# Galois invariants of weighted trees 

## (Table of contents)

Alexander Zvonkin<br>(University of Bordeaux, France)<br>Joint work with<br>Fedor Pakovich<br>Ben-Gurion University of the Negev, Be'er Sheva, Israel<br>Nikolai Adrianov<br>Moscow State University, Russia

> SIGMAP-14

West Malvern, United Kingdom

$$
10 \text { July, } 2014
$$

1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel
Let $A$ and $B$ be two coprime polynomials, $A, B \in \mathbb{C}[x]$. What is the minimum possible degree of $R=A^{3}-B^{2}$ (if $A^{3} \neq B^{2}$ )?

Example (N. Elkies, 2000)

$$
\begin{aligned}
P= & \left(x^{10}-2 x^{9}+33 x^{8}-12 x^{7}+378 x^{6}+336 x^{5}+2862 x^{4}\right. \\
& \left.+2652 x^{3}+14397 x^{2}+9922 x+18553\right)^{3}, \\
Q= & \left(x^{15}-3 x^{14}+51 x^{13}-67 x^{12}+969 x^{11}+33 x^{10}+10963 x^{9}\right. \\
& +9729 x^{8}+96507 x^{7}+108631 x^{6}+580785 x^{5}+700503 x^{4} \\
& \left.+2102099 x^{3}+1877667 x^{2}+3904161 x+1164691\right)^{2}, \\
R= & P-Q \\
= & 2^{6} 3^{15}\left(5 x^{6}-6 x^{5}+111 x^{4}+64 x^{3}+795 x^{2}+1254 x+5477\right) .
\end{aligned}
$$

Remark. The fact that in this example the coefficients are rational numbers is a great chance. Usually the coefficients are algebraic.

Two conjectures (1965): Let $\operatorname{deg} A=2 k$, deg $B=3 k$; then

1. $\operatorname{deg}\left(A^{3}-B^{2}\right) \geq k+1$;
2. this bound is sharp.

In the previous example $k=5$.

1965: The first conjecture proved by H. Davenport.

1981: The second conjecture proved by W. W. Stothers.

1995: The problem is generalized by U. Zannier:

Let two partitions of an integer $n$ be given:

$$
\begin{aligned}
& \alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right), \quad \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{q}\right) \\
& \sum_{i=1}^{p} \alpha_{i}=\sum_{j=1}^{q} \beta_{j}=n
\end{aligned}
$$

and let $P$ and $Q$ be two coprime polynomials of degree $n$ with complex coefficients, such that

$$
P(x)=\prod_{i=1}^{p}\left(x-a_{i}\right)^{\alpha_{i}}, \quad Q(x)=\prod_{j=1}^{q}\left(x-b_{j}\right)^{\beta_{j}}
$$

Denote $R=P-Q$.

Question: What is the minimum possible degree of $R$ ?

Two assumptions:

1. The greatest common divisor of $\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}$ is 1 .
2. $p+q \leq n+1$.

Theorem (U. Zannier, 1995)

1. $\operatorname{deg} R \geq(n+1)-(p+q)$.
2. This bound is attained for any pair of partitions $\alpha, \beta \vdash n$ satisfying the above assumptions.

2010: F.Beukers, C. Stewart: Search for polynomials $A$ and $B$ such that

1. The degree of the difference $A^{k}-B^{l}$ attains its minimum;
2. $A$ and $B$ are defined over $\mathbb{Q}$.

Reminder of the notation: $P-Q=R$.

Consider the rational function

$$
f=\frac{P}{R}
$$

Note that

$$
f-1=\frac{Q}{R}
$$

Theorem: $\operatorname{deg} R=(n+1)-(p+q)$ if and only if $f$ is a Belyi function for a bicolored plane map with $n$ edges, such that:

1. The black vertex degrees are $\alpha_{1}, \ldots, \alpha_{p}$.
2. The white vertex degrees are $\beta_{1}, \ldots, \beta_{q}$.
3. All faces except the outer one are of degree 1.

Face degree is half the number of surrounding edges.

Here is how such a map looks like:


It is much easier to handle the corresponding weighted trees:


The degree of a vertex is the sum of the weights of the edges incident to this vertex.

First result (A. Z.) A great simplification of Zannier's proof.
For a given $(\alpha, \beta)$, the existence of a tree implies the attainablity of the lower bound for $\operatorname{deg} R$.

For number theorists it took 30 years: 1965 ... 1995.

Proposition (obvious): If for a given $(\alpha, \beta)$ the corresponding tree is unique then the polynomials $P, Q, R$ are defined over $\mathbb{Q}$.

We call such trees unitrees.

Second result (F. Pakovich, A. Z.): A complete classification of unitrees. There are:

- 10 infinite series, and
- 10 sporadic trees.

A very long and cumbersome proof. Pictures follow...


B






Third result (F. Pakovich, A. Z.): Belyi functions for all unitrees are computed.

To give but one example...


$$
\begin{aligned}
& m_{1}=l(s+t)+t \\
& m_{2}=k(s+t)+s \\
& p=\text { number of black vertices of degree } s+t \\
& q=\text { number of white vertices (all of them are of degree } s+t) \\
& a=l+t /(s+t) \\
& b=k+s /(s+t)
\end{aligned}
$$

$$
\begin{aligned}
P & =\left(\frac{x-1}{2}\right)^{m_{1}} \cdot\left(\frac{x+1}{2}\right)^{m_{2}} \cdot J_{p}(a, b, x)^{s+t} \\
Q & =J_{q}(-a,-b, x)^{s+t}
\end{aligned}
$$

Here $J_{p}, J_{q}$ are Jacobi polynomials of degree $p$ and $q$ respectively. Notice the negative parameters $-a$ and $-b$ in $J_{q}$.

Remark: The above condition (the uniqueness of the tree) is sufficient but not necessary.

Example: Composition.


It is well-known that the monodromy groups of compositions are imprimitive.
What can be said about primitive groups?

Fourth result: (N. Adrianov, A. Z.) Complete classification of primitive monodromy groups of weighted trees:

- 184 trees (up to a color exchange);
- 85 Galois orbits;
- 34 groups;
- the highest degree of a group is 32 .

Theorem (Gareth Jones, September 2012) Let $G$ be a primitive permutation group of degree $n$, not equal to $S_{n}$ or $A_{n}$ and containing a permutation with cycle structure $\left(n-k, 1^{k}\right)$. Then one of the following holds:

1. $k=0$ and
(a) $\mathrm{C}_{p} \leq G \leq \mathrm{AGL}_{1}$ ( $p$ ) with $n=p$ prime;
(b) $\mathrm{PGL}_{d}(q) \leq G \leq \mathrm{P} \Gamma \mathrm{L}_{d}(q)$ with $n=\left(q^{d}-1\right) /(q-1)$ and $d \geq 2$ for some prime power $q$;
(c) $G=\mathrm{L}_{2}(11), \mathrm{M}_{11}$ or $\mathrm{M}_{23}$ with $n=11,11$ or 23 respectively;
2. $k=1$ and
(d) $\mathrm{AGL}_{d}(q) \leq G \leq \mathrm{A} \Gamma \mathrm{L}_{d}(q)$ with $n=q^{d}$ and $d \geq 1$ for some prime power $q$;
(e) $G=\mathrm{L}_{2}(p)$ or $\mathrm{PGL}_{2}(p)$ with $n=p+1$ for some prime $p \geq 5$;
(f) $G=\mathrm{M}_{11}, \mathrm{M}_{12}$ or $\mathrm{M}_{24}$ with $n=12,12$ or 24 respectively;
3. $k=2$ and
(g) $\mathrm{PGL}_{2}(q) \leq G \leq \mathrm{P} \Gamma \mathrm{L}_{2}(q)$ with $n=q+1$ for some prime power $q$.

| Weight | Group | Order | Orbits | Trees |
| :---: | :---: | :---: | :---: | :---: |
| 5 | $\mathrm{AGL}_{1}(5)$ | 20 | 1 | 2 |
| 6 | $\mathrm{PSL}_{2}(5)$ | 60 | 2 | 2 |
|  | $\mathrm{PGL}_{2}(5)$ | 120 | 7 | 7 |
| 7 | $\mathrm{AGL}_{1}(7)$ | 42 | 1 | 2 |
|  | $\mathrm{PSL}_{3}(2)$ | 168 | 2 | 4 |
| 8 | $\mathrm{~A} \mathrm{\Gamma L}_{1}(8)$ | 168 | 1 | 4 |
|  | $\mathrm{PSL}_{2}(7)$ | 168 | 2 | 2 |
|  | $\mathrm{PGL}_{2}(7)$ | 336 | 6 | 7 |
|  | $\mathrm{ASL}_{3}(2)$ | 1344 | 6 | 14 |
|  | $\mathrm{~A} \mathrm{\Gamma L}_{1}(9)$ | 144 | 1 | 2 |
|  | $\mathrm{AGL}_{2}(3)$ | 432 | 2 | 4 |
|  | $\mathrm{PSL}_{2}(8)$ | 504 | 3 | 3 |
|  | $\mathrm{P} \mathrm{\Gamma}_{2}(8)$ | 1512 | 4 | 10 |
| 10 | $\mathrm{PGL}_{2}(9)$ | 720 | 3 | 3 |
|  | $\mathrm{P} \mathrm{\Gamma}_{2}(9)$ | 1440 | 2 | 2 |
| 11 | $\mathrm{PSL}_{2}(11)$ | 660 | 1 | 2 |
|  | $\mathrm{M}_{11}$ | 7920 | 1 | 2 |
| 12 | $\mathrm{PGL}_{2}(11)$ | 1320 | 2 | 4 |
|  | $\mathrm{M}_{11}$ | 7920 | 3 | 10 |
|  | $\mathrm{M}_{12}$ | 95040 | 9 | 20 |


| Weight | Group | Order | Orbits | Trees |
| :---: | :---: | :---: | :---: | :---: |
| 13 | $\mathrm{PSL}_{3}(3)$ | 5616 | 3 | 12 |
| 14 | $\mathrm{PSL}_{2}(13)$ | 1092 | 1 | 1 |
|  | $\mathrm{PGL}_{2}(13)$ | 2184 | 2 | 4 |
| 15 | $\mathrm{PSL}_{4}(2)$ | 20160 | 3 | 6 |
| 16 | $\mathrm{~A} \mathrm{\Gamma L}_{2}(4)$ | 5760 | 1 | 2 |
|  | $\mathrm{AGL}_{4}(2)$ | 322560 | 4 | 12 |
| 17 | $\mathrm{PSL}_{2}(16)$ | 4080 | 1 | 1 |
|  | $\mathrm{PSL}_{2}(16) \rtimes \mathrm{C}_{2}$ | 8160 | 1 | 1 |
| 20 | $\mathrm{PGL}_{2}(19)$ | 6840 | 1 | 3 |
| 21 | $\mathrm{P} \mathrm{\Gamma L}_{3}(4)$ | 120960 | 1 | 2 |
| 23 | $\mathrm{M}_{23}$ | 10200960 | 1 | 4 |
| 24 | $\mathrm{M}_{24}$ | 244823040 | 5 | 18 |
| 31 | $\mathrm{PSL}_{5}(2)$ | 9999360 | 1 | 6 |
| 32 | $\mathrm{ASL}_{5}(2)$ | 319979520 | 1 | 6 |
| Total | 34 | - | $\mathbf{8 5}$ | $\mathbf{1 8 4}$ |

*For certain orbits we are not entirely sure that the "orbit" in question is indeed a single orbit and not a union of several orbits.

Fifth result: A number of funny examples. A small sample follows.

## Here all three dessins are defined over $\mathbb{Q}$ :



Note that all black degrees are equal to 10 and all white degrees are equal to 3. Therefore, this example corresponds to the minimum degree problem for $A^{10}-B^{3}$.
 $-\frac{4}{6}-x_{0}-5$ $\rightarrow$ for - x $\rightarrow$ 矢 - K Weight $n=10$, passport $\left(8^{1} 1^{2}, 2^{4} 1^{2}, 8^{1} 1^{2}\right): 16$ trees, 4 orbits.
The sizes of orbits: $1,2,5,8$. Why 13 splits into $5+8$ ?
Five are self-dual, eight are not.


Passport: $\left(m^{3}, 5^{1} 1^{3 m-5}\right)$

- either one orbit over a real quadratic field;
- or two orbits over $\mathbb{Q}$.

Computation gives the field $\mathbb{Q}(\sqrt{\triangle})$ where

$$
\Delta=3(2 m-1)(3 m-2)
$$

Question: can $\Delta=3(2 m-1)(3 m-2)$ be a perfect square?

1. $2 m-1$ and $3 m-2$ are coprime:

$$
\begin{aligned}
& 3 m-2=1 \cdot(2 m-1)+(m-1) \\
& 2 m-1=2 \cdot(m-1)+1
\end{aligned}
$$

2. Only $2 m-1$ can be divisible by 3 .
3. Hence, $3(2 m-1)$ and $3 m-2$ must both be squares.
4. Denoting

$$
6 m-3=a^{2}, \quad 3 m-2=b^{2}
$$

we get

$$
a^{2}-2 b^{2}=1
$$

Pell equation! (Plus the condition of $a$ being a multiple of 3.)

Pell's name was attributed to this equation by error...

- Pythagoras (VI before J. C.): $a^{2}-2 b^{2}=0$
- Brahmagupta (VII)
- Bhaskara II (XII)
- Narayana Pandit (XIV)
- Brouncker (XVII)
- Fermat, Euler, Lagrange, Abel, ... (XVII-XIX)
- Dirichlet (XIX)


## Infinitely many solutions

First values of the parameter $m$ (vertex degree):
$1634,1884962,2175243842, \ldots$

Growth exponent: $(17+12 \sqrt{2})^{2} \approx 1154$.

Sixth result: Enumeration (A. Z.)
Let $a_{n}$ be the number of rooted trees of weight $n$, and let $f(t)=\sum_{n \geq 0} a_{n} t^{n}$. Then

$$
\begin{aligned}
f(t) & =\frac{1-t-\sqrt{1-6 t+5 t^{2}}}{2 t} \\
& =1+t+3 t^{2}+10 t^{3}+36 t^{4}+137 t^{5}+543 t^{6}+2219 t^{7}+\ldots
\end{aligned}
$$

Recurrence:

$$
a_{0}=1, \quad a_{1}=1, \quad a_{n+1}=a_{n}+\sum_{k=0}^{n} a_{k} a_{n-k} \quad \text { pour } \quad n \geq 1 .
$$

Asymptotic: $a_{n} \sim \frac{1}{2} \sqrt{\frac{5}{\pi}} \cdot 5^{n} n^{-3 / 2}$.
Sequence A002212 of the "On-Line Encyclopedia of Integer Sequences".

Let $b_{m, n}$ be the number of rooted trees of weight $n$ with $m$ edges, and let $h(s, t)=\sum_{m, n \geq 0} b_{m, n} s^{m} t^{n}$. Then

$$
\begin{aligned}
h(s, t)= & \frac{1-t-\sqrt{1-(2+4 s) t+(1+4 s) t^{2}}}{2 s t} \\
= & 1+s t+\left(s+2 s^{2}\right) t^{2}+\left(s+4 s^{2}+5 s^{3}\right) t^{3} \\
& +\left(s+6 s^{2}+15 s^{3}+14 s^{4}\right) t^{4}+\ldots
\end{aligned}
$$

Explicit formula for $b_{m, n}$ :

$$
b_{m, n}=\binom{n-1}{m-1} \cdot \frac{1}{m+1}\binom{2 m}{m}
$$

An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair of partitions $(\alpha, \beta)$
and
to do that without inclusion-exclusion.

An enumeration problem you are allowed to work on:

Count the number of weighted trees corresponding to a given pair of partitions $(\alpha, \beta)$
and
to do that without inclusion-exclusion.

*     *         * 

Oh when dessins go marching in Oh when dessins go marching in Oh how I'd like to learn their number When all dessins go marching in!

## Thank you!

## Conference "Embedded Graphs"

Saint-Petersburg, Russia
Last week of October (27-31 October)


Peter the Great


Leonhard Euler

The conference will be held at the
Euler International Mathematical Institute

