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1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel

Let A and B be two coprime polynomials, A, B ∈ C[x]. What is the

minimum possible degree of R = A3 − B2 (if A3 6= B2)?

Example (N. Elkies, 2000)

P = (x10 − 2x9 + 33x8 − 12x7 + 378x6 + 336x5 + 2862x4

+ 2652x3 + 14397x2 + 9922x + 18553)3,

Q = (x15 − 3x14 + 51x13 − 67x12 + 969x11 + 33x10 + 10963x9

+ 9729x8 + 96507x7 + 108631x6 + 580785x5 + 700503x4

+ 2102099x3 + 1877667x2 + 3904161x + 1164691)2,

R = P − Q

= 26 315(5x6 − 6x5 + 111x4 + 64x3 + 795x2 + 1254x + 5477).

Remark. The fact that in this example the coefficients are rational

numbers is a great chance. Usually the coefficients are algebraic.

2



Two conjectures (1965): Let degA = 2k, degB = 3k; then

1. deg(A3 − B2) ≥ k + 1;

2. this bound is sharp.

In the previous example k = 5.

1965: The first conjecture proved by H. Davenport.

1981: The second conjecture proved by W.W. Stothers.
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1995: The problem is generalized by U. Zannier:

Let two partitions of an integer n be given:

α = (α1, α2, . . . , αp), β = (β1, β2, . . . , βq),

p
∑

i=1

αi =
q
∑

j=1

βj = n,

and let P and Q be two coprime polynomials of degree n with

complex coefficients, such that

P(x) =
p
∏

i=1

(x − ai)
αi, Q(x) =

q
∏

j=1

(x − bj)
βj .

Denote R = P − Q.

Question: What is the minimum possible degree of R?
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Two assumptions:

1. The greatest common divisor of α1, . . . , αp, β1, . . . , βq is 1.

2. p + q ≤ n + 1.

Theorem (U. Zannier, 1995)

1. degR ≥ (n + 1) − (p + q).

2. This bound is attained for any pair of partitions α, β ⊢ n

satisfying the above assumptions.
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2010: F. Beukers, C. Stewart: Search for polynomials A and B

such that

1. The degree of the difference Ak − Bl attains its minimum;

2. A and B are defined over Q.
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Reminder of the notation: P − Q = R.

Consider the rational function

f =
P

R
;

Note that

f − 1 =
Q

R
.

Theorem: degR = (n + 1) − (p + q) if and only if f is a Belyi

function for a bicolored plane map with n edges, such that:

1. The black vertex degrees are α1, . . . , αp.

2. The white vertex degrees are β1, . . . , βq.

3. All faces except the outer one are of degree 1.

Face degree is half the number of surrounding edges.
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Here is how such a map looks like:
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It is much easier to handle the corresponding weighted trees:

5

3

2

2

The degree of a vertex is the sum of the weights of the edges

incident to this vertex.

First result (A. Z.) A great simplification of Zannier’s proof.

For a given (α, β), the existence of a tree implies the

attainablity of the lower bound for degR.

For number theorists it took 30 years: 1965 . . . 1995.

9



Proposition (obvious): If for a given (α, β) the corresponding tree

is unique then the polynomials P, Q, R are defined over Q.

We call such trees unitrees.

Second result (F. Pakovich, A. Z.): A complete classification of

unitrees. There are:

• 10 infinite series, and

• 10 sporadic trees.

A very long and cumbersome proof. Pictures follow. . .

10



s

s

s

s

s
s

s
s

t

A

s

s

s

s

s

s

s

k l
t

C

t s ts

s t s t s

B

s

s

t s s+t

D
11



l
s t s t s s+t

s+t

s+t

k

s t s t s t s+t

s+t

s+t

l

k

l

l

s+t

s+t

s t s t s

s+t

s+t s+t

s+t

s+t

E

E

E

E1

2

3

4

s+t

s+t

s t s t s t s+t
s+t

s+t

s+t

s+t

12



2

F G

m
m

m

m

m

k l

m
m

m

m

m

k m

I

22
2

2
2

2
2

2
2J

H

k l k

k k

k

13



2

K

2 2

2

2

2

2 2

22

3

33 11

2

2

2

2

2

2

2
L N

M

OP

14



Q R

2

2

2

2

2

2

2S

2

2

2

2

2

T

15



Third result (F. Pakovich, A. Z.): Belyi functions for all unitrees

are computed.

To give but one example. . .
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m1 = l(s + t) + t
m2 = k(s + t) + s
p = number of black vertices of degree s + t
q = number of white vertices (all of them are of degree s + t)
a = l + t/(s + t)
b = k + s/(s + t)

P =

(

x − 1

2

)m1

·
(

x + 1

2

)m2

· Jp(a, b, x)s+t

Q = Jq(−a,−b, x)s+t

Here Jp, Jq are Jacobi polynomials of degree p and q respectively.

Notice the negative parameters −a and −b in Jq.
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Remark: The above condition (the uniqueness of the tree) is

sufficient but not necessary.

Example: Composition.

0 1

D

D

f

A

F(t) = f(A(t))

DF where

f = − 64x3(x − 1)

8 x + 1
, A =

1

55
· (t2 + 4)3(3 t + 8)2 .
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It is well-known that the monodromy groups of compositions are

imprimitive.

What can be said about primitive groups?

Fourth result: (N. Adrianov, A. Z.) Complete classification of

primitive monodromy groups of weighted trees:

• 184 trees (up to a color exchange);

• 85 Galois orbits;

• 34 groups;

• the highest degree of a group is 32.
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Theorem (Gareth Jones, September 2012) Let G be a primitive

permutation group of degree n, not equal to Sn or An and con-

taining a permutation with cycle structure (n − k,1k). Then one

of the following holds:

1. k = 0 and

(a) Cp ≤ G ≤ AGL1(p) with n = p prime;

(b) PGLd(q) ≤ G ≤ PΓLd(q) with n = (qd − 1)/(q − 1) and d ≥ 2

for some prime power q;

(c) G = L2(11), M11 or M23 with n = 11, 11 or 23 respectively;

2. k = 1 and

(d) AGLd(q) ≤ G ≤ AΓLd(q) with n = qd and d ≥ 1 for some

prime power q;

(e) G = L2(p) or PGL2(p) with n = p +1 for some prime p ≥ 5;

(f) G = M11, M12 or M24 with n = 12, 12 or 24 respectively;

3. k = 2 and

(g) PGL2(q) ≤ G ≤ PΓL2(q) with n = q + 1 for some prime

power q.
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Weight Group Order Orbits Trees

5 AGL1(5) 20 1 2

6 PSL2(5) 60 2 2
PGL2(5) 120 7 7

7 AGL1(7) 42 1 2
PSL3(2) 168 2 4

8 AΓL1(8) 168 1 4
PSL2(7) 168 2 2
PGL2(7) 336 6 7
ASL3(2) 1344 6 14

9 AΓL1(9) 144 1 2
AGL2(3) 432 2 4
PSL2(8) 504 3 3
PΓL2(8) 1512 4 10

10 PGL2(9) 720 3 3
PΓL2(9) 1440 2 2

11 PSL2(11) 660 1 2
M11 7920 1 2

12 PGL2(11) 1320 2 4
M11 7920 3 10
M12 95040 9 20
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Weight Group Order Orbits Trees

13 PSL3(3) 5616 3 12

14 PSL2(13) 1092 1 1
PGL2(13) 2184 2 4

15 PSL4(2) 20160 3 6

16 AΓL2(4) 5760 1 2
AGL4(2) 322560 4 12

17 PSL2(16) 4080 1 1
PSL2(16) ⋊ C2 8160 1 1

20 PGL2(19) 6840 1 3

21 PΓL3(4) 120960 1 2

23 M23 10200960 1 4

24 M24 244823040 5 18

31 PSL5(2) 9999360 1 6

32 ASL5(2) 319979520 1 6

Total 34 — 85∗ 184

∗For certain orbits we are not entirely sure that the “orbit” in question is indeed

a single orbit and not a union of several orbits.
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Fifth result: A number of funny examples. A small sample follows.

Here all three dessins are defined over Q:
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Note that all black degrees are equal to 10 and all white degrees are

equal to 3. Therefore, this example corresponds to the minimum

degree problem for A10 − B3.
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Weight n = 10, passport (8112,2412,8112): 16 trees, 4 orbits.
The sizes of orbits: 1, 2, 5, 8. Why 13 splits into 5 +8 ?
Five are self-dual, eight are not.
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Passport: (m3,5113m−5)

• either one orbit over a real quadratic field;

• or two orbits over Q.

Computation gives the field Q(
√

∆) where

∆ = 3(2m − 1) (3m − 2).
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Question: can ∆ = 3(2m − 1) (3m − 2) be a perfect square?

1. 2m − 1 and 3m − 2 are coprime:

3m − 2 = 1 · (2m − 1) + (m − 1),
2m − 1 = 2 · (m − 1) + 1.

2. Only 2m − 1 can be divisible by 3.

3. Hence, 3 (2m − 1) and 3m − 2 must both be squares.

4. Denoting

6m − 3 = a2, 3m − 2 = b2

we get

a2 − 2b2 = 1.

Pell equation ! (Plus the condition of a being a multiple of 3.)
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Pell’s name was attributed to this equation by error. . .

• Pythagoras (VI before J. C.): a2 − 2b2 = 0

• Brahmagupta (VII)

• Bhaskara II (XII)

• Narayana Pandit (XIV)

• Brouncker (XVII)

• Fermat, Euler, Lagrange, Abel, . . . (XVII–XIX)

• Dirichlet (XIX)

27



Infinitely many solutions

First values of the parameter m (vertex degree):

1 634, 1 884 962, 2 175 243 842, . . .

Growth exponent: (17 + 12
√

2)2 ≈ 1154.
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Sixth result: Enumeration (A. Z.)

Let an be the number of rooted trees of weight n, and let

f(t) =
∑

n≥0 antn. Then

f(t) =
1 − t −

√

1 − 6 t + 5 t2

2 t

= 1 + t + 3 t2 + 10 t3 + 36 t4 + 137 t5 + 543 t6 + 2219 t7 + . . .

Recurrence:

a0 = 1, a1 = 1, an+1 = an +
n
∑

k=0

akan−k pour n ≥ 1.

Asymptotic: an ∼ 1

2

√

5

π
· 5n n−3/2.

Sequence A002212 of the “On-Line Encyclopedia of Integer

Sequences”.
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Let bm,n be the number of rooted trees of weight n with m edges,

and let h(s, t) =
∑

m,n≥0 bm,nsmtn. Then

h(s, t) =
1 − t −

√

1 − (2 + 4s) t + (1 + 4s) t2

2st

= 1 + st + (s + 2s2) t2 + (s + 4s2 + 5s3) t3

+ (s + 6s2 + 15s3 + 14s4) t4 + . . .

Explicit formula for bm,n:

bm,n =

(

n − 1
m − 1

)

· 1

m + 1

(

2m
m

)

.
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An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair

of partitions (α, β)

and

to do that without inclusion-exclusion.

� � �

Oh when dessins go mar
hing inOh when dessins go mar
hing inOh how I'd like to learn their numberWhen all dessins go mar
hing in!
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An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair

of partitions (α, β)

and

to do that without inclusion-exclusion.

∗ ∗ ∗

Oh when dessins go marching in
Oh when dessins go marching in
Oh how I’d like to learn their number
When all dessins go marching in!
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Thank you !
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Conference “Embedded Graphs”

Saint-Petersburg, Russia

Last week of October (27–31 October)

Peter the Great Leonhard Euler

The conference will be held at the

Euler International Mathematical Institute
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