what we want to be true.

Security requirements (the constraints) are similar to functional
requirements. They are optative, describing characteristics of the
system that the requirements engineer desires to be true. The
lesson learned from the above discussion is that, unlike functional
requirements, security requirements should assume that indicative
domain properties are optative, because a goal of an attacker
might be to change the behavior of some indicative phenomena. A
successful attack means one of two things: phenomena exist that
were not described in the problem, or phenomena behavior (the
specification) assumed to be indicative (to be true), is not1.

2.2 Parallel Elaboration of Requirements &
Architecture

The Twin Peaks model [24] shows that the elaboration of
requirements and architecture should proceed in parallel, each
influencing the other. This is doubly true in the context of security
requirements, because security is a systems problem [23]. One
cannot accurately determine the security requirements outside the
context of the system.

To illustrate the idea, consider a trivial functional requirement
business plans shall be written using a word processor and stored
on a file server. In addition, assume the existence of the general
security requirement business plans are to be treated as company-
confidential information. Without knowing the domains involved
in the problem, how do we know how to keep the information
confidential? We can postulate the existence of computers used to
write and store business plans, but we cannot go much further.
The designer could choose to put the machines in a locked room,
in which case the room key becomes a phenomenon in the
problem and the security requirements must describe the
constraints on obtaining and using a key. Alternatively, the
designer might specify a client/server architecture in which the
client machines are publicly accessible. In this case, the client
machine domain can be physically accessed by anyone and the
business plans are potentially visible where the client and server
domains connect (the network). The security requirements must
describe constraints on who can use the client machine and on
who can ‘see’ the information where the domains connect.

1 These two positions could be reduced to one. The argument

would be that attack does not alter the behavior of existing
phenomena. Instead, new phenomena are created, thus changing
the problem. This distinction is not important for this paper.

It is highly likely that applying a security requirement to a
problem will create subproblems, add domains to the existing
problem, or both. For example, the specification to fulfill a
security requirement information shared between the client and
server domain must not be accessible must be evaluated in terms
of visible phenomena. The designer must assure either that
information shared between the domains is not visible outside the
problem or that ‘seeing’ what passes between the domains does
not reveal the information. Either way, the physical properties of
the connection need to be described.

2.3 Trust Assumptions
A trust assumption is a decision to trust the given properties of
some domain and to go no further in the analysis [9]. Trust
assumptions are used to bound the context of a problem, limiting
the number of domains that are directly involved in the analysis.

The notion of trust assumptions and the need for their explicit
capture are well summarized by Viega and McGraw in [30]:

A trust relationship is a relationship involving multiple entities
(such as companies, people, or software components). Entities
in a relationship trust each other to have or not to have certain
properties (the so-called trust assumptions). If the trusted
entities satisfy these properties, then they are trustworthy.
Unfortunately, because these properties are seldom explicitly
defined, misguided trust relationships in software applications
are not uncommon.

and

System architects must constantly deal with trust issues during
an application's design cycle.

We use the definition of trust proposed by Grandison & Sloman
[7]: “[Trust] is the quantified belief by a trustor with respect to
the competence, honesty, security and dependability of a trustee
within a specified context”. In our context, we say that the analyst
trusts that some domain will participate competently and honestly
in the satisfaction of a constraint.

Two examples should help clarify the use and utility of trust
assumptions. The first concerns physical security. Assume that an
analyst ensures confidentiality using a locked-room approach. The
analyst is probably assuming that the corporate key-giver will
ensure that keys are given only to authorized individuals.
However, the key-giver may be required to respect a safety
constraint, meaning that keys must be provided to the fire
department and/or the safety officer(s). These people may not be
authorized to see the information kept in the room. The conflict
renders the analyst’s assumption invalid. Making the assumption
explicit would improve the chances that such conflicts are noticed.

For the second example, assume the existence of an availability
security requirement stating that 8 hours of backup power must be
provided. A designer might choose to satisfy the requirement with
backup generators. Appropriate phenomena would be added to the
problem to control the generators, detect going beyond 8 hours,
etc. In this case, it is probably safe to assume that the provider of
the generators can be trusted to supply generators without a
backdoor into the control circuitry that would allow an attacker to
control the generator’s response. By making this assumption, the
analyst can stop at the generator domain instead of having to
include the generator supplier (and its suppliers, etc.) in the
problem context.

3. USING THREAT DESCRIPTIONS
This section describes how one composes threat descriptions with
functional requirements to derive security requirements.

A threat description is a descriptive phrase of the form performing
action X on/to asset Y could cause harm Z. Some examples:

• Exposing the company’s business plan could cause loss of
revenue.

• Altering the balance of an account could cause financial loss.
• Destroying the village in the valley could cause loss of life.
A threat description can be represented in a prescriptive form by
inverting and negating the phrase. For example, the first example
above would become avoid loss of revenue by preventing the
exposure of the company’s business plan. Representing threat
description in both descriptive and prescriptive forms might help
an analyst be more certain that all the implications of the threat
descriptions have been determined.

A threat description may be represented by a tuple (threat, asset),
where the tuple element ‘threat’ is itself a tuple (action, harm).
The first threat description example is shown in tuple form below.

()(plan business , revenue of loss exposing,)
It is important to note that the action in a threat description is the
inversion of some common security goal, such as confidentiality
(further discussed below). The action is not intended to describe
an attack, which is an act (or sequence of acts) of an attacker
carried out to exploit a vulnerability and therefore carry out a
threat. For example, an attacker might carry out the first threat
above by diverting the business plan to a second printer while it is
being printed. The diversion is the attack, exploiting what is
probably a vulnerability in the network.

3.1 The Composition Process
Deriving the security requirements is an iterative process. Each
iteration recomposes the threats with the functional requirements
to derive new security requirements; if none are found then there
is no need to iterate further. Iterations are required because
identifying and eliminating vulnerabilities will often create new
vulnerabilities.

Each iteration of the approach requires four general steps:

1. Identify objects in the problem context that might participate
in a threat. These are candidate assets.

2. Identify threats on the candidate assets, creating threat
descriptions. An asset is an object that participates in a threat.

3. Crosscut threat descriptions with the functional requirements,
looking for whether an asset is in a domain involved in the
subproblem, ending up with the set of tuples illustrated below.

(){ }subproblem asset, threat,
Compose the threat with the subproblem to determine whether
there is a vulnerability that permits fulfillment of the threat
associated with the asset. Enumerate constraints on the
functional requirements to weaken the vulnerability to an
acceptable level.

4. Identify conflicts.
Each of these steps is presented below.

It must be noted that we are not describing a mechanical process.
There is no crank that, when turned, produces the answer. Steps
are approximate and can be combined. Depending on the problem,
sub-iterations might be required. Finally, the skill and experience
of the analyst is crucial.

3.2 Description of the Example
A common example is used throughout this section to illustrate
the concepts. Space constraints force the example to be small and
somewhat contrived. The example consists of a small Human
Resources system having four functional requirements. A problem
context diagram, showing the initial set of domains to be used by
the problem frame diagrams, is shown in Figure 2.

• REQ1: Salary, personal, and benefits information can be
entered, changed, and deleted. This information is stored for
eventual use in producing paychecks.

• REQ2: A subset of his or her own personal and benefits
information will be available to each managerial employee
for perusal.

• REQ3: An ‘address list’ subset of personal information
consisting of the employee’s name, office, and work
telephone number will be generally available.

• REQ4: All information will be backed up daily.
We postulate the existence of three general security requirements:

• Salary information is highly confidential and is to be shown
only to authorized individuals.

• Personal and benefits information shall be restricted to the
employee and to others with a need to see it.

• The ‘address list’ of employees of the company is company
confidential.

Finally, we find one general requirement:

• The system shall not be expensive to administer.
Figures 3 through 5 present subproblem diagrams for the first
three functional requirements. Phenomena are not included in the
diagrams, but will be added later where needed.

3.3 The Iterations
3.3.1 Identify Candidate Assets
The goal of this step is to find all the objects in the context of the
problem that might have value, directly or indirectly. In general,
these consist of all the information objects stored in or accessed
by the system-to-be and any tangible objects such as the
computers themselves. An object is has direct value when the
potential harm caused by a threat is to the object itself. An object
has indirect value when a threat involving that asset causes harm

Benefits
Information

Personal
Information

Salary
Information

Machine Backup
Device

People

Figure 2 – Example Context Diagram

Backup
Media

Display

somewhere else, such as to revenue, to costs, or to reputation. An
object can have both direct and indirect value; when money is
taken from a bank, it loses both the money and its reputation.

One potential asset might contain, or enclose, other potential
assets. A good example is a database that contains individual
information assets. Another example is backup media, which can
contain any number of information assets.

When using problem frames, listing the objects in the problem is
straightforward. They are the domains, given and designed, in the
problem context. For our example, they are Salary Information,
Personal Information, Benefits Information, Machine, Backup
Device, Backup Media, and People.

Because of space limitations, this paper restricts the discussion to
threats involving information assets.

3.3.2 Identifying Threats
3.3.2.1 Security Concerns
In general, harm is caused by the negation of one or more
crosscutting security concerns. For information assets, these
concerns are described as CIA: confidentiality, integrity, and
availability [26]. The concerns are similar for tangible assets:
exposure, modification, and deprivation (theft or destruction).

Confidentiality concerns are about restricting access to
information, and are applied to information assets or information
to be garnered from physical assets (exposure). It should be noted
that confidentiality is not the same thing as privacy [10, 21];
privacy incorporates as an additional concern the use one makes
of an information asset, and is not discussed in this paper.
Authentication is related to confidentiality, and is concerned with
ensuring that users are who they say they are, and remain so
during the ‘session’.

Integrity is concerned with ensuring that an asset is not modified
without authorization. This concern covers several scenarios,
including direct modification of data, modification through
unauthorized transactions, indirect modification using backup
media, and transient modification before it is displayed to a user.
Non-repudiation, where a person cannot claim after the fact to
have not performed some act, is related to integrity.

Availability concerns are about ensuring that an asset is usable
(available) when it is supposed to be. For example, cutting power
to a computer makes it unavailable. If access is over a network
then anything that blocks data movement on the network will
affect availability. Clearly, physically removing an asset also
affects availability (deprivation).

These concerns crosscut every object in a system. They also
crosscut each other. For example, availability supports
confidentiality when the object in question is a physical asset.
Having the asset stolen makes it unavailable and allows the thief
to know any information associated with the asset.

3.3.2.2 Using the Concerns
The concerns are used to enumerate the threat descriptions. One
asks questions of the form “what harm could come from violating
the [insert concern here] of [insert object here]?” Answers to these
questions are threat descriptions.

Threats can have a ‘time’ element, stating that the harm will occur
only if the violation occurs before or after some point, or within
some interval. For example, a company’s earnings report is
confidential (and therefore valuable) only up to the moment it is
made public. The time element is important when looking for and
countering vulnerabilities, as it gives an indication of how severe
a given vulnerability is and what measures are appropriate for
countering the vulnerability.

We note again that an object may not have any value in itself, but
instead is valued by the harm indirectly caused to something else.
For example, information about the amount of money paid to
redecorate the company president’s office has no intrinsic value,
but may be highly valued because exposing the figure could
damage the reputation of the company. In other words, when
evaluating how assets are associated with threats, one must look
for direct and indirect effects.

Remember that the initial set of assets came from the problem
frames context. Threat descriptions indicate which threats involve
which assets. Assets crosscut the domains in the context. Domains
crosscut subproblems. Therefore threats crosscut subproblems.
Any subproblem that incorporates an asset might contain
vulnerabilities allowing the threats associated with that asset to be

Figure 4 – REQ2 – Employee-visible information

Display
Information

An
Employee

Display Pers
& Benefit

Info

Info
Display

Machine
Pers & Ben

info

Figure 5 – REQ3 – Address list

Display
Information

Person

Display
address list

info

Info
Display

Machine
Addr Info

Figure 3 – REQ1 – Payroll data

Display
Information

User

Display Sal,
Pers, & Ben

Info

Info
Display

Machine
Sal, Pers,
Ben info

Edit Sal,
Pers, & Ben

Info

Info
Editing

Machine

consummated. If analysis locates a vulnerability in a subproblem,
then security requirements must be added to the subproblem to
reduce the size of the vulnerability to an acceptable level.

A domain that is a projection of more than one domain found in
the problem context can contain multiple assets. Actions on the
domain as a whole must be analyzed as if they operate on the
component assets. For example, consider a database domain in a
backup/recovery subproblem. The database contains the
individual information assets. If one of the contained assets is
related to a threat involving integrity, then the domain itself is
related to that threat and must be analyzed in that context. A threat
against salary information will also be a threat against backup
media containing salary information.

3.3.2.3 The Example
Continuing the example, asking questions about the object salary
information might produce the following threat descriptions:

• (Confidentiality) Releasing salary information to
unauthorized individuals could damage the company’s
reputation. Additionally, it increases costs by making
‘employee theft’ by competitors easier.

• (Integrity) Unauthorized changes could increase costs by
increasing the size of the payroll and damage reputation by
provoking lawsuits or involving police.

• (Availability) Denying access could damage the company’s
reputation, reduce employee motivation, and incur damage
payments for employees who were not paid on time.

Similar answers can be found for personal information and
benefits information. The result is threat description tuples of the
form

((Release, damage reputation), salary information)

Turning our attention to the information assets in the machine
domain, we determine:

• (Confidentiality) Exposing the machine could result in the
information on its disks being exposed, resulting in the harm
described above.

• (Integrity) Modifying (or replacing) data on the hard disk can
result in the harm described above.

• (Availability) Destroying the machine can result in loss of
access to information, resulting in the harm described above.

Looking at the backup device, we see:

• Replacing the device with one that makes covert copies can
result in exposure of all the information assets.

• Causing the device to modify information before it is written
to backup media can result in the integrity harm described
earlier.

• Causing the device to write incorrect backups, when coupled
with destruction of the machine, could trigger the availability
harm described earlier.

Looking at backup media, we can conclude that all of the harm to
information assets can be triggered through examination,
alteration, or destruction of the backups.

3.3.3 Composition – Identify Security Requirements
3.3.3.1 Discussion
The previous step identified the threat descriptions: threats and the
assets that participate in the threats. One must now crosscut the
threat descriptions with the subproblems to determine which
threats apply to a given subproblem. The threats are composed
with the subproblems, looking for vulnerabilities that might allow
the threat to come to pass. If vulnerabilities are found, then
security requirements are generated to reduce the vulnerability.

The analyst begins by listing the subproblems being considered
and identifying the assets in each subproblem. This produces a set
of tuples of the form (){ }subproblem asset, . This set and the threat
descriptions set found above are combined using a natural join to
find which threats affect which assets in which subproblems, as
shown below.

(){ } (){ } (){ }subproblem asset, asset threat,subproblem asset, threat, X=

For small problems such as the examples in this paper, generating
the set of tuples informally is sufficient. When working with
larger problems, generating the tuples and performing the join will
help ensure that nothing is forgotten.

For each tuple, the analyst looks at the domains in the subproblem
to determine whether they create vulnerabilities. For example,
consider the domain ‘person + button’ in the subproblem shown in
Figure 1. If the safe contains confidential information, then a
threat exists involving an unauthorized person viewing that
information. The very structure of the subproblem allows the
threat to be realized. There is no way to restrict who uses the
button, because the only phenomena visible are related to the
button itself. To fix the problem one must either a) restrict the
people who can get to the button through some external means, b)
separate the person domain from the button domain and add
appropriate authentication phenomena between the person domain
and the machine, or c) add authentication phenomena at the
existing interface. In cases b & c, appropriate domains to access
authentication information must be added, which could easily
create new vulnerabilities.

After being satisfied that the domain structure is valid, the analyst
looks for vulnerabilities at the interfaces between domains and in
the phenomena shared across them. Can threats be realized
through eavesdropping on phenomena? Are there connection
domains that are not modeled, such as networks? Do the
phenomena have physical properties that make them vulnerable,
such as electromagnetic or power usage signatures? Are the
phenomena caused by physical items, such as keys, that might be
duplicated? What happens if a sequence of phenomena is recorded
and played back?

It is not sufficient to look only at the domains containing the
threatened assets. There might be indirect vulnerabilities where
interfaces between two different domains allow the threat on the
asset domain to be carried out, as shown by the ‘person + button’
example discussed above. All domains in the subproblem must be
examined, as must the domains in other subproblems that
eventually recompose with the subproblem under examination.

If examination reveals a vulnerability, then an appropriate security
requirement must be added to the subproblem. For example, if a
replay vulnerability exists (a phenomena sequence can be
recorded, and the replayed to produce some harm), then the

requirement replays must be detected and ignored must be added.
If a connection domain between domains X and Y is vulnerable to
eavesdropping, then the requirement information phenomena
between domains X and Y must not be understandable by an
eavesdropper must be added.

Unless new requirements are satisfied using trust assumptions,
their satisfaction will probably involve changing the visible
phenomena and could involve changing the domain structure of
the subproblem. New domains might create new subproblems.
New phenomena could change design decisions. These changes
could create new assets and/or new vulnerabilities. Probably a
turn through the requirements/architecture spiral will be required.
Certainly the threats analysis must be repeated.

Iterations through the process can add domains to the overall
problem context. This happens because the analyst must look
further and further down through the phenomena chain to ensure
that the requirements are being met. A point will come where the
analyst is unwilling or unable to go further, because either the
process is too difficult, the expected return too small, or because
the problem is believed solved in another context. The analyst
uses trust assumptions at these points. The assumptions state the
analyst’s beliefs that the properties of domains in or out of the
context can be trusted to an acceptable level. By using a trust
assumption, the analyst is putting bounds on the problem that the
system-to-be must solve.

3.3.3.2 The Example
Turning to our examples, we see that every problem is affected by
at least one of the threats.

Problem REQ1

Starting with Figure 3, Payroll Data, we see that several threats
are related to unauthorized exposure of assets contained in the
projection domain ‘Sal, Pers, Ben Info’. Noting that the ‘user’ can
apparently be anyone, we add the constraint only HR staff can edit
or view information. We do not have enough information to know
whether or not there are vulnerabilities at the interfaces; we need
to see the phenomena including any needed to meet the above
constraint. Turning to the designer, we obtain a subproblem
diagram with the designer’s chosen authentication scheme, as
shown in Figure 6.

From this diagram we conclude that the interface between the user
and the machine seems safe. We are told that the Authentication
Data and Information domains are supplied domains and not to be
designed as part of this effort. However, there is a public network
between the machines being used to process the data and the data

itself. We must add the requirement information passing over the
network must not be understandable by an eavesdropper.

When confronted with the problem, the designer produced the
diagram shown in Figure 7.

We note the encrypted network, and immediately add a constraint
encryption keys must not be revealed. Asking the designer about
the keys, we are told that a key exchange protocol will not be
used, that the keys are physically built into the machines, and that
the machines can be trusted not to reveal them2. Noting that
problems REQ1 and REQ2 both access the information domains
but with different security requirements, we enquire into the
properties of the two given domains, Info and Authentication
Data. We need to know how they control what information they
release to a client on the network. We are told that it is the
encryption key that tells the domains what information they may
release. We are told further that these domains are under the
responsibility of the IT organization and physically and logically
secure; we do not need to worry about them. These assurances
translate into trust assumptions, shown in Figure 8.

Problem REQ2

Reasoning about REQ2, employee access to personal and benefits
information, is very similar to the above, except that the
population of authorized users is much larger and the salary
information must not be displayed.

Analyzing this problem will result in a combination of the results
of REQ1 (above) and REQ3 (below). For space reasons the
argument and diagrams are not included in this paper.

Problem REQ3

There are two threats that can affect REQ3, the address book. The
first is that allowing the address information to leave the company
can cause harm. The second is that if the machine prepares the
address list by using the larger data assets, it might be possible to
carry out the threats involving these assets. When provoked, the
designer produces the diagram shown in Figure 9. The same
encrypted network is being used in this subproblem as was used in
the payroll data subproblem, but with different keys, so we will
need to eventually add the same trust assumptions. The analyst
was told that because different encryption keys are used, no
information in the Salary and Benefits Information domains is
accessible. Thus no vulnerability exists that could permit carrying

2 The assumptions in this paragraph are unrealistic and naïve, but

are acceptable for this paper.

Figure 6 – REQ1’ – Payroll data

Display
Information

User

Info
Display

Machine
Sal, Pers,
Ben info

Info
Editing

Machine
U!credentials (name, pw)

Campus
Network

Authentication
Data

IE!credentials (name, pw)
AD!Authenticated(Bool)

IE!credentials (name, pw)
AD!Authenticated(Bool)

Figure 7 – REQ1’’ – Payroll data

Display
Information

User

Info
Display

Machine
Sal, Pers,
Ben info

Info
Editing

Machine
U!credentials (name, pw)

Encrypted
Network

Authentication
Data

EN!data(KeySalData)
IE!data(KeySalData)
plus Authentication

EN!data(KeySalData)
ID!data(KeySalData)
plus Authentication

out threats against these more confidential data assets. Also,
because the keys are different, the Info Display machine cannot
expose confidential data ‘lifted’ from the network. A trust
assumption is added to capture this information.

The designer has not added authentication phenomena to the
interaction between the user and the system, so we have not
resolved that threat. The designer says that the company uses
many agency workers and that it is impractical to give all such
workers a username & password; doing so would cost far too
much money. The security officer says that the information must
be protected. The requirements, reasonable cost and appropriate
security, are in conflict. The conflict is resolved below.

3.3.4 Resolving Conflicts
3.3.4.1 Discussion
Security requirements often conflict with each other, as well as
with other requirements. For example, the result of applying the
CIA concerns can conflict with revenue & ease-of-use. Viega and
McGraw [30] provide an example from the credit card world,
saying that the credit card companies know ways to reduce fraud
dramatically, but they do not use them because the cost of
business lost would exceed the loss caused by the fraud.

3.3.4.2 The Example
The address-list display problem brought out a conflict between
administration cost and security. Discussions between the security
officer and the IT organization led to the realization that because
the system was limited to inside company buildings, in theory
only company employees and agency workers could access the
system. This satisfied the security officer, so a trust assumption
that the building security system restricts the membership of the
user domain to employees was added. The completed diagram is
shown in Figure 10.

There is seldom a clear-cut answer to a conflict. The analyst must
make decisions based on estimates of risk and cost. Work to assist
the analyst with these decisions is in progress, and will be
presented in a future paper.

4. RELATED WORK
Several projects are looking at requirements and non-functional
requirements including security.

Rashid et al propose that ideas from aspect-oriented software
development can be used when mapping non-functional
requirements onto functional requirements [27, 28]. They start by
identifying the non-functional requirements (NFRs) that affect
(crosscut) more than one functional requirement, determine what
the effect of the overlap is, then model the composition of the
requirements. In their work, security is treated identically to other
NFRs. Their work is more general than the work presented in this
paper. It focuses on managing the interplay and the results of
composition of the requirements, not deriving requirements from
the NFRs.

van Lamsweerde et al use “obstacles” to model security & safety
[18] in KAOS, and are developing the notion of anti-goals to
describe and close vulnerabilities [17]. In KAOS one starts with
generic “root anti-goals” which are the inversions of CIA (plus
privacy) and determines which agents could benefit from
application of the anti-goals, while we start with asset
identification and then determine the threats involving the assets.
The approaches converge at the end. In KAOS one adds ‘avoid’
predicates to close the vulnerabilities, while in this work security
constraints are added to functional requirements. We speculate
that in KAOS, concentrating on who benefits (as opposed to what
can be attacked) and the closed nature of the domain model will
tend to limit the vulnerabilities found during generation of the
anti-model. More work is required to determine and compare the
expressive powers of each approach.

Alexander is looking at detecting vulnerabilities using misuse
cases [1], as is Sindre et al [29]. McDermott uses ‘abuse cases’

Figure 9 – REQ3’ – Address list

Display
Information

Person

Info
Display

Machine Addr Info Encr.
Net

Keys are
secure

EN!data(KeyInfData)
IE!data(KeyInfData)

Figure 10 – REQ3’’ – Address list

Display
Information

Employee

Info
Display

Machine

Keys are
secure

Building Sec.
System

Restricts domain membership

Addr Info Encr.
Net

EN!data(KeyInfData)
IE!data(KeyInfData)

Sal & Ben
Info

Keys restrict
access

Figure 8 – REQ1’’’ – Payroll data

Display
Information

User

Info
Display

Machine
Sal, Pers,
Ben info

Info
Editing

Machine
U!credentials (name, pw)

Encrypted
Network

Authentication
Data

Keys are
secure

Domains are
secure

EN!data(KeySalData)
ID!data(KeySalData)
plus Authentication

EN!data(KeySalData)
IE!data(KeySalData)
plus Authentication

[22]. In and Boehm have adapted the WinWin framework to
include security requirements [12], and Heitmeyer has done the
same with SCR [11].

Several teams are looking at the role of trust in security
requirements engineering. In the i* framework [31, 32], Yu, Lin,
& Mylopoulos take an ‘actor, intention, goal’ approach where
security and trust relationships within the model are modeled as
“softgoals”: goals that depend on another actor to satisfy them.
The Tropos project [6] uses the i* framework, adding on wider
lifecycle coverage. Neither model captures the analyst’s
assumptions about the domains that make up the solution to the
problem. As such, an i* model complements the framework
presented here, and in fact can be used to determine the initial
goals, requirements, and constraints.

He and Antón [10] are concentrating on privacy, proposing a
context-based access model. Context is determined using purpose
(why is information being accessed), conditions (what conditions
must be satisfied before access can be granted), and “obligations”
(what actions must be taken before access can be granted.

5. CONCLUSIONS & FUTURE WORK
We have shown how representing security NFRs as crosscutting
threat descriptions assists with composing these requirements with
the functional requirements. Composition, an iterative process,
gives us a set of constraints on the functional requirements, which
we call security requirements. Security requirements are analyzed
along with other constraints when producing specifications for the
problem.

The principal advantage of our approach is that it permits
conversion of general security requirements into something more
akin to functional requirements. The constraints apply to specific
functional requirements, much as other constraints such as those
related to safety do. All of the constraints can be considered
together and in the context of a particular requirement. The
crosscutting nature of the threat descriptions permits consistency
analysis to ensure that assets are treated uniformly and
appropriately throughout the system.

Much work remains to be done. The composition process
described in this paper is informal. It would be useful to have
some traceability between constraints and the threat(s) they
counter; we are looking at the representation Rashid et al propose
in [27] and at an adaptation of the multi-dimensional concerns
matrix proposed by Ossher and Tarr in their work describing on-
demand application remodularization [25]. Better integration with
some of our colleagues’ research, such as the organizational
access control work of Crook [4] and the abuse analysis work of
Lin [20], is desired. As noted in the related work section, the
expressive powers of this approach and others (e.g. anti-goals in
[17]) need to be better understood.

A principal future focus will be the introduction of cost and risk
into the approach described by this paper. Quantifying the levels
of trust in trust assumptions and the levels of harm in threat
descriptions provides a starting point for calculating the potential
risk associated with a vulnerability. Add the notion of cost or
difficulty to constraints intended to reduce a vulnerability, and we
have a way to compare the cost of closing a vulnerability with the
expected harm if nothing is done. This information could help an
analyst determine whether the effort to reduce a given
vulnerability is appropriate or necessary.

6. ACKNOWLEGEMENTS
The financial support of the Leverhulme Trust is gratefully
acknowledged. Thanks also go to Jonathan Moffett and Michael
Jackson for their continued support and helpful comments.

7. REFERENCES
[1] Alexander, I. "Modelling the Interplay of Conflicting Goals

with Use and Misuse Cases," In Proceedings of 8th
International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'02). Essen,
Germany, 9-10 Sep 2002, pp. 145-152.

[2] Castro, J., Kolp, M., & Mylopoulos, J. "A Requirements-
Driven Development Methodology," In Proceedings of The
13th Conference on Advanced Information Systems
Engineering (CAiSE'01). Interlaken, Switzerland, 4-8 Jun
2001, pp. 108-123.

[3] Clarke, S., & Walker, R. J. "Composition Patterns: An
Approach to Designing Reusable Aspects," In Proceedings of
the 23rd International Conference on Software Engineering
(ICSE'01). Toronto, Ontario, Canada: IEEE Computer
Society Press, 12-19 May 2001, pp. 5-14.

[4] Crook, R., Ince, D., & Nuseibeh, B. "Modelling Access
Policies Using Roles in Requirements Engineering,"
Information and Software Technology (Elsevier) 45(14),
November, 2003: pp. 979-991.

[5] Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., & Ossher,
H. "Discussing Aspects of AOP - a Panel Discussion,"
Communications of the ACM 44(10), Oct, 2001: pp. 33-38.

[6] Giorgini, P., Massacci, F., & Mylopoulos, J. Requirement
Engineering Meets Security: A Case Study on Modelling
Secure Electronic Transactions by VISA and Mastercard,
Department of Information and Communication Technology,
DIT-03-027. University of Trento, May 2003.

[7] Grandison, T., & Sloman, M. "Trust Management Tools for
Internet Applications," In The First International Conference
on Trust Management. Heraklion, Crete, Greece: Springer
Verlag, 28-30 May 2003.

[8] Grundy, J. "Aspect-Oriented Requirements Engineering for
Component-Based Software Systems," In Fourth IEEE
International Symposium on Requirements Engineering
(RE'99). Limerick, Ireland: IEEE Computer Society Press, 7-
11 Jun 1999, pp. 84-91.

[9] Haley, C. B., Laney, R. C., Moffett, J. D., & Nuseibeh, B.
"Using Trust Assumptions in Security Requirements
Engineering," Second Internal iTrust Workshop On Trust
Management In Dynamic Open Systems, Imperial College,
London UK, 15-17 Sep 2003.

[10] He, Q., & Antón, A. I. "A Framework for Modeling Privacy
Requirements in Role Engineering" in Ninth International
Workshop on Requirements Engineering: Foundation for
Software Quality, The 15th Conference on Advanced
Information Systems Engineering (CAiSE'03),
Klagenfurt/Velden, Austria, 16 Jun 2003.

[11] Heitmeyer, C. L. "Applying 'Practical' Formal Methods to the
Specification and Analysis of Security Properties," In
Proceedings of the International Workshop on Information

Assurance in Computer Networks: Methods, Models, and
Architectures for Network Computer Security (MMM ACNS
2001). St. Petersburg, Russia: Springer-Verlag Heidelberg,
21-23 May 2001, pp. 84-89.

[12] In, H., & Boehm, B. W. "Using WinWin Quality
Requirements Management Tools: A Case Study," Annals of
Software Engineering (Kluwer) 11(1), Nov, 2001: pp. 141-
174.

[13] ISO/IEC. Information Technology - Security Techniques -
Evaluation Criteria for IT Security - Part 1: Introduction and
General Model, 15408-1. Geneva Switzerland: ISO/IEC, 1
Dec 1999.

[14] Jackson, M. Problem Frames. Addison Wesley, 2001.

[15] Kiczales, G., Hilsdale, E., Hugunin, J., & Kersten, M. "An
Overview of AspectJ," In Proceedings of the 15th European
Conference on Object-Oriented Programming (ECOOP'01).
Budapest, Hungary: Springer-Verlag, 18-22 Jun 2001, pp.
327-353.

[16] van Lamsweerde, A. "Goal-Oriented Requirements
Engineering: A Guided Tour," In 5th IEEE International
Symposium on Requirements Engineering (RE'01). Toronto,
Canada: IEEE Computer Society Press, 27-31 Aug 2001, pp.
249-263.

[17] van Lamsweerde, A., Brohez, S., De Landtsheer, R., &
Janssens, D. "From System Goals to Intruder Anti-Goals:
Attack Generation and Resolution for Security Requirements
Engineering" in Requirements for High Assurance Systems
Workshop (RHAS'03), Eleventh International Requirements
Engineering Conference (RE'03), Monterey, CA USA, 2003.

[18] van Lamsweerde, A., & Letier, E. "Handling Obstacles in
Goal-Oriented Requirements Engineering," IEEE
Transactions on Software Engineering 26(10), Oct, 2000: pp.
978-1005.

[19] Lieberherr, K., Orleans, D., & Ovlinger, J. "Aspect-Oriented
Programming with Adaptive Methods," Communications of
the ACM 44(10), Oct, 2001: pp. 39-41.

[20] Lin, L., Nuseibeh, B., Ince, D., Jackson, M., & Moffett, J.
"Introducing Abuse Frames for Analyzing Security
Requirements," In Proceedings of the 11th IEEE
International Requirements Engineering Conference (RE'03).
Monterey CA USA, 8-12 Sep 2003, pp. 371-372.

[21] Liu, L., Yu, E., & Mylopoulos, J. "Security and Privacy
Requirements Analysis Within a Social Setting," In
Proceedings of the 11th IEEE International Requirements
Engineering Conference (RE'03). Monteray Bay, CA USA,
8-12 Sept 2003.

[22] McDermott, J. "Abuse-Case-Based Assurance Arguments,"
In Proceedings of the 17th Computer Security Applications

Conference (ACSAC'01). New Orleans LA USA: IEEE
Computer Society Press, 10-14 Dec 2001, pp. 366-374.

[23] Moffett, J. D., & Nuseibeh, B. A Framework for Security
Requirements Engineering, Department of Computer
Science, YCS368. University of York, UK, 2003.

[24] Nuseibeh, B. "Weaving Together Requirements and
Architectures," IEEE Computer 24(3), March, 2001: pp. 115-
119.

[25] Ossher, H., & Tarr, P. "Multi-Dimensional Separation of
Concerns and the Hyperspace Approach," In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluver Academic Press, 2000.

[26] Pfleeger, C. P., & Pfleeger, S. L. Security in Computing.
Prentice Hall, 2002.

[27] Rashid, A., Moreira, A. M. D., & Araújo, J. "Modularisation
and Composition of Aspectual Requirements," In
Proceedings of the 2nd International Conference on Aspect-
oriented Software Development (AOSD'03). Boston, MA
USA: ACM Press, 17-21 Mar 2003, pp. 11-20.

[28] Rashid, A., Sawyer, P., Moreira, A. M. D., & Araújo, J.
"Early Aspects: A Model for Aspect-Oriented Requirements
Engineering," In Proceedings of the IEEE Joint International
Conference on Requirements Engineering (RE'02). Essen,
Germany, 9-13 Sep 2002, pp. 199-202.

[29] Sindre, G., & Opdahl, A. L. "Eliciting Security Requirements
by Misuse Cases," In Proceedings of the 37th International
Conference on Technology of Object-Oriented Languages
and Systems (TOOLS-Pacific'00). Sydney Australia, 20-23
Nov 2000, pp. 120-131.

[30] Viega, J., & McGraw, G. Building Secure Software: How to
Avoid Security Problems the Right Way. Addison Wesley,
2002.

[31] Yu, E. "Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering," In Proceedings of
the Third IEEE International Symposium on Requirements
Engineering (RE'97). Annapolis MD USA, 6-10 Jan 1997,
pp. 226-235.

[32] Yu, E., & Liu, L. "Modelling Trust for System Design Using
the i* Strategic Actors Framework," In R. Falcone, M. P.
Singh, & Y.-H. Tan, eds. Trust in Cyber-societies,
Integrating the Human and Artificial Perspectives. Springer-
Verlag Heidelberg, 2001: pp. 175-194.

[33] Zave, P., & Jackson, M. "Four Dark Corners of
Requirements Engineering," ACM Transactions on Software
Engineering and Methodology 6(1), Jan, 1997: pp. 1-30.

	INTRODUCTION
	BACKGROUND INFORMATION
	Problem Frames
	Requirements and Specifications
	Indicative vs. Optative

	Parallel Elaboration of Requirements & Architecture
	Trust Assumptions

	USING THREAT DESCRIPTIONS
	The Composition Process
	Description of the Example
	The Iterations
	Identify Candidate Assets
	Identifying Threats
	Security Concerns
	Using the Concerns
	The Example

	Composition – Identify Security Requirements
	Discussion
	The Example

	Resolving Conflicts
	Discussion
	The Example

	RELATED WORK
	CONCLUSIONS & FUTURE WORK
	ACKNOWLEGEMENTS
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

