Nowhere-zero 3-flows in arc-transitive graphs on solvable groups

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne, Australia

SIGMAP, 7-11/7/2014

Joint work with Xiangwen Li, Central China Normal University (Wuhan)

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

circulations

Definition

Let D = (V(D), A(D)) be a digraph and A an abelian group. A **circulation** in D over A is a function

$$f:A(D)\to A$$

such that

$$\sum_{a\in A^+(v)} f(a) = \sum_{a\in A^-(v)} f(a), \quad ext{for all } v\in V(D),$$

where $A^+(v)$ ($A^-(v)$, respectively) is the set of arcs of D leaving from v (entering into v, respectively).

We say that f is **nowhere-zero** if $f(a) \neq 0$ for every $a \in A(D)$, where 0 is the identity element of A.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

circulations

Definition

Let D = (V(D), A(D)) be a digraph and A an abelian group. A **circulation** in D over A is a function

$$f:A(D)\to A$$

such that

$$\sum_{a\in A^+(v)} f(a) = \sum_{a\in A^-(v)} f(a), \quad \text{for all } v\in V(D),$$

where $A^+(v)$ ($A^-(v)$, respectively) is the set of arcs of D leaving from v (entering into v, respectively).

We say that f is **nowhere-zero** if $f(a) \neq 0$ for every $a \in A(D)$, where 0 is the identity element of A.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem (W. Tutte 1954) A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Whether a digraph admits a nowhere-zero circulation over a given abelian group depends only on its underlying undirected graph.

So we can speak of nowhere-zero circulations in undirected graphs.

Four-Color-Theorem Restated:

Every planar graph admits a nowhere-zero circulation over \mathbb{Z}_4 .

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(W. Tutte 1954) A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Whether a digraph admits a nowhere-zero circulation over a given abelian group depends only on its underlying undirected graph.

So we can speak of nowhere-zero circulations in undirected graphs.

Four-Color-Theorem Restated:

Every planar graph admits a nowhere-zero circulation over \mathbb{Z}_4 .

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(W. Tutte 1954) A plane digraph is k-face-colorable if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Whether a digraph admits a nowhere-zero circulation over a given abelian group depends only on its underlying undirected graph.

So we can speak of nowhere-zero circulations in undirected graphs.

Four-Color-Theorem Restated:

Every planar graph admits a nowhere-zero circulation over \mathbb{Z}_4 .

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

integer flows

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \leq f(a) \leq k-1$$
, for all $a \in A(D)$

Theorem

(W. Tutte 1954) A graph admits a k-flow if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Four-Color-Theorem Again: Every planar graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

integer flows

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \leq f(a) \leq k-1$$
, for all $a \in A(D)$

Theorem

(W. Tutte 1954) A graph admits a k-flow if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Four-Color-Theorem Again: Every planar graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

integer flows

Definition

A nowhere-zero circulation f over \mathbb{Z} in a digraph D is called a (nowhere-zero) k-flow if

$$-(k-1) \leq f(a) \leq k-1$$
, for all $a \in A(D)$

Theorem

(W. Tutte 1954) A graph admits a k-flow if and only if it admits a nowhere-zero circulation over \mathbb{Z}_k .

Four-Color-Theorem Again: Every planar graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

A graph admits a 2-flow if and only if its vertices all have even degrees.

heorem

A 2-edge-connected cubic graph admits a 3-flow if and only if it is bipartite.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

A graph admits a 2-flow if and only if its vertices all have even degrees.

Theorem

A 2-edge-connected cubic graph admits a 3-flow if and only if it is bipartite.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

```
The 5-flow conjecture
```

Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Theorem

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture)

Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Theorem

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture)

Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Theorem

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 5-flow conjecture

Tutte proposed three conjectures on integer flows (1954, 1968, 1972).

Conjecture

(The 5-flow conjecture)

Every 2-edge-connected graph admits a 5-flow.

Theorem

(The 8-flow theorem, F. Jaeger 1976) Every 2-edge-connected graph admits a 8-flow.

Theorem

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture) Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour and Thomas.

Theorem (F. Jaeger 1979) Every 4-edge-connected graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture) Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour and Thomas.

Theorem (F. Jaeger 1979) Every 4-edge-connected graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 4-flow conjecture

Conjecture

(The 4-flow conjecture) Every 2-edge-connected graph with no Petersen graph minor admits a 4-flow.

Confirmed for cubic graphs by Robertson, Sanders, Seymour and Thomas.

Theorem (F. Jaeger 1979) Every 4-edge-connected graph admits a 4-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Tutte's 3-flow conjecture

Conjecture

(The 3-flow conjecture) Every 4-edge-connected graph admits a 3-flow.

recent breakthrough

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(C. Thomassen 2012) Every 8-edge-connected graph admits a 3-flow.

Theorem

(L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013) Every 6-edge-connected graph admits a 3-flow.

recent breakthrough

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(C. Thomassen 2012)

Every 8-edge-connected graph admits a 3-flow.

Theorem

(L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013) Every 6-edge-connected graph admits a 3-flow.

motivation

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(M. E. Watkins 1969; W. Mader 1970) Every vertex-transitive graph of valency d is d-edge-connected.

Conjecture

(Vertex-transitive version of the 3-flow conjecture) Every vertex-transitive graph of valency at least 4 admits a 3-flow.

It suffices to prove this for vertex-transitive graphs of valency 5.

motivation

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(M. E. Watkins 1969; W. Mader 1970) Every vertex-transitive graph of valency d is d-edge-connected.

Conjecture

(Vertex-transitive version of the 3-flow conjecture) Every vertex-transitive graph of valency at least 4 admits a 3-flow.

It suffices to prove this for vertex-transitive graphs of valency 5.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

3-flows in Cayley graphs on nilpotent groups

Theorem

(P. Potačnik 2005) Every Cayley graph of valency at least 4 on a finite abelian group admits a 3-flow.

Theorem

(M. Nánásiová and M. Škoviera 2009) Every Cayley graph of valency at least 4 on a finite nilpotent group admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

3-flows in Cayley graphs on nilpotent groups

Theorem

(P. Potačnik 2005) Every Cayley graph of valency at least 4 on a finite abelian group admits a 3-flow.

Theorem

(M. Nánásiová and M. Škoviera 2009) Every Cayley graph of valency at least 4 on a finite nilpotent group admits a 3-flow.

an intermediate goal

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research Prove that every graph of valency at least 4 admitting a solvable vertex-transitive group of automorphisms admits a 3-flow.

As before it suffices to prove this for the case of valency 5.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

result so far

- Any *G*-arc-transitive graph is *G*-vertex-transitive and *G*-edge-transitive
- Any *G*-vertex-transitive and *G*-edge-transitive graph with odd valency is *G*-arc-transitive

Therefore, our result is equivalent to:

Theorem

Let G be a finite solvable group. Then every G-vertex-transitive and G-edge-transitive graph with valency at least 4 admits a 3-flow.

result so far

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

- Any *G*-arc-transitive graph is *G*-vertex-transitive and *G*-edge-transitive
- Any *G*-vertex-transitive and *G*-edge-transitive graph with odd valency is *G*-arc-transitive

Therefore, our result is equivalent to:

Theorem

Let G be a finite solvable group. Then every G-vertex-transitive and G-edge-transitive graph with valency at least 4 admits a 3-flow.

result so far

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

- Any *G*-arc-transitive graph is *G*-vertex-transitive and *G*-edge-transitive
- Any *G*-vertex-transitive and *G*-edge-transitive graph with odd valency is *G*-arc-transitive

Therefore, our result is equivalent to:

Theorem

Let G be a finite solvable group. Then every G-vertex-transitive and G-edge-transitive graph with valency at least 4 admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G' := [G, G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x, y \in G$

 $G^{(0)} := G, \ G^{(1)} := G', \ G^{(i)} := (G^{(i-1)})', \ i \geq 1$

G is solvable if $G^{(n)} = 1$ for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G' := [G, G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x, y \in G$ $G^{(0)} := G$, $G^{(1)} := G'$, $G^{(i)} := (G^{(i-1)})'$, $i \ge 1$

G is solvable if $G^{(n)} = 1$ for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G':=[G,G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy,\ x,y\in G$

$$G^{(0)} := G, \; G^{(1)} := G', \; G^{(i)} := (G^{(i-1)})', \; i \geq 1$$

G is solvable if $G^{(n)} = 1$ for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G':=[G,G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x,y\in G$

$$G^{(0)} := G, \; G^{(1)} := G', \; G^{(i)} := (G^{(i-1)})', \; i \geq 1$$

G is solvable if $G^{(n)} = 1$ for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G':=[G,G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x,y\in G$

$$G^{(0)} := G, \; G^{(1)} := G', \; G^{(i)} := (G^{(i-1)})', \; i \geq 1$$

G is solvable if
$$G^{(n)} = 1$$
 for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G':=[G,G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x,y\in G$

$$G^{(0)} := G, \; G^{(1)} := G', \; G^{(i)} := (G^{(i-1)})', \; i \geq 1$$

G is solvable if
$$G^{(n)} = 1$$
 for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

solvable groups

Definition

G':=[G,G]: derived subgroup of G, the subgroup of G generated by all commutators $x^{-1}y^{-1}xy$, $x,y\in G$

$$G^{(0)} := G, \; G^{(1)} := G', \; G^{(i)} := (G^{(i-1)})', \; i \geq 1$$

G is solvable if $G^{(n)} = 1$ for some $n \ge 0$

- Solvable groups with derived length 1 are precisely nontrivial abelian groups.
- Subgroups and quotient groups of a solvable group are solvable.
- Any solvable group G contains a normal abelian subgroup N such that G/N has a smaller derived length.

multicovers

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Definition Let Γ be a graph and \mathcal{P} a partition of $V(\Gamma)$.

 Γ is a **multicover** of the quotient $\Gamma_{\mathcal{P}}$ if for each pair of adjacent $P, Q \in \mathcal{P}$, the subgraph $\Gamma[P, Q]$ of Γ induced by $P \cup Q$ is a *t*-regular bipartite graph with bipartition $\{P, Q\}$ for some integer $t \ge 1$ independent of P, Q.

Lemma

Let $k \ge 2$ be an integer. If a graph admits a k-flow, then its multicovers all admit a k-flow.

multicovers

Circulations and integer flows

3-flows in arc-transitive

graphs

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Definition Let Γ be a graph and \mathcal{P} a partition of $V(\Gamma)$.

 Γ is a **multicover** of the quotient $\Gamma_{\mathcal{P}}$ if for each pair of adjacent $P, Q \in \mathcal{P}$, the subgraph $\Gamma[P, Q]$ of Γ induced by $P \cup Q$ is a *t*-regular bipartite graph with bipartition $\{P, Q\}$ for some integer $t \geq 1$ independent of P, Q.

Lemma

Let $k \ge 2$ be an integer. If a graph admits a k-flow, then its multicovers all admit a k-flow.

multicovers

Circulations and integer flows

3-flows in arc-transitive

graphs

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Definition Let Γ be a graph and \mathcal{P} a partition of $V(\Gamma)$.

 Γ is a **multicover** of the quotient $\Gamma_{\mathcal{P}}$ if for each pair of adjacent $P, Q \in \mathcal{P}$, the subgraph $\Gamma[P, Q]$ of Γ induced by $P \cup Q$ is a *t*-regular bipartite graph with bipartition $\{P, Q\}$ for some integer $t \geq 1$ independent of P, Q.

Lemma

Let $k \ge 2$ be an integer. If a graph admits a k-flow, then its multicovers all admit a k-flow.

normal quotients

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Definition

Let Γ be a *G*-vertex-transitive graph, and let $N \trianglelefteq G$.

The set \mathcal{P}_N of *N*-orbits on $V(\Gamma)$ is a *G*-invariant partition of $V(\Gamma)$, called a *G*-normal partition of $V(\Gamma)$.

Denote $\Gamma_N := \Gamma_{\mathcal{P}_N}$.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Lemma

Let Γ be a connected G-vertex-transitive graph. Let $N \trianglelefteq G$ be intransitive on $V(\Gamma)$. Then

(a) Γ_N is G/N-vertex-transitive under the induced action of G/N on \mathcal{P}_N ;

(b) for $P, Q \in \mathcal{P}_N$ adjacent in Γ_N , $\Gamma[P, Q]$ is a regular subgraph of Γ ;

(c) if in addition Γ is G-arc-transitive, then Γ_N is G/N-arc-transitive and Γ is a multicover of Γ_N .

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

result so far

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

- If val = 4, then the graph has a 2-flow and hence a 3-flow.
- If val ≥ 6, then the graph is 6-edge-connected and so admits a 3-flow by LTWZ (2013).
- It is boiled down to the case val = 5.

We prove:

Claim

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

result so far

- If val = 4, then the graph has a 2-flow and hence a 3-flow.
- If val ≥ 6, then the graph is 6-edge-connected and so admits a 3-flow by LTWZ (2013).
- It is boiled down to the case val = 5.

We prove:

Claim

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

result so far

- If val = 4, then the graph has a 2-flow and hence a 3-flow.
- If val ≥ 6, then the graph is 6-edge-connected and so admits a 3-flow by LTWZ (2013).
- It is boiled down to the case val = 5.

We prove:

Claim

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

result so far

- If val = 4, then the graph has a 2-flow and hence a 3-flow.
- If val ≥ 6, then the graph is 6-edge-connected and so admits a 3-flow by LTWZ (2013).
- It is boiled down to the case val = 5.

We prove:

Claim

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(X. Li and S. Zhou 2014, Ars Math. Contemp.) Let G be a finite solvable group. Then every G-arc-transitive graph with valency at least 4 admits a 3-flow.

result so far

- If val = 4, then the graph has a 2-flow and hence a 3-flow.
- If val ≥ 6, then the graph is 6-edge-connected and so admits a 3-flow by LTWZ (2013).
- It is boiled down to the case val = 5.

We prove:

Claim

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

- We may assume G is faithful on V(Γ). We may also assume the graphs under consideration are connected.
- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If val(Γ) is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

• We may assume G is faithful on $V(\Gamma)$. We may also assume the graphs under consideration are connected.

- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ). Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If $val(\Gamma)$ is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

• We may assume G is faithful on $V(\Gamma)$. We may also assume the graphs under consideration are connected.

- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If $val(\Gamma)$ is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

• We may assume G is faithful on $V(\Gamma)$. We may also assume the graphs under consideration are connected.

- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If $val(\Gamma)$ is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

- We may assume G is faithful on V(Γ). We may also assume the graphs under consideration are connected.
- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If val(Γ) is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

- We may assume G is faithful on V(Γ). We may also assume the graphs under consideration are connected.
- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If val(Γ) is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

outline of proof time G is faithful on $V(\Gamma)$. We may also

- We may assume G is faithful on V(Γ). We may also assume the graphs under consideration are connected.
- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected *G*-arc-transitive graph such that $val(\Gamma) \ge 4$ and $val(\Gamma)$ is not divisible by 3.
- If val(Γ) is even, Γ has a 2-flow and so a 3-flow.
- Assume $val(\Gamma) \ge 5$ is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

• We may assume G is faithful on $V(\Gamma)$. We may also assume the graphs under consideration are connected.

- Make induction on the derived length n(G).
- If n(G) = 1, then G is abelian and so is regular on V(Γ).
 Hence Γ is a Cayley graph on G and the result is true by Potačnik's result.
- Assume for some n ≥ 1 the result holds for any finite solvable group of derived length n.
- Let G be a finite solvable group with derived length n(G) = n + 1.
- Let Γ be a connected G-arc-transitive graph such that val(Γ) ≥ 4 and val(Γ) is not divisible by 3.
- If val(Γ) is even, Γ has a 2-flow and so a 3-flow.
- Assume val(Γ) ≥ 5 is odd.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N .
- val(Γ_N) is a divisor of val(Γ) and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N .
- val(Γ_N) is a divisor of val(Γ) and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N.
- val(Γ_N) is a divisor of val(Γ) and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N .
- $val(\Gamma_N)$ is a divisor of $val(\Gamma)$ and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N.
- $val(\Gamma_N)$ is a divisor of $val(\Gamma)$ and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Since G is solvable, there exists an abelian $N \leq G$ such that G/N has derived length n(G) 1 = n.
- If N is transitive on V(Γ), then it is regular on V(Γ). So Γ is a Cayley graph on N and admits a 3-flow by Potačnik's result.
- Assume N is intransitive on $V(\Gamma)$.
- Then Γ_N is a connected G/N-arc-transitive graph, and Γ is a multicover of Γ_N.
- $val(\Gamma_N)$ is a divisor of $val(\Gamma)$ and so is not divisible by 3.
- If val(Γ_N) = 1, then Γ is a regular bipartite graph of valency at least two and so admits a 3-flow.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

• Assume $val(\Gamma_N) > 1$.

- Then val(Γ_N) ≥ 5 and every prime factor of val(Γ_N) is no less than 5.
- Since G/N is solvable of derived length *n*, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Assume $val(\Gamma_N) > 1$.
- Then val(Γ_N) ≥ 5 and every prime factor of val(Γ_N) is no less than 5.
- Since G/N is solvable of derived length n, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research • Assume $val(\Gamma_N) > 1$.

- Then val(Γ_N) ≥ 5 and every prime factor of val(Γ_N) is no less than 5.
- Since G/N is solvable of derived length *n*, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Assume val(Γ_N) > 1.
- Then val(Γ_N) ≥ 5 and every prime factor of val(Γ_N) is no less than 5.
- Since G/N is solvable of derived length *n*, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research Assume val(Γ_N) > 1.

- Then val(Γ_N) ≥ 5 and every prime factor of val(Γ_N) is no less than 5.
- Since G/N is solvable of derived length *n*, by the induction hypothesis, Γ_N admits a 3-flow.
- Since Γ is a multicover of Γ_N , Γ admits a 3-flow.
- This completes the proof.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

difficulty for vertex- but not arc-transitive graphs

A *G*-vertex- but not *G*-arc-transitive graph Γ may not be a multicover of its normal quotients Γ_N .

In fact, in this case blocks of a normal partition are not necessarily independent sets.

This makes a similar induction difficult.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

a conjecture on Cayley graphs

Conjecture

(Alspach and Zhang 1992)

Every Cayley graph with valency at least two admits a 4-flow.

We only need to consider the cubic case due to Jaeger's 4-flow theorem.

Theorem

(Alspach, Liu and Zhang 1996)

The conjecture above is true for cubic Cayley graphs on finite solvable groups.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

a conjecture on Cayley graphs

Conjecture

(Alspach and Zhang 1992)

Every Cayley graph with valency at least two admits a 4-flow.

We only need to consider the cubic case due to Jaeger's 4-flow theorem.

Theorem

(Alspach, Liu and Zhang 1996)

The conjecture above is true for cubic Cayley graphs on finite solvable groups.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(Nedela and Škoviera 2001) Any counterexample must be a regular cover over a Cayley graph on an almost simple group.

Theorem

(Potačnik 2004)

Every connected cubic graph admitting a solvable vertex-transitive group of automorphisms admits a 4-flow or is isomorphic to the Petersen graph.

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

Theorem

(Nedela and Škoviera 2001) Any counterexample must be a regular cover over a Cayley graph on an almost simple group.

Theorem

(Potačnik 2004)

Every connected cubic graph admitting a solvable vertex-transitive group of automorphisms admits a 4-flow or is isomorphic to the Petersen graph.

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research • Every Cayley graph of valency at least 4 on a finite solvable group admits a 3-flow?

• This will generalize both [Alspach, Liu and Zhang 1996] and [Nánásiová and Škoviera 2009].

- Every graph of valency at least 4 admitting a solvable vertex-transitive group of automorphisms admits a 3-flow?
- Every vertex-transitive graph of valency at least 4 admits a 3-flow?

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Every Cayley graph of valency at least 4 on a finite solvable group admits a 3-flow?
- This will generalize both [Alspach, Liu and Zhang 1996] and [Nánásiová and Škoviera 2009].
- Every graph of valency at least 4 admitting a solvable vertex-transitive group of automorphisms admits a 3-flow?
- Every vertex-transitive graph of valency at least 4 admits a 3-flow?

arc-transitive graphs

3-flows in

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Every Cayley graph of valency at least 4 on a finite solvable group admits a 3-flow?
- This will generalize both [Alspach, Liu and Zhang 1996] and [Nánásiová and Škoviera 2009].
- Every graph of valency at least 4 admitting a solvable vertex-transitive group of automorphisms admits a 3-flow?
- Every vertex-transitive graph of valency at least 4 admits a 3-flow?

3-flows in arc-transitive graphs

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

- Every Cayley graph of valency at least 4 on a finite solvable group admits a 3-flow?
- This will generalize both [Alspach, Liu and Zhang 1996] and [Nánásiová and Škoviera 2009].
- Every graph of valency at least 4 admitting a solvable vertex-transitive group of automorphisms admits a 3-flow?
- Every vertex-transitive graph of valency at least 4 admits a 3-flow?

Circulations and integer flows

Tutte's flow conjectures

3-flows in arc-transitive graphs

Proof

Related results and further research

thank you for your attention