Galois invariants of weighted trees (Table of contents)

Alexander Zvonkin

(University of Bordeaux, France)

Joint work with

Fedor Pakovich

Ben-Gurion University of the Negev, Be'er Sheva, Israel Nikolai Adrianov Moscow State University, Russia

> SIGMAP–14 West Malvern, United Kingdom 10 July, 2014

1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel

Let A and B be two coprime polynomials, $A, B \in \mathbb{C}[x]$. What is the minimum possible degree of $R = A^3 - B^2$ (if $A^3 \neq B^2$)?

Example (N. Elkies, 2000)

$$P = (x^{10} - 2x^9 + 33x^8 - 12x^7 + 378x^6 + 336x^5 + 2862x^4 + 2652x^3 + 14397x^2 + 9922x + 18553)^3,$$

$$Q = (x^{15} - 3x^{14} + 51x^{13} - 67x^{12} + 969x^{11} + 33x^{10} + 10963x^{9} + 9729x^{8} + 96507x^{7} + 108631x^{6} + 580785x^{5} + 700503x^{4} + 2102099x^{3} + 1877667x^{2} + 3904161x + 1164691)^{2},$$

$$R = P - Q$$

$$= 2^{6} 3^{15} (5x^{6} - 6x^{5} + 111x^{4} + 64x^{3} + 795x^{2} + 1254x + 5477).$$

Remark. The fact that in this example the coefficients are rational numbers is a great chance. Usually the coefficients are algebraic.

Two conjectures (1965): Let deg A = 2k, deg B = 3k; then

- 1. deg $(A^3 B^2) \ge k + 1;$
- 2. this bound is sharp.

In the previous example k = 5.

1965: The first conjecture proved by H. Davenport.

1981: The second conjecture proved by W.W. Stothers.

1995: The problem is generalized by U. Zannier:

Let two partitions of an integer n be given:

$$\alpha = (\alpha_1, \alpha_2, \dots, \alpha_p), \qquad \beta = (\beta_1, \beta_2, \dots, \beta_q),$$
$$\sum_{i=1}^p \alpha_i = \sum_{j=1}^q \beta_j = n,$$

and let P and Q be two coprime polynomials of degree n with complex coefficients, such that

$$P(x) = \prod_{i=1}^{p} (x - a_i)^{\alpha_i}, \qquad Q(x) = \prod_{j=1}^{q} (x - b_j)^{\beta_j}.$$

Denote R = P - Q.

Question: What is the minimum possible degree of R?

Two assumptions:

- 1. The greatest common divisor of $\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q$ is 1.
- 2. $p + q \le n + 1$.

Theorem (U. Zannier, 1995)

- 1. deg $R \ge (n + 1) (p + q)$.
- 2. This bound is attained for any pair of partitions $\alpha, \beta \vdash n$ satisfying the above assumptions.

2010: F. Beukers, C. Stewart: Search for polynomials A and B such that

- 1. The degree of the difference $A^k B^l$ attains its minimum;
- 2. A and B are defined over \mathbb{Q} .

Reminder of the notation: P - Q = R.

Consider the rational function

$$f = \frac{P}{R};$$

Note that

$$f-1 = \frac{Q}{R}.$$

Theorem: deg R = (n + 1) - (p + q) if and only if f is a Belyi function for a *bicolored* plane map with n edges, such that:

- 1. The black vertex degrees are $\alpha_1, \ldots, \alpha_p$.
- 2. The white vertex degrees are β_1, \ldots, β_q .
- 3. All faces except the outer one are of degree 1.

Face degree is **half the number** of surrounding edges.

Here is how such a map looks like:

It is much easier to handle the corresponding weighted trees:

The **degree of a vertex** is the sum of the weights of the edges incident to this vertex.

First result (A. Z.) A great simplification of Zannier's proof.

For a given (α, β) , the existence of a tree implies the attainability of the lower bound for deg *R*.

For number theorists it took 30 years: 1965 ... 1995.

Proposition (obvious): If for a given (α, β) the corresponding tree is unique then the polynomials P, Q, R are defined over \mathbb{Q} .

We call such trees unitrees.

Second result (F. Pakovich, A. Z.): A complete classification of unitrees. There are:

- 10 infinite series, and
- 10 sporadic trees.

A very long and cumbersome proof. Pictures follow...

F

G

13

P

Third result (F. Pakovich, A. Z.): Belyi functions for all unitrees are computed.

To give but one example...

$$m_1 = l(s+t) + t$$

$$m_2 = k(s+t) + s$$

$$p =$$
number of black vertices of degree $s + t$

$$q =$$
number of white vertices (all of them are of degree $s + t$)

$$a = l + t/(s+t)$$

$$b = k + s/(s+t)$$

$$P = \left(\frac{x-1}{2}\right)^{m_1} \cdot \left(\frac{x+1}{2}\right)^{m_2} \cdot J_p(a,b,x)^{s+t}$$
$$Q = J_q(-a,-b,x)^{s+t}$$

Here J_p , J_q are Jacobi polynomials of degree p and q respectively. Notice the negative parameters -a and -b in J_q . **Remark:** The above condition (the uniqueness of the tree) is sufficient but not necessary.

Example: Composition.

It is well-known that the monodromy groups of compositions are imprimitive.

What can be said about primitive groups?

Fourth result: (N. Adrianov, A.Z.) Complete classification of primitive monodromy groups of weighted trees:

- 184 trees (up to a color exchange);
- 85 Galois orbits;
- 34 groups;
- the highest degree of a group is 32.

Theorem (Gareth Jones, September 2012) Let G be a primitive permutation group of degree n, not equal to S_n or A_n and containing a permutation with cycle structure $(n - k, 1^k)$. Then one of the following holds:

1.
$$\underline{k = 0}$$
 and
(a) $C_p \leq G \leq AGL_1(p)$ with $n = p$ prime;
(b) $PGL_d(q) \leq G \leq P\Gamma L_d(q)$ with $n = (q^d - 1)/(q - 1)$ and $d \geq 2$
for some prime power q ;
(c) $G = L_2(11)$, M_{11} or M_{23} with $n = 11$, 11 or 23 respectively;

2. <u>k = 1</u> and (d) AGL_d(q) ≤ G ≤ AΓL_d(q) with n = q^d and d ≥ 1 for some prime power q; (e) G = L₂(p) or PGL₂(p) with n = p + 1 for some prime p ≥ 5; (f) G = M₁₁, M₁₂ or M₂₄ with n = 12, 12 or 24 respectively;

3. $\underline{k=2}$ and (g) $PGL_2(q) \leq G \leq P\Gamma L_2(q)$ with n = q + 1 for some prime power q.

Weight	Group	Order	Orbits	Trees
5	$AGL_{1}(5)$	20	1	2
6	$PSL_{2}(5)$	60	2	2
	$PGL_{2}(5)$	120	7	7
7	$AGL_1(7)$	42	1	2
	$PSL_{3}(2)$	168	2	4
8	$A\Gamma L_1(8)$	168	1	4
	$PSL_2(7)$	168	2	2
	$PGL_2(7)$	336	6	7
	$ASL_{3}(2)$	1344	6	14
9	$A\Gamma L_1(9)$	144	1	2
	$AGL_2(3)$	432	2	4
	$PSL_2(8)$	504	3	3
	$P\GammaL_2(8)$	1512	4	10
10	$PGL_{2}(9)$	720	3	3
	$P\GammaL_2(9)$	1440	2	2
11	$PSL_{2}(11)$	660	1	2
	M_{11}	7920	1	2
12	$PGL_{2}(11)$	1320	2	4
	M_{11}	7920	3	10
	M_{12}	95040	9	20

Weight	Group	Order	Orbits	Trees
13	$PSL_{3}(3)$	5616	3	12
14	$PSL_{2}(13)$	1092	1	1
	PGL ₂ (13)	2184	2	4
15	$PSL_4(2)$	20160	3	6
16	$A\Gamma L_2(4)$	5760	1	2
	$AGL_4(2)$	322560	4	12
17	$PSL_{2}(16)$	4080	1	1
	$PSL_2(16) \rtimes C_2$	8160	1	1
20	PGL ₂ (19)	6840	1	3
21	$PFL_3(4)$	120960	1	2
23	M ₂₃	10200960	1	4
24	M ₂₄	244823040	5	18
31	$PSL_{5}(2)$	9999360	1	6
32	$ASL_5(2)$	319979520	1	6
Total	34		85 *	184

*For certain orbits we are not entirely sure that the "orbit" in question is indeed a single orbit and not a union of several orbits.

Fifth result: A number of funny examples. A small sample follows.

Here all three dessins are defined over \mathbb{Q} :

Note that all black degrees are equal to 10 and all white degrees are equal to 3. Therefore, this example corresponds to the minimum degree problem for $A^{10} - B^3$.

Weight n = 10, passport $(8^{1}1^{2}, 2^{4}1^{2}, 8^{1}1^{2})$: 16 trees, 4 orbits. The sizes of orbits: 1, 2, 5, 8. Why 13 splits into 5 + 8? Five are self-dual, eight are not.

Passport: $(m^3, 5^1 1^{3m-5})$

- either one orbit over a real quadratic field;
- \bullet or two orbits over $\mathbb Q.$

Computation gives the field $\mathbb{Q}(\sqrt{\Delta})$ where

$$\Delta = 3(2m - 1)(3m - 2).$$

Question: can $\Delta = 3(2m-1)(3m-2)$ be a perfect square?

1. 2m-1 and 3m-2 are coprime:

$$3m-2 = 1 \cdot (2m-1) + (m-1),$$

 $2m-1 = 2 \cdot (m-1) + 1.$

2. Only 2m - 1 can be divisible by 3.

3. Hence, 3(2m-1) and 3m-2 must both be squares.

4. Denoting

$$6m - 3 = a^2$$
, $3m - 2 = b^2$

we get

$$a^2 - 2b^2 = 1.$$

Pell equation ! (Plus the condition of *a* being a multiple of 3.)

Pell's name was attributed to this equation by error...

- Pythagoras (VI before J. C.): $a^2 2b^2 = 0$
- Brahmagupta (VII)
- Bhaskara II (XII)
- Narayana Pandit (XIV)
- Brouncker (XVII)
- Fermat, Euler, Lagrange, Abel, ... (XVII-XIX)
- Dirichlet (XIX)

Infinitely many solutions

First values of the parameter m (vertex degree):

1634, 1884962, 2175243842, ...

Growth exponent: $(17 + 12\sqrt{2})^2 \approx 1154$.

Sixth result: Enumeration (A. Z.)

Let a_n be the number of rooted trees of weight n, and let $f(t) = \sum_{n \ge 0} a_n t^n$. Then

$$f(t) = \frac{1 - t - \sqrt{1 - 6t + 5t^2}}{2t}$$

 $= 1 + t + 3t^{2} + 10t^{3} + 36t^{4} + 137t^{5} + 543t^{6} + 2219t^{7} + \dots$

Recurrence:

$$a_0 = 1, \quad a_1 = 1, \quad a_{n+1} = a_n + \sum_{k=0}^n a_k a_{n-k} \text{ pour } n \ge 1$$

Asymptotic: $a_n \sim \frac{1}{2} \sqrt{\frac{5}{\pi}} \cdot 5^n n^{-3/2}.$

Sequence A002212 of the "On-Line Encyclopedia of Integer Sequences".

Let $b_{m,n}$ be the number of rooted trees of weight n with m edges, and let $h(s,t) = \sum_{m,n \ge 0} b_{m,n} s^m t^n$. Then

$$h(s,t) = \frac{1-t-\sqrt{1-(2+4s)t+(1+4s)t^2}}{2st}$$
$$= 1+st+(s+2s^2)t^2+(s+4s^2+5s^3)t^3$$
$$+(s+6s^2+15s^3+14s^4)t^4+\dots$$

Explicit formula for $b_{m,n}$:

$$b_{m,n} = \binom{n-1}{m-1} \cdot \frac{1}{m+1} \binom{2m}{m}.$$

An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair of partitions (α, β)

and

to do that without inclusion-exclusion.

An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair of partitions (α, β)

and

to do that without inclusion-exclusion.

* * *

Oh when dessins go marching in Oh when dessins go marching in Oh how I'd like to learn their number When all dessins go marching in!

Thank you!

Conference "Embedded Graphs" Saint-Petersburg, Russia Last week of October (27–31 October)

Peter the Great

Leonhard Euler

The conference will be held at the **Euler International Mathematical Institute**